Geospatial Data? 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Mobile Application Development Mapbox - a Commercial Mapping Service Using OpenstreetmapMobile Application Development Mapbox - a commercial mapping service using OpenStreetMap Waterford Institute of Technology October 19, 2016 John Fitzgerald Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 1/16 OpenStreetMap An open source project • OpenStreetMap Foundation • A non-profit organisation • Founded in 2004 by Steve Coast • Over 2 million registered contributors • Primary output OpenStreetMap data Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 2/16 OpenStreetMap An open source project • Various data collection methods: • On-site data collection using: • paper & pencil • computer • preprinted map • cameras • Aerial photography Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 3/16 MapBox Competitor to Google Maps • Provides commercial mapping services. • OpenStreetMap a data source for many of these. • Large provider of custom online maps for websites. • Clients include Foursquare, Financial Times, Uber. • But also NASA and some proprietary sources. • Startup 2010 • Series B round funding 2015 $52 million • Contrast Google 2015 profit $16 billion Waterford Institute of Technology, Mobile Application Development Mapbox - a commercial mapping service using OpenStreetMap 4/16 MapBox Software Development Kits (SDKs) • Web apps • Android • iOS • JavaScript (browser & node) • Python Waterford Institute of Technology,
- 
												  A Comparison of Feature Density for Large Scale Online MapsDOI: 10.14714/CP97.1707 PEER-REVIEWED ARTICLE A Comparison of Feature Density for Large Scale Online Maps Michael P. Peterson (he/him) University of Nebraska at Omaha [email protected] Large-scale maps, such as those provided by Google, Bing, and Mapbox, among others, provide users an important source of information for local environments. Comparing maps from these services helps to evaluate both the quality of the underlying spatial data and the process of rendering the data into a map. The feature and label density of three different mapping services was evaluated by making pairwise comparisons of large-scale maps for a series of random areas across three continents. For North America, it was found that maps from Google had consistently higher feature and label den- sity than those from Bing and Mapbox. Google Maps also held an advantage in Europe, while maps from Bing were the most detailed in sub-Saharan Africa. Maps from Mapbox, which relies exclusively on data from OpenStreetMap, had the lowest feature and label density for all three areas. KEYWORDS: Web Mapping Services; Multi-Scale Pannable (MSP) maps; OpenStreetMap; Application Programming Interface (API) INTRODUCTION One of the primary benefits of using online map Since the introduction of the technique in 2005 by services like those available from Google, Bing, and Google, all major online map providers have adopted the OpenStreetMap, is that zooming-in allows access to same underlying technology. Vector data is projected and large-scale maps. Maps at these large scales are not avail- divided into vector tiles at multiple scales. The tile bound- able to most (if any) individuals from any other source.
- 
												  1 Handling OS Open Map – Local DataOS OPEN MAP LOCAL Getting started guide Handling OS Open Map – Local Data 1 Handling OS Open Map – Local Data Loading OS Open Map – Local 1.1 Introduction RASTER QGIS From the end of October 2016, OS Open Map Local will be available as both a raster version and a vector version as previously. This getting started guide ArcGIS ArcMap Desktop illustrates how to load both raster and vector versions of the product into several GI applications. MapInfo Professional CadCorp Map Modeller 1.2 Downloaded data VECTOR OS OpenMap-Local raster data can be downloaded from the OS OpenData web site in GeoTIFF format. This format does not require the use of QGIS geo-referencing files in the loading process. The data will be available in 100km2 grid zip files, aligned to National Grid letters. Loading and Displaying Shapefiles OS OpenMap-Local vector data can be downloaded from the OS OpenData web site in either ESRI Shapefile format or in .GML format version 3.2.1. It is Merging the Shapefiles available as 100km2 tiles which are aligned to the 100km national gird letters, for example, TQ. The data can also be downloaded as a national set in ESRI Removing Duplicate Features shapefile format only. The data will not be available for supply on hard media as in the case of some other OS OpenData products. from Merged Data Loading and Dispalying GML • ESRI shapefile supply. ArcGIS ArcMap Desktop The data is supplied in a .zip archive containing a parent folder with two sub folders entitled DATA and DOC. All of the component shapefiles are contained within the DATA folder.
