Wireless Broadband: a Versatile and Reliable Network Alternative in a Challenging Environment, Wireless Solutions Prove Their Value and Affordability

Total Page:16

File Type:pdf, Size:1020Kb

Wireless Broadband: a Versatile and Reliable Network Alternative in a Challenging Environment, Wireless Solutions Prove Their Value and Affordability Wireless Broadband Solutions Wireless Broadband: A Versatile and Reliable Network Alternative In a Challenging Environment, Wireless Solutions Prove their Value and Affordability Motorola fixed wireless broadband solutions are a smart investment when balancing business needs with network performance and budget reality. CIOs and network operators face a number of Meeting the Challenge challenges. The most notable of these include During difficult economic cycles, the business developing network migration strategies that con- of governments, municipalities and commercial tribute to competitive advantages and addressing enterprises doesn’t stop; it just gets harder. Compe- the ongoing—and often immediate—necessity for tition doesn’t quit; it just gets tougher. In technology upgrades to current networks. Despite tighter bud- terms, networks need to deliver higher performance gets, shortened timetables and evolving technolo- so people can be more productive. To positively gies, astute, cost-effective investments in network affect the bottom line, organizations can no longer infrastructure that deliver continuous connectivity rely on the status quo. They need more efficient and collaboration are essential. processes and powerful new applications. All of this requires reliable networks that deliver diversity, Bottom Line Investment scalability and more bandwidth at a time when more Citing its own recent IT leadership survey, IDG bandwidth costs more money and budgets may be Research Services notes that “Economic constraints shrinking. It becomes a question of balancing the call for more conscientious decision-making… need for more network power and performance with improving efficiencies and reducing costs is the limited resources. It becomes a matter of tapping most important advantage survey respondents into the power and reliability of wireless broadband. believe their companies could or will gain from continuing to deploy technology in slow economic The Versatility of Wireless Broadband times.” In addition, the survey reports, “A large CIOs and network operators must continually percentage of the respondent base is investing in optimize network performance, increase value, and initiatives that impact the bottom line and promise extend network services to additional users while hard returns to the business.” containing cost. Motorola’s versatile fixed wireless broadband solutions offer a wide range of ways to cost effectively and strategically plan for the future and enable the delivery of measurable bottom line benefits. Applications include: • Using wireless to eliminate recurring telecom leased line costs • Extending fiber networks with wireless extensions • Deploying a wireless backup network to ensure business continuity • Replacing wireline with wireless, or integrating wireless into hybrid networks • Augmenting 6 GHz microwave networks with wireless underbuild solutions Eliminate Leased Line Cost and Inconvenience CASE STUDY Many organizations that rely on T1/ E1 leased lines To begin with, overall network performance is for high-speed connectivity are disenchanted with upgraded, which is especially important for support- paying expensive lease charges every month. As ing today’s in-demand real-time applications. In many bandwidth requirements continue to grow, many networks, the most problematic point of network enterprises are seeing their monthly costs rise as congestion is local access. In its 2007 report on their leased lines proliferate. T3 lines can provide T1/E1 upgrades and alternatives, the Gartner Group bigger network pipes, but they also have limitations notes, “Ethernet services…will provide a stable, on how high they can scale before additional circuits performance-based platform for voice over IP (VoIP) are required. While these high recurring costs are and other real-time applications by easing bottle- one major problem with leased lines, they’re not the necks at the local access.” Wireless broadband only issue. enables agile and flexible bandwidth provisioning THE ROYAL that can be easily and quickly scaled up or down to INTERNATIONAL Other Leased Line Problems match dynamic network traffic patterns. AIR TATTOO (RIAT) For example, leased lines essentially lessen control MILITARY AIR SHOW Reliability is increased as well. Motorola’s wireless by making organizations dependent on an outside broadband technology is able to connect remote, third party for important business functionality. The The RAIT, the world’s hard to reach locations while offering exceptional reliability of leased lines is also often not what it largest military air show, quality of service. PTP links can be easily engineered should be, especially in rural and remote areas. In faced