3DPDF: Open Source Solutions for Incorporating 3D Information in PDF Files Norman A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scene Graph Adapter
Scene Graph Adapter: An efficient Architecture to Improve Interoperability between 3D Formats and 3D Application Engines Rozenn Bouville Berthelot, Jérôme Royan, Thierry Duval, Bruno Arnaldi To cite this version: Rozenn Bouville Berthelot, Jérôme Royan, Thierry Duval, Bruno Arnaldi. Scene Graph Adapter: An efficient Architecture to Improve Interoperability between 3D Formats and 3D Application Engines. Web3D 2011 (16th International Conference on 3D Web technology), Jun 2011, Paris, France. pp.21- 30. inria-00586161 HAL Id: inria-00586161 https://hal.inria.fr/inria-00586161 Submitted on 6 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Scene Graph Adapter: An efficient Architecture to Improve Interoperability between 3D Formats and 3D Applications Engines Rozenn Bouville Berthelot∗ Jérôme Royan† Thierry Duval‡ Bruno Arnaldi§ Orange Labs and IRISA, Rennes, France Orange Labs France IRISA, Rennes, France IRISA, Rennes, France Figure 1: Our architecture allows the loading of any 3D graphics format simultaneously in any available rendering engine. The scene graph adapter is an interface that adapts a scene graph (SG) of a given format into a renderer scene graph and which also allows the rendering part to request this scene graph. -
Tetra4d Converter 2020 Release Notes 1 Table of Contents
Tetra4D Converter Version 2020 Release Notes Details of new features, updated formats support and bug fixes for Tetra4D Converter Tetra4D Converter 2020 Release Notes 1 Table of Contents Version 2020 ................................................................................................................................................. 3 Definition of Release Types ....................................................................................................................... 3 Version Information .................................................................................................................................. 3 Installation ................................................................................................................................................ 3 Language Support Overview ...................................................................................................................... 3 Acrobat Pro Compatibility ........................................................................................................................ 4 System Requirements ................................................................................................................................... 4 Licensing........................................................................................................................................................ 5 Message for Tetra4D Converter existing customers ................................................................................ 5 New -
Agisoft Photoscan User Manual Standard Edition, Version 1.3 Agisoft Photoscan User Manual: Standard Edition, Version 1.3
Agisoft PhotoScan User Manual Standard Edition, Version 1.3 Agisoft PhotoScan User Manual: Standard Edition, Version 1.3 Publication date 2017 Copyright © 2017 Agisoft LLC Table of Contents Overview ......................................................................................................................... iv How it works ............................................................................................................ iv About the manual ...................................................................................................... iv 1. Installation and Activation ................................................................................................ 1 System requirements ................................................................................................... 1 GPU acceleration ........................................................................................................ 1 Installation procedure .................................................................................................. 2 Restrictions of the Demo mode ..................................................................................... 2 Activation procedure ................................................................................................... 3 2. Capturing photos ............................................................................................................ 4 Equipment ................................................................................................................ -
CAD-To-X3D Conversion with Product Structure and External Geometry Referencing