- 
												  Oracle Spatial Developments at Ordnance SurveyOracle Spatial Developments at Ordnance Survey Ed Parsons Chief Technology Officer Who is Ordnance Survey ? Great Britain's national mapping agency An information provider... • Creates & updates a national database of geographical information • £ 50m ($90m) investment by 2007 in ongoing improvements • National positioning services • Advisor to UK Government on Geographical Information • Highly skilled specialised staff of 1500 The modern Ordnance Survey • Ordnance Survey is solely funded through the licensing of information products and services • Unrivalled infrastructure to maintain accuracy, !" ! currency and delivery of geographic information • 2003-4 Profit of £ 6.6m on a turnover of £116m($196m) !" !" "#$%&'()$*+,(+-./(+"&0%10#(2 #$%&'$'()#(*+,'()-&=+:H+N.)"-+JKK:*.&#/'0+,( /%',#A#,+.-'./+/4,%-(1)+)(3&)%+&0+A)20.0"(+3+./+)3' B#)/(78 %&+1'3)&/(+.02+(0-.0"(+&#)+4(5 %-1*$#)-3.$$(2+.$$'+$.(.&#)+%.)9*'$'()+2#)3#((%+=&)+2.%. =1&&',)#1(+1A4-1"-+%&&V++<.).+A-1$+GH)'-(/12(0"(+=)&' (.& $1%(+.02+&0610(+$()/1"($+%-1$ )3'+*)(/1$1&08-14%5+63'+('2+7-+41%-+;;*O<+1&=*-.$$' I14-,'/+J=K<GIL+M+)3'W("('5()+JKKH+%&+N.)"-+JKKJ* 7(.)8+41%-+/1$1%$+%&+%-(+$1%( 8.(.$1901=1".0%+*'$'()+)'.$+3./)(.6?4&)62+=(.%#)($ .,F4#/#)#1(+>-(+B(6("%+1A+\&''1%%((+/#)'+%&.(/+.(0).1$(2+. 10")(.$109+57+:;*:<+.9.10$%+. %-1.,)#5(109+9'10"&:+6#2(2+$.(.*10+'0+&#)+)3'+2.;'%.:5.$( 0'/#*(/+A0#'5()+1-+/#)'/+)3.&=+1$$#($+)+3..5&#%9' %.)9(%+&=+:!<*+>&+'((%+%-( <=>8+%-41%-10+$1F+104,)#1(+%-1'&0%-$+&=+*"&'36(%1&0*-.$$'/? %&.((#(*+%'-A)20.0"(+B#)$#//#1(+@/(7]$+."%14)+.-/1%1($' * 9)&4109+2($1)(+=&)+$()/1"(+.02
- 
												  A Review of Openstreetmap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, CoCHAPTER 3 A Review of OpenStreetMap Data Peter Mooney* and Marco Minghini† *Department of Computer Science, Maynooth University, Maynooth, Co. Kildare, Ireland, [email protected] †Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy Abstract While there is now a considerable variety of sources of Volunteered Geo- graphic Information (VGI) available, discussion of this domain is often exem- plified by and focused around OpenStreetMap (OSM). In a little over a decade OSM has become the leading example of VGI on the Internet. OSM is not just a crowdsourced spatial database of VGI; rather, it has grown to become a vast ecosystem of data, software systems and applications, tools, and Web-based information stores such as wikis. An increasing number of developers, indus- try actors, researchers and other end users are making use of OSM in their applications. OSM has been shown to compare favourably with other sources of spatial data in terms of data quality. In addition to this, a very large OSM community updates data within OSM on a regular basis. This chapter provides an introduction to and review of OSM and the ecosystem which has grown to support the mission of creating a free, editable map of the whole world. The chapter is especially meant for readers who have no or little knowledge about the range, maturity and complexity of the tools, services, applications and organisations working with OSM data. We provide examples of tools and services to access, edit, visualise and make quality assessments of OSM data. We also provide a number of examples of applications, such as some of those How to cite this book chapter: Mooney, P and Minghini, M.
- 
												  THE BEGINNINGS of MEDICAL MAPPING* Arthur HTHE BEGINNINGS OF MEDICAL MAPPING* Arthur H. Robinson Department of Geography University of Wisconsin Madison, Wisconsin 53706 If a mental geographical image is as much a map as is one on paper or on a cathode ray tube, then the concept of medical mapping is extremely old. The geography of disease, or nosogeography, has roots as far back as the 5th century BC when the idea of the 4 elements of the universe fire, air, earth, and water led to the doc trine of the 4 bodily humors blood, phlegm, cholera or yellow bile, and melancholy or black bile. Health was simply the condition when the 4 humors were in harmony. Throughout history until some 200 years ago the parallel between organic man and a neatly organized universe regularly surfaced in the microcosm-macrocosm philosophy, a kind of cosmographic metaphor in which the human body was a miniature universe, from which it was a short step to liken the physical circulations of the earth, such as water and air, to the circulatory and respiratory systems of man. One of the earlier detailed, topogra- phic-like maps definitely stems from this analogy, as clearly shown by Jarcho.-©- The idea that disease resulted from external causes rather than being a punishment sent by the Gods (and therefore a mappable relationship) goes back at least as far as the time of Hippocrates in the 4th century, a physician best known for his code of medical conduct called the Hippocratic Oath. He thought that disease occurred as a consequence of such things as food, occupation, and especially climate.
