The Impact of Green Walls and Roofs to Urban
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Urban Agriculture in the UK Visión De Experiencias Internacionales En Materia De Agricultura Urbana En Cubiertas De Edificios (Reino Unido)
Urban agriculture in the UK visión de experiencias internacionales en materia de agricultura urbana en cubiertas de edificios (Reino Unido) Dr Elisa Lopez-Capel Research Associate in Urban Soil Science SNES-Bio Economy [email protected] http://www.ncl.ac.uk/ Urban farming-UK 1 Allotments; 2. private gardens; 3 Community gardens/Guerrilla community action; 4 Urban farms; 5 rooftop developments; 6 aquaponics and vertical/hydroponics for details see: allotments at http://www.growingbirmingham.org/category/urban-farming/; community action www.incredible-edible- todmorden.co.uk; city farms at https://www.farmgarden.org.uk/ www.ouseburnfarm.org.uk ; underground farm London https://www.theguardian.com/environment/2016/apr/26/growing-underground-the-fresh-herbs-sprouting-beneath-londoners-feet ; aquaponics in London http://growup.org.uk/ Urban farming: rooftops 1. Bristol: University of Bristol Experimental greenhouses (T&R 2. London: Open rooftop farms 3 open rooftop farms: 1)The Rosewood London, Midtown; 2) terrace first floor of an office block; 3) top of Le Cordon Bleu cookery school (Sky Farmers Ltd) http://www.bristol.ac.uk/biology/research/glasshouses/ http://www.telegraph.co.uk/gardening/grow-to-eat/rooftop-farming-nature-flourishes-londons-skyline-plus-top/ https://www.theguardian.com/cities/2016/apr/27/inside-europes-biggest-urban-farm; https://urbanfarmers.com/projects/the-hague/ Urban farming: Businesses Examples of commercial and Social enterprise businesses e.g. https://grocycle.com/; Greenhouse food production The planning permission for Thanet Earth allows the construct up to seven greenhouses. 5 constructed. The investment required is enormous, with the projected cost of completing all seven standing at £135m. -
Urban Reconciliation Ecology: the Potential of Living Roofs and Walls
Journal of Environmental Management 92 (2011) 1429e1437 Contents lists available at ScienceDirect Journal of Environmental Management journal homepage: www.elsevier.com/locate/jenvman Review Urban reconciliation ecology: The potential of living roofs and walls Robert A. Francis*, Jamie Lorimer Department of Geography, King’s College London, Strand, London WC2R 2LS, UK article info abstract Article history: Reconciling human and non-human use of urban regions to support biological conservation represents Received 1 September 2009 a major challenge for the 21st century. The concept of reconciliation ecology, by which the anthropogenic Received in revised form environment may be modified to encourage non-human use and biodiversity preservation without 3 September 2010 compromising societal utilization, potentially represents an appropriate paradigm for urban conserva- Accepted 7 January 2011 tion given the generally poor opportunities that exist for reserve establishment and ecological restora- Available online 9 February 2011 tion in urban areas. Two habitat improvement techniques with great potential for reconciliation ecology in urban areas are the installation of living roofs and walls, which have been shown to support a range of Keywords: Reconciliation ecology taxa at local scales. This paper evaluates the reconciliation potential of living roofs and walls, in particular Living roof highlighting both ecological and societal limitations that need to be overcome for application at the living wall landscape scale. We further consider that successful utilization of living roofs and walls for urban green roof reconciliation ecology will rely heavily on the participation of urban citizens, and that a ‘citizen science’ urban ecosystem model is needed to facilitate public participation and support and to create an evidence base to deter- Citizen science mine their effectiveness. -
Roof Top Garden Play Space Karolyn Crutchfield Bank Street College of Education
Bank Street College of Education Educate Graduate Student Independent Studies 5-15-2013 Roof top garden play space Karolyn Crutchfield Bank Street College of Education Follow this and additional works at: http://educate.bankstreet.edu/independent-studies Part of the Curriculum and Instruction Commons, and the Elementary Education Commons Recommended Citation Crutchfield, K. (2013). Roof top garden play space. New York : Bank Street College of Education. Retrieved from http://educate.bankstreet.edu/independent-studies/130 This Thesis is brought to you for free and open access by Educate. It has been accepted for inclusion in Graduate Student Independent Studies by an authorized administrator of Educate. For more information, please contact [email protected]. Roof Top Garden Play Space Karolyn Crutchfield Mentor: Cathleen Wiggins Independent Study Paper Submitted in partial fulfillment of the requirements of the degree of Leadership in Technology and the Arts Master of Science in Education Bank Street College of Education / Graduate School - 2013 2 Abstract Throughout this unit our kindergarten and first grade students have had hands on experiences with growing a variety of plants. The in depth exploration of plants, planting, gardens and nutrition provided concrete learning opportunities to observe, predict, collect and organize data, compare and contrast and develop a hypothesis. As students were exposed to the variety of plants through the garden project they were able to determine what plants needed to survive and flourish. Additionally, they focused on how plants help people, animals and insects and explored what effect plants have on the ecological balance of the earth. I am proud to have been the catalyst for this work and I profusely thank the administration and my colleagues for their support and continued efforts. -
