Drainage Basins, Channels, and Flow Characteristics of Selected Streams in Central Pennsylvania

Total Page:16

File Type:pdf, Size:1020Kb

Drainage Basins, Channels, and Flow Characteristics of Selected Streams in Central Pennsylvania Drainage Basins, Channels, and Flow Characteristics of Selected Streams in Central Pennsylvania GEOLOGICAL SURVEY PROFESSIONAL PAPER 282-F Drainage Basins, Channels, and Flow Characteristics of Selected Streams in Central Pennsylvania By LUCIEN M. BRUSH, JR. PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS GEOLOGICAL SURVEY PROFESSIONAL PAPER 282-F A study of the influence of the geologic character of drainage basins upon the hydraulic characteristics of 16 natural stream channels at sampling stations UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director REPRINTED 1963 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. - Price $1.00 (paper cover) CONTENTS Page Page IV Effect of kind of bedrock, etc.—Continued Abstract-__________________________________________ 145 General geology________________________________ 163 Introduction_______________________________________ 145 Bedrock lithology and the longitudinal profile.._. 163 Order of discussion____________________________ 146 Relation of slope to length of stream for different Acknowledgments__ _ - __ . ______________________ 146 kinds of bedrock____________________________ 163 General description of the area._--_-___-____--___ 146 Longitudinal profiles determined by integration of Procedure___________________________________ 148 the equations relating slope and length of stream. _ 165 Characteristics of individual streams and drainage basins- 148 Effect of kind of bedrock on bed material in channel—___ 166 Longitudinal profiles of streams_________________ 148 Relation of particle size and length of stream._____ 166 Bed material----_____--__-----------____--_________ 150 Competence. ___ ________________________________ 168 Particle size__________________________________ 150 Hydraulic geometry and kinds of bedrock..______ 168 Distribution of particle size._____________________ 151 Summary and discussion_________________________ 169 Particle shape._________________________________ 152 Relations of slope, particle size, length, and kind of bed­ Effect of wear on particle size.___________________ 154 rock. -_.________________________ 170 Morphology of drainage basins.______________________ 155 Particle size and slope for common lengths.________ 170 Relation of length of stream to size of drainage area_ 155 Rock type, slope, and particle size for individual Relation between mean annual flood and drainage streams____________-___-__-__-__-______-_-_ 171 area——_____________________________________ 157 Comparison with results of other authors__-_______ 172 Hydraulic geometry_______________________________ 158 Summary of relations between kind of bedrock and Hydraulic geometry by indirect approximations.___ 158 the longitudinal profile.___-___-_____---_-_---_ 173 Exponents of power functions for downstream re­ Summary and conclusions.__________________________ 173 lations_____________________________________ 158 References..._---___--_----------_-----__---------_ 174 Values of the coefficients for downstream relations. _ 160 Appendix________________________________________ 177 Composite characteristics of streams __________________ 161 A. Summary of data._-_---_-__-----__-_______-_ 177 Composite relations_____-____-_--___-___________ 161 B. Summary of flood-frequency analyses and meas­ Effect of kind of bedrock on longitudinal profiles and ured bankfull discharge_____________________ 180 basin characteristics.__________________________ 162 Index. _--_______.__-----._-__._-.__._______ 181 ILLUSTRATIONS Page PLATE 5. Drainage basins studied and location of sampling stations, Susquehanna River basin, central Pennsylvania. In pocket 6. Views of: A, general topography toward Allegheny Front, B, bed material in upper Shaver Creek, C, bed ma­ terial in Little Juniata River, and D, boulder field in water gap near Lamar__________________________ Facing 148 7. Geologic map of an area in Centre County and parts of adjacent counties, Susquehanna River basin, central Pennsylvania___________-________________________--_-____--_-_-_---__--_---__-----__-____ In pocket 8. Columnar section in the Bellefonte quadrangle, Pennsylvania._______________________________•_______ In pocket FIGURE 88. Location of area of investigation___________________________________________________________________ 147 89. Generalized diagrams of longitudinal profiles of six of the major streams studied.___________________________ 149 90. Relation of fall to length of stream from drainage divide as plotted on: A, semilogarithmic paper, B, logarithmic paper. _____________________________________________________________________________________ 149 91. Relation of channel slope to length of stream from drainage divide._____-_-_-__-__-_-____--_______________ 150 92. Relation of mean particle size to length of stream from drainage divide.._________________________________ 150 93. Relation of channel slope to mean particle size. ___________-__-_________--------_-___-__-_-_________.__ 151 94. Cumulative frequency curves of particle size as plotted on probability paper._____________________________ 152 95. Relation of intercept sphericity to length of stream from drainage divide _________________________________ 153 96. Relation of computed particle size and length of travel for data of Wentworth (1919) and Krumbein (1941b)__ _ 154 97. Relation of number of streams, mean length of streams, and mean areas of drainage basins to stream orders. _ _ _ 156 98. Relation of length of stream from drainage divide to size of drainage area.