serious communica- to achieve five nines reliability. tions problems at the 2008 addition, when a natural disaster such as an earth- quake, wildfire or hurricane hits, telephone lines are site in Gloucestershire, UK. Real-Time Deployment especially vulnerable to service interruption at a time Communications needed to when communications are especially critical. Finally, Other significant advantages are scalability and faster span the entire airfield, but deployment of new services or upgrades in a leased deployment. Organizations are able to deploy a the facility’s outdated cop- line environment is usually both expensive and fixed wireless broadband network that supports the per network did not reach slow. In addition, the cost and manpower required convergent requirements of voice, video and data across the site. Because to manage and monitor contracts and service level in a fraction of the time it would take to order and the site was a U.S. Air agreements—including frequent billing errors—can provision new leased line services. And adding new Force facility, the show be significant. In the final analysis, the leasing of services or upgrades can often be accomplished the same day. was unable to use the T1/E1 lines is fast becoming an expense not worth existing USAF network for paying and a risk not worth taking. Cost-Efficiency and ROI security reasons, and could Wireless Broadband — A Proven Replacement Perhaps most important of all, wireless broadband not install any permanent solutions can virtually eliminate expensive monthly equipment. The solution? What’s the alternative? A growing number of lease costs, resulting in substantial savings. Bottom Motorola Point-to-Point enterprises are discovering the benefits of replac- ing leased T1/E1 lines with Motorola fixed wireless line, most organizations and operators choosing and Point-to-Multipoint broadband solutions. Advantages can be substantial. wire less broadband to replace leased line connectiv- wireless broadband ity will often see ROI in less than one year. solutions. The result? Lyn Sherburne of the Royal Air Force Charitable Trust, the event sponsor, said, “The system worked brilliantly and carried an amazing amount of communications traffic while remaining unbelievably reliable.” Beyond Leased Line Replacement: When Fiber is Not an Option CASE STUDY Extensions without Trenching Beyond Leased Line Replacement: Enterprises or municipalities with fiber networks Networks on Demand face two major challenges when expanding network No enterprise or municipality can afford to have capacity or extending service to additional locations. connectivity and access interrupted by a network The first is financial. Expansion or extension of a failure. Yet wired networks are especially susceptible wired network to add capacity or new locations is to service interruptions in times of calamity. When a major undertaking that carries a significant price a natural disaster strikes, wire lines are generally tag because it involves trenching to accommodate among the first casualties, causing service interrup- new wire lines. How tion at times when connectivity is crucial. Further- CASE STUDY expensive? Motorola more, it can take hours or even days for wired SCHOOL DISTRICT estimates costs that networks to be repaired. For institutions such as SAVES $1.7 MILLION range from about healthcare organizations and schools and universi- $30,000 to $40,000 per ties that are vital to the community, as well as for Thompson School District, mile. The second issue municipalities dependent on uninterrupted public the sixth largest in Colo- is time. Fiber network safety communications, interruptions of even a few rado, needed to provide extensions that involve minutes are unacceptable. enhanced bandwidth major trenching efforts Such interruptions are also often avoidable. Motorola and access to more than do not happen quickly, fixed wireless broadband solutions offer organi- 15,000 students and usually taking a number of months, and in some zations the ability to plan and deploy redundant teachers in 33 locations cases, even years. networks in a matter of days… and at a cost that’s that posed significant UPGRADED CITYWIDE a fraction of a wired backup. If a disaster hits, the line-of-sight challenges. T1 NETWORK Motorola fixed wireless organization simply performs a hot switchover, and With a network that used broadband networks its connectivity is restored virtually instantly. For an 27 Motorola 400 and The City of Santa Barbara, offer significantly more enterprise, business connectivity is restored and 600 Series PTP Ethernet California, wanted to cost-effective and monetary loss is minimized. For a government, bridges, the district upgrade its T1 network for faster-to-deploy solu- crucial public safety communications are restored
Recommended publications
  • VOICE OVER INTERNET PROTOCOL (Voip)