CAD-to-X3D Conversion with product structure and external geometry referencing Hyokwang Lee PartDB Co., Ltd. and Web3D Korea Chapter [email protected] Engineering IT & VR solutions based on International Standards CATIA Hub_Assembly model Hub_AssemblyH (1) disc_with_holes(2) cap(3) sleeve_sub_assemblyH (4) gasket(5) cylinder(6) CATIA Hub Assembly (6 Files) Simple Conversion of Hub_Assembly into X3D Save as VRML/X3D http://web3d.org/x3d/content/examples/Basic/CAD/ Simple Conversion of Hub_Assembly into X3D Save as VRML/X3D Simple Conversion of Hub_Assembly into X3D Save as VRML Product Structure disappeared!! Representing a CAD assembly in X3D . Hub_Assembly represented in a single X3D file . Assembly structure : CADAssembly, CADPart . Geometry : CADFace CatiaHubAssembly.X3D Hub_AssemblyH (1) <CADAssembly name=“Hub_Assembly”> (1) T disc_with_holes(2) <CADPart name=“disc_with_holes” ...> <CADFace> ... </CADFace> cap(3) </CADPart> <CADPart name=“cap” ...> sleeve_sub_assemblyH (4) T(2) <CADFace> ... </CADFace> (3) T(4) </CADPart> T gasket(5) CAD2X3D cylinder(6) conversion <CADAssembly name=“sleeve_sub_assembly”> <CADPart name=“gasket” ...> T(6) T(5) <CADFace> ... </CADFace> </CADPart> . Transform information is applied to the leaf node <CADPart name=“cylinder” ...> which includes geometry. <CADFace> ... </CADFace> CATIA Hub Assembly ex) Tcylinder = T(1)*T(4)*T(6) </CADPart> (6 Files) </CADAssembly> </CADAssembly> Representing a CAD assembly in X3D . Hub_Assembly represented in a single X3D file . Assembly structure : CADAssembly, CADPart . Geometry : CADFace CatiaHubAssembly.X3D Hub_AssemblyH (1) <CADAssembly name=“Hub_Assembly”> (1) T disc_with_holes(2) <CADPart name=“disc_with_holes” ...> • Partial change <CADFace > ... </CADFace> cap(3) </CADPart> • Reusability <CADPart name=“cap” ...> sleeve_sub_assemblyH (4) T(2) <CADFace> ... </CADFace> (3) T(4) </CADPart> T gasket(5) CAD2X3D cylinder(6) conversion <CADAssembly name=“sleeve_sub_assembly”> <CADPart name=“gasket” ...> T(6) T(5) <CADFace> .. -
3D PDF Converter™ Detailing New Features, Bug Fixes and Updated Format Support
Version 4.1 Release Notes Release notes for 3D PDF Converter™ detailing new features, bug fixes and updated format support. 3D PDF Converter Version 4.1 Table of Contents OVERVIEW................................................................................................................................................... 2 Version Information ............................................................................................................................ 2 Language Support Overview ................................................................................................................ 2 Definition of Release Types ................................................................................................................. 2 Acrobat Pro Compatibility ........................................................................................................................... 3 Licensing Changes ....................................................................................................................................... 3 New 3D PDF Converter License Key Required .................................................................................... 3 4.1 Improvements ....................................................................................................................................... 4 Format Updates .................................................................................................................................. 4 New Features/Enhancements ........................................................................................................... -
Augmented Reality Applications in the Engineering Environment
Augmented Reality Applications in the Engineering Environment Karle Olalde Azkorreta1 and Héctor Olmedo Rodríguez2 1 University of Basque Country, UPV/EHU; C/Nieves Cano 12. 01006 Vitoria-Gasteiz, Spain [email protected] 2 Universidad de Valladolid; Campus Miguel Delives s/n. 47014 Valladolid, Spain [email protected] Abstract. In the area of engineering, we can move much in the way clients generally can interact with models or designs for new products, so we are developing various alternatives for visualization, such as Virtual and Augmented realities based on accurate models with no need of using specific software. In order to have a better and global knowledge of the possibilities we show in this paper the situation and capabilities of these technologies. From models developed with commercial programs and tools for industrial design, we propose a workflow to give everybody a chance to interact with these models. The sectors where these technologies are applied and the services offered are grouped in Industrial production systems and Learning of related disciplines. At the end conclusions will be given with every reference used. With everything, ideas for improving these technologies and the correspondent applications could be suggested to the reader. Keywords: Collaboration technology and informal learning, Augmented and virtual Reality, engineering, models. 1 Introduction In this paper we try to analyze the different options we have to represent an object in augmented reality, from 3D design programs and engineering, such as Catia, Solid Edge, Solid Works, Autocad, etc., with the objective of product design or do it more accessible to all potential customers. Augmented Reality (AR) [1, 2] is a technology in which the vision for the user in the real world is enhanced or augmented with additional information generated from a computer model. -
ISO/IEC JTC 1 N13604 ISO/IEC JTC 1 Information Technology