________________________________ 156 99. Relation of discharge to recurrence interval for gaging station on Standing Stone Creek.______________________ 158 100. Relation of mean annual flood and size of drainage area for gaging stations in the vicinity of the field area._____ 159 101. Relation of bankfull width, bankfull depth, and computed bankfull velocity to bankfull discharge____________ 161 102. Relation at all sampling stations of: A, channel slope and distance from drainage divide, B, length of stream from drainage divide and size of drainage area, C, mean particle size and channel slope, and D, intercept spher­ icity and length of stream from drainage divide._____-___-----__------_----_-----___---__-----_-__-__ 162 in IV CONTENTS Page FIGURE 103. Relation of bankfull width, bankfull depth, and computed bankfull mean velocity to bankfull discharge for all sampling stations. ——— _____________________________________________________._____„__ 163 104. Relation of channel slope and length of stream from drainage divide in areas of sandstone, of shale, and of lime­ stone-dolomite. ____________________________________________________________________________ 164 105. Relation of hypothetical longitudinal profiles beginning at an arbitrary datum and length of stream in areas of sandstone, of shale, and of limestone-dolomite.______________________________________________________ 166 106. Relation of mean particle size and length of stream from drainage divide in areas of sandstone, of shale, and of limestone-dolomite______________________„„_______________________________ 167 107. Relation of computed bankfull velocity to size of drainage basin in areas of sandstone, of shale, and of limestone- dolomite_____________________________________________________________________________________ 169 108. Relation of mean particle size and channel slope for three categories of stream length_______________-___--___ 170 109. Relation of the rate of change of log channel slope to log drainage area and rate of change of log mean particle size to log drainage area________________________________________________________ — — ____—— 171 110. Longitudinal profiles of Sixmile Creek, Shaver Creek, and the Little Juniata River, including rock type, channel slope, and mean particle size____________________________________________________________________ 172 TABLES TABLE 1. Summary of the power function equations relating length of stream and size of drainage area._________________ 157 2. The exponents of power function relations in the equations for width, depth, and velocity.___________________ 160 3. Coefficients of the power function equations relating bankfull width, depth, and velocity to discharge._________ 160 4. Analysis of variance of channel slopes for three rock types-__-----__-_-_-----_-_-----_-----__------------ 164 5. Analysis of covariance of slope among adjusted group means of rock types--_---__-_--------_---_---------- 164 6. Analysis of errors of estimate from average regression within groups of rock types.__________________________ 165 7. Analysis of variance of particle size for three rock types_________-_____-__---_______-_---_----__--------- 167 8. Analysis of covariance of particle size for three rock types_______-______-_-___-___-_---------_-_--------- 167 9. Frequency of occurrence of large particles in headwaters of streams in central Pennsylvania._________________ 168 SYMBOLS cross-sectional area of channel Q discharge drainage area Qlf Q3 quartile size j, constant; and length of long axis of particle $2.3 mean annual flood a^ phi skewness Q& bankfull discharge !> exponent; and length of intermediate axis of r correlation coefficient particle S slope of water surface d constant So Trask's sorting coefficient c constant; and length of short axis of particle Svx standard error of estimate d depth of channel v velocity D, particle size W width of drainage
Recommended publications
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Calvin Park Tributary Stream Restoration -- Survey Phase
    Neighborhood Advisory Croydon Creek – Calvin Park Tributary Stream Restoration -- Survey Phase Project Rockville’s Department of Public Works has begun the design of the Croydon Creek – Description: Calvin Park Tributary Stream Restoration project. The city’s consultant, AECOM, will survey the area within Rockville Civic Center Park in the project limits depicted on the back side of this advisory. The survey will identify features including the existing roads, stream, trees, utilities, and topography. Survey work will begin in March and will continue into the spring. Surveyors and engineers with equipment will traverse the area shown on the back of this advisory. Survey stakes may be placed in the ground and trees may be marked with temporary metal tags to assist in identification and inventory. The survey flags do not indicate tree removal. Purpose: The Croydon Creek – Calvin Park Tributary Stream Restoration project was recommended in the 2013 Rock Creek Watershed Assessment as a crucial component to the long-term health of the watershed. The assessment was approved by the Mayor and Council in February 2013, and this project was included in the adopted Fiscal Year 2017 Capital Improvements Program. The project goals are to enhance the watershed through stream restoration, wetland enhancement, reforestation, and the protection of private and public property and infrastructure Location: Croydon Creek within Rockville Civic Center Park and the Calvin Park Tributary from Baltimore Road to Croydon Creek (See the map on the back of this advisory). Timeline: Survey work and preliminary design is anticipated to begin in March and continue through spring. A community meeting will be held this summer to provide additional details of the project.