    S. HRG. 108–1027 VOICE OVER INTERNET PROTOCOL (VoIP) HEARING BEFORE THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED EIGHTH CONGRESS SECOND SESSION FEBRUARY 24, 2004 Printed for the use of the Committee on Commerce, Science, and Transportation ( U.S. GOVERNMENT PUBLISHING OFFICE 22–462 PDF WASHINGTON : 2016 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 14:00 Dec 07, 2016 Jkt 075679 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\GPO\DOCS\22462.TXT JACKIE SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED EIGHTH CONGRESS SECOND SESSION JOHN MCCAIN, Arizona, Chairman TED STEVENS, Alaska ERNEST F. HOLLINGS, South Carolina, CONRAD BURNS, Montana Ranking TRENT LOTT, Mississippi DANIEL K. INOUYE, Hawaii KAY BAILEY HUTCHISON, Texas JOHN D. ROCKEFELLER IV, West Virginia OLYMPIA J. SNOWE, Maine JOHN F. KERRY, Massachusetts SAM BROWNBACK, Kansas JOHN B. BREAUX, Louisiana GORDON H. SMITH, Oregon BYRON L. DORGAN, North Dakota PETER G. FITZGERALD, Illinois RON WYDEN, Oregon JOHN ENSIGN, Nevada BARBARA BOXER, California GEORGE ALLEN, Virginia BILL NELSON, Florida JOHN E. SUNUNU, New Hampshire MARIA CANTWELL, Washington FRANK R. LAUTENBERG, New Jersey JEANNE BUMPUS, Republican Staff Director and General Counsel ROBERT W. CHAMBERLIN, Republican Chief Counsel KEVIN D. KAYES, Democratic Staff Director and Chief Counsel GREGG ELIAS, Democratic General Counsel (II) VerDate Nov 24 2008 14:00 Dec 07, 2016 Jkt 075679 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 S:\GPO\DOCS\22462.TXT JACKIE C O N T E N T S Page Hearing held on February 24, 2004 ......................................................................
    [Show full text]
  • Understanding Fixed Wireless Access What Is Fixed Wireless Access?
    Network 20 Architecture 20 Understanding Fixed Wireless Access What Is Fixed Wireless Access? Alex Marcham NetworkArchitecture2020.com 1. Introduction The spread of network technology across the globe has brought huge changes to every society it touches. With smartphones and broadband internet connectivity, networks have enabled billions to keep in touch with friends and relatives, get access to vital resources and limitless entertainment, whilst expanding their economic opportunities. The network relies on the ability to add connections and bandwidth over time to support changing requirements. Otherwise, it’s easy to end up with a network built 5 years ago, for traditional traffic flows and demand, struggling to keep up with the rapidly changing landscape of applications seen today - a costly mistake for any network operator. Inside a building, it’s not too hard; run more cable through the conduits, connect the new device to the network. However, things get more complicated when networks go outside, whether an inter-building connection by an enterprise, or a service provider expanding their coverage, particularly to rural areas. No matter the size of the outdoor network, adding new connections and more bandwidth in a fast and flexible manner, whilst being economical, is not always easy. In many parts of the world, running your own cable above ground is prohibited or simply impractical. For Network Architecture 2020, and network operators, this is a pressing problem; we need to be able to effectively expand our networks wherever needed, whether small enterprise or giant service provider, in an economical manner. In some cases, copper or fibre cabling-based technologies are the right choice.
    [Show full text]
  • Quality of Service Regulation Manual Quality of Service Regulation
    REGULATORY & MARKET ENVIRONMENT International Telecommunication Union Telecommunication Development Bureau Place des Nations CH-1211 Geneva 20 Quality of Service Switzerland REGULATION MANUAL www.itu.int Manual ISBN 978-92-61-25781-1 9 789261 257811 Printed in Switzerland Geneva, 2017 Telecommunication Development Sector QUALITY OF SERVICE REGULATION MANUAL QUALITY OF SERVICE REGULATION Quality of service regulation manual 2017 Acknowledgements The International Telecommunication Union (ITU) manual on quality of service regulation was prepared by ITU expert Dr Toni Janevski and supported by work carried out by Dr Milan Jankovic, building on ef- forts undertaken by them and Mr Scott Markus when developing the ITU Academy Regulatory Module for the Quality of Service Training Programme (QoSTP), as well as the work of ITU-T Study Group 12 on performance QoS and QoE. ITU would also like to thank the Chairman of ITU-T Study Group 12, Mr Kwame Baah-Acheamfour, Mr Joachim Pomy, SG12 Rapporteur, Mr Al Morton, SG12 Vice-Chairman, and Mr Martin Adolph, ITU-T SG12 Advisor. This work was carried out under the direction of the Telecommunication Development Bureau (BDT) Regulatory and Market Environment Division. ISBN 978-92-61-25781-1 (paper version) 978-92-61-25791-0 (electronic version) 978-92-61-25801-6 (EPUB version) 978-92-61-25811-5 (Mobi version) Please consider the environment before printing this report. © ITU 2017 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Foreword I am pleased to present the Manual on Quality of Service (QoS) Regulation pub- lished to serve as a reference and guiding tool for regulators and policy makers in dealing with QoS and Quality of Experience (QoE) matters in the ICT sector.