An Engineering Approach to Roof Top Gardening
International Journal of Environment and Climate Change 10(5): 14-23, 2020; Article no.IJECC.54288 ISSN: 2581-8627 (Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784) An Engineering Approach to Roof Top Gardening Abhinav Dubey1*, A. R. Radhakrishna1, R. Narendra1, N. Madhu1 and R. Rajesh1 1College of Agricultural Engineering, GKVK, UAS, Bengaluru, India. Authors’ contributions This work was carried out in collaboration among all authors. All authors read and approved the final manuscript. Article Information DOI: 10.9734/IJECC/2020/v10i530197 Editor(s): (1) Dr. Daniele De Wrachien, Retired Professor of Irrigation and Drainage, State University of Milan, Italy. (2) Dr. Anthony R. Lupo, Professor, University of Missouri, Columbia, USA. Reviewers: (1) Garba Alhaji Adamu, Kano State Polytechnic, Nigeria. (2) Xueming Dong, Purdue University, USA. (3) Mohammed Guerbaoui, Moulay Ismail University, Morocco. Complete Peer review History: http://www.sdiarticle4.com/review-history/54288 Received 07 December 2019 Accepted 14 February 2020 Original Research Article Published 13 May 2020 ABSTRACT With the growing demand for vegetables and fruits in this world of urbanisation roof top gardening finds an insignificant place. The study focuses on identifying and suggesting remedies for effective management of the engineering components involved in roof top gardening. They majorly include design of roof, irrigation management, arrangement of pots, waste management, moisture proofing etc. These factors contribute significantly in designing an effective roof top garden. Various problems faced in the engineering intervention were identified and suitable remedies were suggested in the research using a case study approach of roof top gardens in Bangalore. A well maintained roof top garden is a positive sign of a healthy household. -
From Garden City to City in a Garden (Case Study: Shiraz City As a „‟Permaculture‟‟ Model in Iran)
Fattahi, S/Bazrkar, M From Garden to Garden 49th ISOCARP Congress 2013 From Garden City to City in a Garden (Case Study: Shiraz City as a „‟Permaculture‟‟ Model in Iran) Sara FATTAHI, Apadana Institute of Art and Architecture, Iran Mojtaba BAZRKAR, MAF Hypermarkets, Iran 1. City Developing or Garden creating? Human face many challenges related to the health and well being. Many of these challenges arise as the direct consequence of dense urban environments. Industry, automobiles, and impermeable concrete and asphalt surfaces combine to negatively impact upon the air and water quality, while climate change serves to exacerbate the urban heat island effect through global warming. To help alleviate the environmental problems encountered with dense urban habitation and to encourage sustainable development, governments and non-profit agencies worldwide are working toward creating laws, establishing standards, and funding incentives to promote best practices in development. Rooftop gardens are an excellent example of incorporating passive, eco-friendly technology into new or existing development. Rooftop gardens help mitigate the negative impacts of cities on the environment by: conserving energy and water, improving air and water quality, assisting in storm water management, absorbing solar radiation, becoming a source of local food production, providing habitat restoration, and creating natural retreats. Many cities have a lot of „lost‟, green space that can help them to communicate with nature. Good weather that can help them breeze better. At least, better life through developing the city. As our population grows, we will have to make a greater effort to ensure that we continue to make space for greenery and our natural heritage. -
Where Modernity Meets Wastelands
* The design proposal is a con- ceptual solution. It aims to enco- urage discussion about urban va- Praga cancies rather than being the where modernity basis for a real solution of the meets wastelands problem. Author: Adrianna Żukowska Supervisor: dr Paweł Jasiewicz PRODUCED BY AN AUTODESK STUDENT VERSION Experimental Wood Workshop 2019/2020 PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION Urban management ofUrban management of PRODUCED BY AN AUTODESK STUDENT VERSION vacant spaces vacant spaces PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION – vacant space divided into separate– vacant space divided into separate area for harvesting different kind area of for harvesting different kind of plants plants Brzeska Brzeska - repeatable spatial management- repeatable spatial management PRODUCED BY AN AUTODESK STUDENT VERSION - communication space between PRODUCED BY AN AUTODESK STUDENT VERSION - communication space between cultivated rooms cultivated rooms - lift dedicated to supplying crops - lift dedicated to supplying crops - enlargement of glass surfaces to catch as much sun power as possible- enlargement of glass surfaces to catch as much sun power as possible PRODUCED BY AN AUTODESK STUDENT VERSION PRODUCED BY AN AUTODESK STUDENT VERSION -