    [Show full text]
  • Explain How Rivers Adjust to a Change in Base Level with Reference to Examples You Have Studied (2013 Q1C)
    Isostasy | A1 Sample answer Explain how rivers adjust to a change in base level with reference to examples you have studied (2013 Q1C) Isostatic uplift is when land rises above sea level because of tectonic activity. This is usually due to a large weight being removed from the land e.g. when an ice cap melts. Eustatic changes are when the sea level drops. This is due to water being locked away somewhere e.g., in a glacier. When it melts, the sea level rises again. The River Nore in Kilkenny has experienced a change in base level. This can be seen since there are knickpoints along it, roughly 150-200m above sea level. A knickpoint can be seen when the sea level drops and a river rejuvenates because the river starts vertically eroding once more. Rejuvenation is the term used to describe a river that starts eroding like a youthful river even when it is in its old age stage. A knickpoint is a spot where the newly eroded river profile meets the old river profile. Sometimes you will find a waterfall here. River terraces are also found where rejuvenation has occurred. This is when a river forms a new floodplain that is lower down than the last. The remnants of the old floodplain are left as steps and are called terraces. If there are terraces on both sides of the river, they are called paired terraces. Terraces can be formed multiple times if the river rejuvenates more than once, appearing as a series of steps down to the river.
    [Show full text]
  • Analysis of Streamflow Variability and Trends in the Meta River, Colombia
    water Article Analysis of Streamflow Variability and Trends in the Meta River, Colombia Marco Arrieta-Castro 1, Adriana Donado-Rodríguez 1, Guillermo J. Acuña 2,3,* , Fausto A. Canales 1,* , Ramesh S. V. Teegavarapu 4 and Bartosz Ka´zmierczak 5 1 Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Atlántico, Colombia; [email protected] (M.A.-C.); [email protected] (A.D.-R.) 2 Department of Civil and Environmental Engineering, Instituto de Estudios Hidráulicos y Ambientales, Universidad del Norte, Km.5 Vía Puerto Colombia, Barranquilla 081007, Colombia 3 Programa de Ingeniería Ambiental, Universidad Sergio Arboleda, Escuela de Ciencias Exactas e Ingeniería (ECEI), Calle 74 #14-14, Bogotá D.C. 110221, Colombia 4 Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; [email protected] 5 Department of Water Supply and Sewerage Systems, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; [email protected] * Correspondence: [email protected] (F.A.C.); [email protected] (G.J.A.); Tel.: +57-5-3362252 (F.A.C.) Received: 29 March 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: The aim of this research is the detection and analysis of existing trends in the Meta River, Colombia, based on the streamflow records from seven gauging stations in its main course, for the period between June 1983 to July 2019. The Meta River is one of the principal branches of the Orinoco River, and it has a high environmental and economic value for this South American country.
    [Show full text]
  • Stream Discharge (Streamflow)
    The Importance of Streamflow in California’s Southern Sierra Nevada Mountains Kings River Experimental Watersheds Because 55 to 65 percent of California’s developed water comes from small streams in the Sierra Nevada, it is important to under- stand the role the snowpack has in the distribution and quantity of stream discharge (streamflow). In the southern Sierra, more than 80 percent of precipitation falls December through April. However, owing to the delay in snowmelt, there is a lag in runoff until the spring. At higher elevation sites, the spring melt does not peak until May or even June. This makes mountain water available to California during the summer months. The Kings River Experi- mental Watersheds (KREW) sites demonstrate that precipitation in the form of snow generates greater yearly discharge in a given watershed. The difference in discharge between the KREW Provi- dence site and Bull site is as much as 20 percent per year. C. Hunsaker Research Area Figure 1—KREW’s double flume system. The large flume KREW is a watershed-level, integrated ecosystem project for (background) accurately captures high flows, and the small flume headwater streams in the Sierra Nevada. Eight watersheds at two is successful at measuring lower base flows. study sites are fully instrumented to monitor ecosystem changes. Stream discharge data, just one component of the project, have been collected since 2002 from the Providence site and since 2003 from the Bull site. What is Stream Discharge? Discharge is the amount of water leaving each watershed within the stream channel. It is represented as a rate of flow such as cubic feet per second (cfs), gallons per minute (gpm), or acre-feet per year.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Late Holocene Sea Level Rise in Southwest Florida: Implications for Estuarine Management and Coastal Evolution