    [Show full text]
  • Multimedia Streaming by Broadband Connection Ð Future Prospects and Development Strategy at Oki Electric
    Multimedia Streaming by Broadband Connection – Future Prospects and Development Strategy at Oki Electric Atsushi Nagasaka The rapid spread of broadband access networks, In view of this situation, although MPEG2 over ATM most recently in the form of ADSL links, means that high- did become popular in normal and satellite broadcasting quality video streaming is now a real possibility. systems, and the like, it did not take root in a general Video streaming is widely regarded as the “killer sense. application” in broadband networks, and it involves a whole range of issues relating to IP networks, including quality of service (QoS), transmission delays, delivery Video streaming systems costs, service models comparable to current broadcast services, copyright protection, and so on. From an early (1) Internet video streaming stage, we at Oki Electric have been developing Video streaming has changed massively with the technology for video transmission over IP networks, with rapid growth in the Internet since 1995. In the United a view to the coming broadband generation. States, where CATV coverage is high and comparatively In this essay, I review the latest trends in video fast access networks are commonplace, increased streaming over broadband networks, taking a look at Oki bandwidth in backbone networks, along with other Electric’s development strategy in this area. developments, have led to the spread of music delivery via the Internet, since 1998, followed subsequently by video streaming technology. Video delivery systems These streaming technologies do not guarantee high quality in video transmission, but instead absorb any Due to the real time characteristics of video and the delay or jitter on the network by providing a large buffer large data volumes it involves, dedicated high-speed on the terminal side.
    [Show full text]
  • Site Acquisition Fact Sheet
    Fact Sheet: How will we design the fixed wireless network? Fixed wireless background Fixed wireless systems have a long history of being used for voice and data communications, generally supporting networks operated by phone companies, cable TV companies, utilities and railways. The name ‘fixed wireless’ explains the way signals are delivered to stationary, or ‘fixed’ antennas and facilities mounted on buildings, homes and other structures. Fixed wireless is different to current mobile wireless networks, which deliver varying speeds and reception depending on how many people are moving in and out of the area and whether they are using the network for low volume e-mail or high volume downloads or video services. The National Broadband Network’s (NBN) fixed wireless network uses advanced technology called LTE (commonly referred to as 4G). The network has been designed to reduce the impact of mobile wireless variables by setting a limit on the number of premises serviced by each fixed wireless facility. People’s usage of the network will still vary, but the set number of serviced premises in each area means that the bandwidth available to each household is designed to be consistent, even in peak times of use*. To be able to achieve this each NBN fixed wireless facility needs to be situated reasonably close to the homes and business which will receive NBN’s fixed wireless network. Each customer will have a small antenna installed on the outside of their home or business, in direct line of sight to the fixed wireless facility. This setup allows for greater consistency in the speed and quality of service that can be delivered to each premises*.
    [Show full text]
  • (Qos) and Quality of Experience (Qoe) of the 4G LTE Perspective
    International Journal of Future Computer and Communication, Vol. 5, No. 3, June 2016 Quality of Service (QoS) and Quality of Experience (QoE) of the 4G LTE Perspective Settapong Malisuwan, Dithdanai Milindavanij, and Wassana Kaewphanuekrungsi with limited frequency resources (high spectral efficiency is Abstract—The increasing uptake of Internet of Things (IoT), achieved). These will promote the emergence of several new Big data and cloud-based services introduces a new set of services or businesses. requirements for network performance. Furthermore, the evolution of mobile networks towards an all-IP 4G LTE introduces new challenges for traditional voice and data services. It is critical for operators to guarantee minimum levels of performance. Therefore, operators need to understand and manage both quality and performance of the services to fulfill on the technical quality of service (QoS) as well as on the quality of experience (QoE) level. 4G LTE broadband mobile technologies have been designed with different QoS (Quality of Service) frameworks to enable delivery of the evolving Internet applications. Specifically, it is fundamental requirement to Fig. 1. Trends of network development toward LTE. provide satisfactory service delivery to users and also to manage network resources. To provide QoS, different service levels are Other than utilizing the new type of radio air interface, specified for different types or stream of traffic in term of network providers also have to convert their existing throughput, latency (delay), jitter (delay variation) and packet errors or loss. This paper aims to provide a basic principle of networks, both packet switching and circuit switching, into QoS of the 4G LTE service.