Urban Rooftop Garden BREE 495: Design III
Urban Rooftop Garden BREE 495: Design III Alexandre Cournoyer, Marcela Rojas, Amélie Sirois- Leclerc, Trevor Stanhope, Sara Tawil, Mei Xiao 2013-2014 Executive Summary For the 2013 - 2014 Engineering Design Capstone Project our team, in a joint venture with the Société Environnementale de Côte-des-Neiges (SOCENV), proposes a design for a sustainable rooftop garden to supplement MultiCaf, a community kitchen in the Côte-des-Neiges borough of Montreal. Rather than an expensive overhaul of the roof, a permanent deck structure was developed as both a community space and a platform for the volunteers and other members of the building. As the garden will mainly be run by volunteers, two low-tech and easy to use growth systems were developed which can be sourced mainly from recyclable materials. The deck structure will also feature modular sections for an easy access to the roof membrane for maintenance. To achieve high plant yield and to ensure the growth systems are adequate for a rooftop environment, both an ebb-and-flow hydroponic system and different designs of self-watering planters were studied and tested. An attached coldframe on the hydroponics table would transform it into a nursery table to provide early season growth for selected plants, while planters would bring them to maturity and allow the growth of plants with larger root systems. Usages of the two systems are independent from each other. A modified ebb-and-flow watering system was selected for the hydroponic table due to its simple and low cost maintenance and initial investment. A cascading system was also designed for tables to minimize cost of plumbing and other related equipment. -
Edible Boardrooms & Allotments in The
edible boardrooms & allotments in the sky Dave Richards introduces the RISC roof garden and makes the case for a permaculture approach to green roof design* hen the idea of a roof garden at Reading International WSolidarity Centre (RISC) began to take shape in 2001, it was a practical response to the problem of a leaking roof and how to provide sound and heat insulation for a conference hall which doubled as a venue for noisy events. Little did we imagine that our solution to a domestic crisis would create such interest; and a steady stream of journalists and thesis-writing students. It’s only with the benefit of hindsight, that we realise that the story of our edible forest roof garden has a wider significance in a world of rapidly rising oil prices and the need to reduce our carbon footprint. RISC is an educational charity which aims to raise awareness of global issues the shoestring budget could not stretch photo: the garden has over through working with schools and the to replacing a large expanse of flat roof 185 different species on an area of only 32 x 6m general public. In 1995 we bought and which was well past its sell-by date. – it is a multi-use space, refurbished a complex of buildings close to Armed with a tar brush and bucket of bitumen, we fought a losing battle with providing a relaxing spot to the town centre which dated back to the eat lunch, hold an informal the elements, and in 2001 began to look 18th century. -
Rooftop Haven for Urban Agriculture Chicago, Illinois, U.S.A
DESIGNING OUR FUTURE: SUstainaBLE LANDSCAPES Rooftop Haven for Urban Agriculture Chicago, Illinois, U.S.A. In a neighborhood with little access to safe outdoor by scenic views of color and texture that embody the environments, the Gary Comer Youth Center Roof Garden working garden. Recycled plastic barriers separate plant serves as an urban farm and after-school learning space beds and form pathways within the garden that align for community youths and seniors. Located in Chicago’s with the courtyard garden’s window frames. Circular Grand Crossing neighborhood, the 8,160-square-foot metal elements scattered throughout the garden green roof sits atop of a state-of-the art youth learning bring artistic expression to the landscape, while also center that offers a range of extracurricular activities functioning as skylights that bring natural illumination and classes for the community’s school children. Given to the building’s gymnasium and café below. its urban location, the rooftop garden provides a rare Adding to the environmental sustainability of the site, the opportunity for students to engage in horticultural green roof absorbs rainwater rather than diverting it to learning and food production while gaining awareness city storm sewers. This helps to reduce water pollution and appreciation for nutrition and the environment. As and the likelihood of urban flooding. In addition, the they become entwined with the planting, growing, and landscape architect’s minimal use of concrete and harvesting process, students’ lifestyles become ingrained other heat-conducting building materials has led to with healthy eating habits. Students become anxious to lower temperatures on the green roof compared to sample the fresh fruits and vegetables they help grow. -
Design-Ideas-4-Rooftop-Gardens.Pdf