    LATE HOLOCENE SEA LEVEL RISE IN SOUTHWEST FLORIDA: IMPLICATIONS FOR ESTUARINE MANAGEMENT AND COASTAL EVOLUTION Dana Derickson, Figure 2 FACULTY Lily Lowery, University of the South Mike Savarese, Florida Gulf Coast University Stephanie Obley, Flroida Gulf Coast University Leonre Tedesco, Indiana University and Purdue Monica Roth, SUNYOneonta University at Indianapolis Ramon Lopez, Vassar College Carol Mankiewcz, Beloit College Lora Shrake, TA, Indiana University and Purdue University at Indianapolis VISITING and PARTNER SCIENTISTS Gary Lytton, Michael Shirley, Judy Haner, STUDENTS Leslie Breland, Dave Liccardi, Chuck Margo Burton, Whitman College McKenna, Steve Theberge, Pat O’Donnell, Heather Stoffel, Melissa Hennig, and Renee Dana Derickson, Trinity University Wilson, Rookery Bay NERR Leda Jackson, Indiana University and Purdue Joe Kakareka, Aswani Volety, and Win University at Indianapolis Everham, Florida Gulf Coast University Chris Kitchen, Whitman College Beth A. Palmer, Consortium Coordinator Nicholas Levsen, Beloit College Emily Lindland, Florida Gulf Coast University LATE HOLOCENE SEA LEVEL RISE IN SOUTHWEST FLORIDA: IMPLICATIONS FOR ESTUARINE MANAGEMENT AND COASTAL EVOLUTION MICHAEL SAVARESE, Florida Gulf Coast University LENORE P. TEDESCO, Indiana/Purdue University at Indianapolis CAROL MANKIEWICZ, Beloit College LORA SHRAKE, TA, Indiana/Purdue University at Indianapolis PROJECT OVERVIEW complicating environmental management are the needs of many federally and state-listed Southwest Florida encompasses one of the endangered species, including the Florida fastest growing regions in the United States. panther and West Indian manatee. Watershed The two southwestern coastal counties, Collier management must also consider these issues and Lee Counties, commonly make it among of environmental health and conservation. the 5 fastest growing population centers on nation- and statewide censuses.
    [Show full text]
  • The Arkansas River Flood of June 3-5, 1921
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE 0ns SMITH, Director Water-Supply Paper 4$7 THE ARKANSAS RIVER FLOOD OF JUNE 3-5, 1921 BY ROBERT FOLLANS^EE AND EDWARD E. JON^S WASHINGTON GOVERNMENT PRINTING OFFICE 1922 i> CONTENTS. .Page. Introduction________________ ___ 5 Acknowledgments ___ __________ 6 Summary of flood losses-__________ _ 6 Progress of flood crest through Arkansas Valley _____________ 8 Topography of Arkansas basin_______________ _________ 9 Cause of flood______________1___________ ______ 11 Principal areas of intense rainfall____ ___ _ 15 Effect of reservoirs on the flood__________________________ 16 Flood flows_______________________________________ 19 Method of determination________________ ______ _ 19 The flood between Canon City and Pueblo_________________ 23 The flood at Pueblo________________________________ 23 General features_____________________________ 23 Arrival of tributary flood crests _______________ 25 Maximum discharge__________________________ 26 Total discharge_____________________________ 27 The flood below Pueblo_____________________________ 30 General features _________ _______________ 30 Tributary streams_____________________________ 31 Fountain Creek____________________________ 31 St. Charles River___________________________ 33 Chico Creek_______________________________ 34 Previous floods i____________________________________ 35 Flood of Indian legend_____________________________ 35 Floods of authentic record__________________________ 36 Maximum discharges
    [Show full text]
  • Flood Hazard of Dunedin's Urban Streams
    Flood hazard of Dunedin’s urban streams Review of Dunedin City District Plan: Natural Hazards Otago Regional Council Private Bag 1954, Dunedin 9054 70 Stafford Street, Dunedin 9016 Phone 03 474 0827 Fax 03 479 0015 Freephone 0800 474 082 www.orc.govt.nz © Copyright for this publication is held by the Otago Regional Council. This publication may be reproduced in whole or in part, provided the source is fully and clearly acknowledged. ISBN: 978-0-478-37680-7 Published June 2014 Prepared by: Michael Goldsmith, Manager Natural Hazards Jacob Williams, Natural Hazards Analyst Jean-Luc Payan, Investigations Engineer Hank Stocker (GeoSolve Ltd) Cover image: Lower reaches of the Water of Leith, May 1923 Flood hazard of Dunedin’s urban streams i Contents 1. Introduction ..................................................................................................................... 1 1.1 Overview ............................................................................................................... 1 1.2 Scope .................................................................................................................... 1 2. Describing the flood hazard of Dunedin’s urban streams .................................................. 4 2.1 Characteristics of flood events ............................................................................... 4 2.2 Floodplain mapping ............................................................................................... 4 2.3 Other hazards ......................................................................................................
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]