ISO/IEC JTC 1 N13604 2017-09-17 Replaces: ISO/IEC JTC 1 Information Technology Document Type: other (defined) Document Title: Study Group Report on 3D Printing and Scanning Document Source: SG Convenor Project Number: Document Status: This document is circulated for review and consideration at the October 2017 JTC 1 meeting in Russia. Action ID: ACT Due Date: 2017-10-02 Pages: Secretariat, ISO/IEC JTC 1, American National Standards Institute, 25 West 43rd Street, New York, NY 10036; Telephone: 1 212 642 4932; Facsimile: 1 212 840 2298; Email: [email protected] Study Group Report on 3D Printing and Scanning September 11, 2017 ISO/IEC JTC 1 Plenary (October 2017, Vladivostok, Russia) Prepared by the ISO/IEC JTC 1 Study Group on 3D Printing and Scanning Executive Summary The purpose of this report is to assess the possible contributions of JTC 1 to the global market enabled by 3D Printing and Scanning. 3D printing, also known as additive manufacturing, is considered by many sources as a truly disruptive technology. 3D printers range presently from small table units to room size and can handle simple plastics, metals, biomaterials, concrete or a mix of materials. They can be used in making simple toys, airplane engine components, custom pills, large buildings components or human organs. Depending on process, materials and precision, 3D printer costs range from hundreds to millions of dollars. 3D printing makes possible the manufacturing of devices and components that cannot be constructed cost-effectively with other manufacturing techniques (injection molding, computerized milling, etc.). It also makes possible the fabrications of customized devices, or individual (instead of identical mass-manufactured) units. -
Lightweight Formats for Product Model Data Exchange and Preservation
Lightweight Formats for Product Model Data Exchange and Preservation Alexander Ball (1), Lian Ding (2), Manjula Patel (1) (1) UKOLN, University of Bath Claverton Down, Bath BA2 7AY, United Kingdom EMail: [email protected] EMail: [email protected] (2) IdMRC, University of Bath Claverton Down, Bath BA2 7AY, United Kingdom EMail: [email protected] ABSTRACT The designs for engineered products are increasingly defined not by technical drawings but by three-dimensional Computer Aided Design (CAD) models. With rapid turnover of computer hardware and CAD software, these models are in danger of becoming unreadable long before their usefulness has ended. One possible approach is to migrate the models into lightweight formats that are easier to preserve and from which it will be easier to recover information in the future. Such formats also have benefits for design collaboration and dissemination of product model information. Selecting the right lightweight format to use remains a problem, but considering matters of model fidelity, metadata support, security features, file size, software support, and openness, the difference between the formats is not as significant as their common advantages over full-featured, complex models. Product model data, lightweight representations, digital curation INTRODUCTION Since the turn of the millennium, the engineering sector has been undergoing a paradigm shift in the way that products are designed and manufactured or constructed. Formerly, Computer Aided Design (CAD) tools were used simply to generate blueprints and other two dimensional technical drawings, so that the official description of the product could be set down on paper. Increasingly, though, three-dimensional (3D) CAD models are being integrated into the engineering workflow, being used as the basis of finite element analysis, stereolithographic prototyping, numerical control part programmes and product inspections, for example. -
University of Florida Acceptable ETD Formats
University of Florida acceptable ETD formats The Acceptable ETD formats below are defined based on those media for which a preservation strategy exists. The aim is to make all ETD’s available into the future as the technology changes and software becomes obsolete. Media formats that are not listed in this table are ones that cannot presently be preserved at an acceptable level. Many of these can easily be converted to one of the acceptable formats. If you create a document using Word or LaTex it should be exported as a PDF. Please consult with the CIRCA ETD unit ([email protected]) for assistance or if you have any questions. The Acceptable ETD Formats are reviewed and updated regularly by the Graduate School, the Library, the ETD training staff in Academic Technology, and the Florida Center for Library Automation. All files should be scanned with up-to-date virus software before submission. Files with viruses will not be accepted. Media Acceptable formats (bold indicates preferred formats) Text - PDF/A-1 (ISO 19005-1) (*.pdf) - Plain text (encoding: USASCII, UTF-8, UTF-16 with BOM) - XML (includes XSD/XSL/XHTML, etc.; with included or accessible schema and character encoding explicitly specified) - Cascading Style Sheets (*.css) - DTD (*.dtd) - Plain text (ISO 8859-1 encoding) - PDF (*.pdf) (embedded fonts) - Rich Text Format 1.x (*.rtf) - HTML (include a DOCTYPE declaration) - SGML (*.sgml) - Open Office (*.sxw/*.odt) - OOXML (ISO/IEC DIS 29500) (*.docx) - Computer program source code (*.c, *.c++, *.java, *.js, *.jsp, *.php, *.pl, etc.) -
3Dviewstation File Formats
