The emplacement of pahoehoe lavas on Kilauea and in the Deccan Traps H. C. SHETH Department of Earth Sciences, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400 076, India (email:
[email protected]) There is growing interest in deciphering the emplacement and environmental impact of flood basalt provinces such as the Deccan, India. Observations of active volcanism lead to meaningful interpretations of now-extinct volcanic systems. Here, I illustrate and discuss the morphology and emplacement of the modern and active lava flows of Kilauea volcano in Hawaii, and based on them, interpret the compound pahoehoe lavas of the Deccan Traps. The latter are vastly larger (areally extensive and voluminous) than Kilauea flows, and yet, their internal architecture is the same as that of Kilauea flows, and even the sizes of individual flow units often identical. Many or most compound flows of the Deccan Traps were emplaced in a gentle, effusive, Kilauea-like fashion. Bulk eruption rates for the Deccan province are unknown, and were probably high, but the local eruption rates of the compound flows were no larger than Kilauea’s. Large (≥1000 km3) individual compound pahoehoe flows in the Deccan could have been emplaced at Kilauea-like local eruption rates (1 m3/sec per metre length of fissure) in a decade or less, given fissures of sufficient length (tens of kilometres), now exposed as dyke swarms in the province. Keywords. Volcanism; lava; Kilauea; Hawaii; Deccan; flood basalt 1. Introduction The emplacement and environmental impact of flood basalt eruptions have been topics of much interest and debate in recent years (see e.g., Self et al 1997; Bondre et al 2004a,b and references therein; Wignall 2005).