    [Show full text]
  • Technical Aspects of Interconnection in IP-Based Networks with Particular Focus on Voip
    UC / wik-Consult • Final Report Study for the Federal Network Agency Technical aspects of interconnection in IP-based networks with particular focus on VoIP (Extended Executive Summary) Authors Klaus-D. Hackbarth Gabriele Kulenkampff Santander/Bad Honnef, July 26, 2006 2 Introduction This research paper is a contribution to support the working group on "Framework Conditions for Interconnecting IP-Based Networks" set up by the Federal Network Agency. It focuses on the technical foundations for realizing Voice over IP (VoIP) in integrated voice and data networks and is intended to provide a basis for answering the economic questions the working group is dealing with. Topics such as network architecture, network structure (number of locations in the core network), "Quality of Service" (QoS) and the implementation of PSTN/ISDN features by means of VoIP have been analyzed in this expert report. The study deals with a complex array of topics under various aspects such as network architecture, network dimensioning, QoS and network interconnection and aims to ascertain the resulting economic and regulatory consequences. In addition to a wide range of literature, the report is also based upon independent analyses carried out during the work to explain special questions. The report focuses primarily on the examination of the network hierarchy of a future broadband core network (IPCoN, IP core network) and several mechanisms to ensure QoS parameters in various classes of service. In order to make the report accessible to various readers, the results of the study have been set out in the following three sections: i. An "extended executive summary" presented in a separate document that summarizes all the main results of the study, the conclusions drawn from these and the methods used.
    [Show full text]
  • Fixed Wireless Broadband Communications “What These Water Utilities Discovered Is That There Is a Vast Difference
    WATER UTILITIES CHOOSE Fixed Wireless Broadband Communications “What these water utilities discovered is that there is a vast difference between low-end commercial-grade equipment and purpose-built technology platforms specifically designed for low total cost of ownership.” Kent Brown, Director of Sales – National and Strategic Accounts, Cambium Networks This Application Paper refers to actual field results from two utilities in the southwestern United States: • A water utility serving a major city trusted with water supply, wastewater collection and treatment, and reuse of water resources serving 1.6 million people • A river authority conservation and reclamation district that manages water resources for a ten county district Both of these organizations have deployed wireless broadband connectivity solutions from Cambium Networks. Due to the nature of critical infrastructure security, please contact Cambium Networks for approved customer reference information. Challenges Communications technology has a measurable and dramatic effect on the efficiency and cost structure of all phases of water management: • Water supply and distribution • Hydro-electric generation • Water treatment • Storm water management Strategic Goals: Every water utility must maximize efficiency while being vigilant about compliance to water quality and safety standards. The communications infrastructure strategy must support these goals, and utilities must select the most appropriate communications technology to meet their needs. In most cases, fiber may be cost effective at the core or backbone of the network, but fiber or any wired technology can be economically unfeasible to connect a large number of field locations. Fixed wireless is a proven and legitimate solution that provides the reliability and throughput needed at a significant cost advantage.
    [Show full text]
  • Will Broadband TV Shape the Future of Broadcasting?