Supported Formats of the 3DViewStation product family 3DViewStation Supported Formats of the 3DViewStation product family Import 3D Desktop WebViewer s r e t d d r r e e o e c c t p n r n w c a a o m i e i i s v v p l a V Supported 3D File d l x d b a a e a b e Formats File Extension Format Version D D D D D W 2 2 3 3 2 3D-PDF PDF PRC, U3D 3DViewStation 3DVS, VSXML ACIS SAT, SAB Up to 2019 Autodesk 3DS 3DS Autodesk Design DWF, DWFX Web Format Autodesk Inventor IPT, IAM Up to 2020 CATIA V4 MODEL, DLV, EXP, Up to V4.2.5 SESSION CATIA V5 CATPRODUCT, Up to V5-6 R2019 CATPART, CATShape, (R29) CGR, 3DXML CATIA V6 3DXML Up to V5-6 R2019 (R29) COLLADA DAE CPIXML CPIXML Creo (Pro/E) PRT, XPR, ASM, XAS, Pro/Engineer 19.0 to NEU Creo 6.0 Filmbox FBX ASCII: from 7100 to 7400; Binary: all GL Transmission GLTF, GLB Version 2.0 only Format HiCAD KRA, SZA Information as per November 12th 2019, valid for the latest build, subject to change without notice at any time 1 3DViewStation Supported Formats of the 3DViewStation product family Desktop WebViewer s r e t d d r r e e o e c c t p n r n w c a a o m i e i i s v v p l a Supported 3D File d l x V d b a a e a b e Formats File Extension Format Version D D D D D 2 2 3 3 W 2 I-deas MF1, ARC, UNV, PKG Up to 13.x (NX 5), NX I-deas 6 IGES IGS, IGES 5.1, 5.2, 5.3 Industry Foundation IFC IFC 2x2, 2x3, 2x4 Classes JTOpen JT Up to 10.2 LIDAR Point Cloud E57 Data File1 NX (Unigraphics) PRT UG v11.0 to v1847 Parasolid X_T, X_B Up to v31.1 PLMXML PLMXML PRC PRC Autodesk Revit2 RVT, RFA 2015 to 2019 Rhino3D 3DM 4, 5, 6 Solid Edge ASM, PAR, PWD, PSM V19 – 20, ST – ST10, 2019 SolidWorks SLDASM, SLDPRT From 97 up to 2019 STEP Exchange STP, STEP, STPZ AP 203 E1/E2, AP 214, AP 242 STEP/XML STPX, STPXZ Stereo Lithography STL All versions Universal 3D U3D ECMA-363 (1-3. -
Graphics for Latex Users (Arstexnica, Numero 28, 2019)
Graphics for LATEX users Agostino De Marco Abstract able, coherent, and visually satisfying whole that works invisibly, without the awareness of the reader. This article presents the most important ways to Typographers and graphic designers claim that an produce technical illustrations, diagrams and plots, A even distribution of typeset material and graphics, which are relevant to LTEX users. Graphics is a with a minimum of distractions and anomalies, is huge subject per se, therefore this is by no means aimed at producing clarity and transparency. This an exhaustive tutorial. And it should not be so is even more true for scientific or technical texts, since there are usually different ways to obtain where also precision and consistency are of the an equally satisfying visual result for any given utmost importance. graphic design. The purpose is to stimulate read- Authors of technical texts are required to be ers’ creativity and point them to the right direc- aware and adhere to all the typographical conven- tion. The article emphasizes the role of tikz for A tions on symbols. The most important rule in all programmed graphics and of inkscape as a LTEX- circumstances is consistency. This means that a aware visual tool. A final part on scientific plots given symbol is supposed to always be presented in presents the package pgfplots. the same way, whether it appears in the text body, a title, a figure, a table, or a formula. A number Sommario of fairly distinct subjects exist in the matter of typographical conventions where proven typeset- Questo articolo presenta gli strumenti più impor- ting rules have been established. -
Archive and Compressed [Edit]
Archive and compressed [edit] Main article: List of archive formats • .?Q? – files compressed by the SQ program • 7z – 7-Zip compressed file • AAC – Advanced Audio Coding • ace – ACE compressed file • ALZ – ALZip compressed file • APK – Applications installable on Android • AT3 – Sony's UMD Data compression • .bke – BackupEarth.com Data compression • ARC • ARJ – ARJ compressed file • BA – Scifer Archive (.ba), Scifer External Archive Type • big – Special file compression format used by Electronic Arts for compressing the data for many of EA's games • BIK (.bik) – Bink Video file. A video compression system developed by RAD Game Tools • BKF (.bkf) – Microsoft backup created by NTBACKUP.EXE • bzip2 – (.bz2) • bld - Skyscraper Simulator Building • c4 – JEDMICS image files, a DOD system • cab – Microsoft Cabinet • cals – JEDMICS image files, a DOD system • cpt/sea – Compact Pro (Macintosh) • DAA – Closed-format, Windows-only compressed disk image • deb – Debian Linux install package • DMG – an Apple compressed/encrypted format • DDZ – a file which can only be used by the "daydreamer engine" created by "fever-dreamer", a program similar to RAGS, it's mainly used to make somewhat short games. • DPE – Package of AVE documents made with Aquafadas digital publishing tools. • EEA – An encrypted CAB, ostensibly for protecting email attachments • .egg – Alzip Egg Edition compressed file • EGT (.egt) – EGT Universal Document also used to create compressed cabinet files replaces .ecab • ECAB (.ECAB, .ezip) – EGT Compressed Folder used in advanced systems to compress entire system folders, replaced by EGT Universal Document • ESS (.ess) – EGT SmartSense File, detects files compressed using the EGT compression system. • GHO (.gho, .ghs) – Norton Ghost • gzip (.gz) – Compressed file • IPG (.ipg) – Format in which Apple Inc.