gaRdEniNg techNiQues RooftoP gaRdEns Rooftops are one of our cities’ greatest untapped resources. They account for hundreds of acres of empty, under-utilized space, contributing to problems like the “heat island effect” and increased storm-water run-off. But rooftops could easily be turned into valuable green spaces, by creating green roofs of wildflowers, trees and shrubs or vegetables on schools, apartments, homes and places of work throughout the city. Green roofs can be divided into two types: the vegetation-covered or “inaccessible roof” where the soil and plants form another layer of the roofing system, and the rooftop garden or “accessible” roof that can become an outdoor space for studying plants and wildlife, participating in group activities or for reading and quiet reflection. Green roofs and rooftop gardens can provide many benefits, did you including: know… C Increased access to safe outdoor green space; C A venue for urban food production; Rooms under a green roof are three to four degrees Celsius C Promotion of individual, community and cultural diversity; cooler than the outside air, when C Areas for study and horticultural therapy; temperatures are 25 to 30 C Improved air quality and absorption of carbon dioxide; degrees Celsius. C Minimization of stormwater run-off, and support for a rainwater collection system; C Increased habitat for birds, butterflies and insects; and C Reduced heating and cooling costs by providing a layer of insulation on buildings. DesigN detaiLs Before Starting C Assess Your Roof — Can your roof support a rooftop garden? What is the orientation of your roof - shaded or sunny south exposure? What kind of roof does your school have? Is the roofing membrane able to hold people, soil and plants? Will you need to provide protection with wood decking, pavers, rigid insulation, gravel or grass? Is the roof being replaced in the next few years? Ask your School Board’s Design Department for assistance. -
Florida State University Libraries
)ORULGD6WDWH8QLYHUVLW\/LEUDULHV 2020 Planning Strategies for Improving Resilience of Cities in Developing Countries to the Urban Heat Island Caroline Lucienne Knowles Follow this and additional works at DigiNole: FSU's Digital Repository. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF SOCIAL SCIENCES AND PUBLIC POLICY PLANNING STRATEGIES FOR IMPROVING RESILIENCE OF CITIES IN DEVELOPING COUNTRIES TO THE URBAN HEAT ISLAND EFFECT By CAROLINE KNOWLES A Thesis submitted to the Department of International Affairs in partial fulfillment of the requirements for graduation with Honors in the Major Degree Awarded: Spring, 2020 The members of the Defense Committee approve the thesis of Caroline Knowles defended on April 13, 2020. Dr. John Felkner Thesis Director Dr. Janet Dilling Outside Committee Member Dr. William Butler Committee Member Dr. Christopher Coutts Committee Member Abstract With climate change and global warming, the detrimental socio-economic impacts of Urban Heat Island (UHI) effect are increasing, with cities in developing countries particularly vulnerable. This thesis conducts a literature review to identify the causes, socio-economic impacts, and urban planning mitigation strategies that can be used against the UHI effect. Further, this research focuses on the specific UHI impacts, consequences, best mitigation strategies and particular challenges for cities in developing countries, addressing a notable gap in the literature on these dimensions. Several key impacts of UHI are noted, including lower economic productivity, heightened public health risks, and increased energy consumption. Specific vulnerabilities of cities in developing areas are also identified. These include dependence on environmentally linked industries, disadvantageous geographic location, and rapid rates of urbanization. -
Abstracts and Presenter Biographical Information Oral Presentations
ABSTRACTS AND PRESENTER BIOGRAPHICAL INFORMATION ORAL PRESENTATIONS Abstracts for oral presentations and biographical information for presenters are listed alphabetically below by presenting author’s last name. Abstracts and biographical information appear unmodified, as submitted by the corresponding authors. Day, time, and room number of presentation are also provided. Abatzoglou, John John Abatzoglou, Assistant Professor of Geography, University of Idaho. Research interests span the weather-climate continuum and both basic and applied scientific questions on past, present and future climate dynamics as well as their influence on wildfire, ecology and agriculture and is a key player in the development of integrated climate scenarios for the Pacific Northwest, US. Oral presentation, Wednesday, 2:30 PM, B114 Will climate change increase the occurrence of megafires in the western United States? The largest wildfires in the western United States account for a substantial portion of annual area burned and are associated with numerous direct and indirect geophysical impacts in addition to commandeering suppression resources and national attention. While substantial prior work has been devoted to understand the influence of climate, and weather on annual area burned, there has been limited effort to identify factors that enable and drive the very largest wildfires, or megafires. We hypothesize that antecedent climate and shorter-term biophysically relevant meteorological variables play an essen- tial role in favoring or deterring historical megafire occurrence identified using the Monitoring Trends in Burn Severity Atlas from 1984-2010. Antecedent climatic factors such as drought and winter and spring temperature were found to vary markedly across geographic areas, whereas regional commonality of prolonged extremely low fuel moisture and high fire danger prior to and immediately following megafire discovery.