    BROADBAND TV WillBroadband TV shape the future of broadcasting? Franc Kozamernik EBU Lieven Vermaele VRT Broadband Television (BTV) 1 is a new emerging platform for distributing digital television channels to home consumers using a TV screen. This article focuses on BTV services which use the conventional telephone infra- structure (i.e. twisted-pair copper lines). These BTV services are often called ADSL TV or DSL TV. Other delivery mechanisms such as coaxial cable, power line communications (PLC), fibre (FTTH) and wireless (UMTS, Wi-Fi and WiMAX) are not covered here. If commercially successful, Broadband TV may complement traditional DTV services – which use satellite, cable and terrestrial delivery – and may even evolve into a fourth mass-market platform for digital television services. Many telcom and cable operators are in the process of trialling BTV infrastructure and expecting that it could evolve into the next emerging market of 2005 and beyond. Some initial experiences show that the technology is quite mature, the business models potentially sound and the prospective subscribers enthusiastic. Some market analysts even anticipate explosive growth of the broadband television market. This article attempts to provide some background to BTV developments in Europe and outlines the principal areas of interest such as: (i) the current status of BTV trials, (ii) issues relating to the network and media technologies used, (iii) some content-related issues and, last but not least, (iv) some regulatory matters. Background BTV makes use of a television set rather than a PC. There are multiple commercial reasons for this. First of all, TV sets are much more popular domestic appliances than PCs.
    [Show full text]
  • Access to Broadband Networks: the Net Neutrality Debate
    . Access to Broadband Networks: The Net Neutrality Debate Angele A. Gilroy Specialist in Telecommunications Policy March 11, 2011 Congressional Research Service 7-5700 www.crs.gov R40616 CRS Report for Congress Prepared for Members and Committees of Congress c11173008 . Access to Broadband Networks: The Net Neutrality Debate Summary As congressional policymakers continue to debate telecommunications reform, a major point of contention is the question of whether action is needed to ensure unfettered access to the Internet. The move to place restrictions on the owners of the networks that compose and provide access to the Internet, to ensure equal access and non-discriminatory treatment, is referred to as “net neutrality.” While there is no single accepted definition of “net neutrality,” most agree that any such definition should include the general principles that owners of the networks that compose and provide access to the Internet should not control how consumers lawfully use that network, and they should not be able to discriminate against content provider access to that network. A major focus in the debate is concern over whether it is necessary for policymakers to take steps to ensure access to the Internet for content, services, and applications providers, as well as consumers, and if so, what these steps should be. Some policymakers contend that more specific regulatory guidelines may be necessary to protect the marketplace from potential abuses which could threaten the net neutrality concept. Others contend that existing laws and policies are sufficient to deal with potential anti-competitive behavior and that additional regulations would have negative effects on the expansion and future development of the Internet.
    [Show full text]
  • Application of Asynchronous Transfer Mode (Atm) Technology to Picture Archiving and Communication Systems (Pacs): a Survey
    UNLV Retrospective Theses & Dissertations 1-1-1996 Application of Asynchronous Transfer Mode (Atm) technology to Picture Archiving and Communication Systems (Pacs): A survey Sridharan R Madabhushanam University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Madabhushanam, Sridharan R, "Application of Asynchronous Transfer Mode (Atm) technology to Picture Archiving and Communication Systems (Pacs): A survey" (1996). UNLV Retrospective Theses & Dissertations. 3249. http://dx.doi.org/10.25669/vpsr-biak This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fiom the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • NBN Co Fixed Wireless Fact Sheet
    National Broadband Network Fixed Wireless Fact Sheet What is the National Broadband Network? The National Broadband Network (NBN) is designed to provide high speed broadband access to 100 per cent of Australian premises. The NBN is a nation-building program with the potential to lift Australia’s productivity and will provide a broadband network to serve Australia for decades to come. To reach everyone in our vast country, the NBN will be delivered via an optimal mix of fibre optic cabling, fixed wireless and satellite technologies. These fixed wireless and satellite technologies represent a significant improvement over services currently available to many Australians living in regional and remote communities. How does fixed wireless work? Australians who receive NBN’s fixed wireless will be among the first to experience the benefits of high speed broadband over the NBN. The fixed wireless network is expected to be completed by 2015, five years ahead of the expected completion of the fibre network, and it will serve around four per cent of the population or approximately 500,000 premises including farms, homes and businesses. People in fixed wireless areas are expected to be able to sign up with internet service providers to use the NBN from the middle of 2012. NBN’s fixed wireless network, which uses advanced technology commonly referred to as LTE or 4G, is engineered to deliver services to a fixed number of premises within each coverage area. This means that the bandwidth per household is designed to be more consistent than mobile wireless, even in peak times of use. Unlike a mobile wireless service where speeds can be affected by the number of people moving into and out of the area, the speed available in a fixed wireless network is designed Fixed Wireless Mobile Wireless to remain relatively steady.
    [Show full text]