- 
												  GIS for National Mapping and Chartingcopyright swisstopo GIS for National Mapping and Charting Esri® GIS Solutions in Europe GIS for National Mapping and Charting Solutions for Land, Sea, and Air National mapping organisations (NMOs) are under pressure to generate more products and services in less time and with fewer resources. On-demand products, online services, and the continuous production of maps and charts require modern technology and new workflows. GIS for National Mapping and Charting Esri has a history of working with NMOs to find solutions that meet the needs of each country. Software, training, and services are available from a network of distributors and partners across Europe. Esri’s ArcGIS® geographic information system (GIS) technology offers powerful, database-driven cartography that is standards based, open, and interoperable. Map and chart products can be produced from large, multipurpose geographic data- bases instead of through the management of disparate datasets for individual products. This improves quality and consistency while driving down production costs. ArcGIS models the world in a seamless database, facilitating the production of diverse digital and hard-copy products. Esri® ArcGIS provides NMOs with reliable solutions that support scientific decision making for • E-government applications • Emergency response • Safety at sea and in the air • National and regional planning • Infrastructure management • Telecommunications • Climate change initiatives The Digital Atlas of Styria provides many types of map data online including this geology map. 2 Case Study—Romanian Civil Aeronautical Authority Romanian Civil Aeronautical Authority (RCAA) regulates all civil avia- tion activities in the country, including licencing pilots, registering aircraft, and certifying that aircraft and engine designs are safe for use.
- 
												  Digital Photogrammetry, Developments at Ordnance SurveyLynne Allan DIGITAL PHOTOGRAMMETRY, DEVELOPMENTS AT ORDNANCE SURVEY Lynne ALLAN*, David HOLLAND** Ordnance Survey, Southampton, GB *[email protected] ** [email protected] KEY WORDS: Photogrammetry, Digital, National, Revision. ABSTRACT Ordnance Survey has always used photogrammetric methods to update large scale mapping in the role of Britains National Mapping Agency. The photogrammetry department revises 11,000 square km of digital map data annually, facilitating the update of mapping products at scales ranging from 1:1250 to 1:10 000. Digital photogrammetric methods have been used since 1995 in the form of monoplotting workstations, supplied with orthoimages by two orthorectification workstations. The complement of digital photogrammetric was increased in 1998 by the acquisition of two ZI Imaging Imagestations, used for automatic aerial triangulation. In order to facilitate the introduction of a new data specification into the production flowline, up to 30 digital digital stereo capture workstations will be phased in over the next 5 years. This will entail a major change in the production system and the work methods within the photogrammetric survey section. These systems will be described in this paper. The Research Unit continues to investigate new data sources and methods of data capture, including laser scanning, image mosaicing, Applanix differential GPS and inertial camera exposure position fixing system, and satellite communication systems from HQ to the field offices. This paper will also discuss the results from these and related research projects currently being undertaken at Ordnance Survey. 1 INTRODUCTION 1.1 History Ordnance Survey, from its beginnings in 1791, has been Great Britain's national mapping agency.
- 
												  Navegação Turn-By-Turn Em Android Relatório De Estágio Para AINSTITUTO POLITÉCNICO DE COIMBRA INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA Navegação Turn-by-Turn em Android Relatório de estágio para a obtenção do grau de Mestre em Informática e Sistemas Autor Luís Miguel dos Santos Henriques Orientação Professor Doutor João Durães Professor Doutor Bruno Cabral Mestrado em Engenharia Informática e Sistemas Navegação Turn-by-Turn em Android Relatório de estágio apresentado para a obtenção do grau de Mestre em Informática e Sistemas Especialização em Desenvolvimento de Software Autor Luís Miguel dos Santos Henriques Orientador Professor Doutor João António Pereira Almeida Durães Professor do Departamento de Engenharia Informática e de Sistemas Instituto Superior de Engenharia de Coimbra Supervisor Professor Doutor Bruno Miguel Brás Cabral Sentilant Coimbra, Fevereiro, 2019 Agradecimentos Aos meus pais por todo o apoio que me deram, Ao meu irmão pela inspiração, À minha namorada por todo o amor e paciência, Ao meu primo, por me fazer acreditar que nunca é tarde, Aos meus professores por me darem esta segunda oportunidade, A todos vocês devo o novo rumo da minha vida. Obrigado. i ii Abstract This report describes the work done during the internship of the Master's degree in Computer Science and Systems, Specialization in Software Development, from the Polytechnic of Coimbra - ISEC. This internship, which began in October 17 of 2017 and ended in July 18 of 2018, took place in the company Sentilant, and had as its main goal the development of a turn-by- turn navigation module for a logistics management application named Drivian Tasks. During the internship activities, a turn-by-turn navigation module was developed from scratch, while matching the specifications indicated by the project managers in the host entity.
- 
												  Ordnance Survey of Great Britain Case StudyOrdnance Survey of Great Britain GIS Manages National Data Problem Ordnance Survey is Great Britain’s national mapping agency. It is Maintain countrywide datasets responsible for creating and updating the master map of the entire accurately and efficiently. country. It produces and markets a wide range of digital map data and paper maps for business, leisure, educational, and administrative Goals use. The public-sector agency operates as a trading fund with an • Develop new geospatial data annual turnover of around 100 million English pounds. However, an storage, management, and independent survey has indicated that Ordnance Survey® data already maintenance infrastructure. underpins approximately 100 billion English pounds of economic activity • Provide field tools usable by more across both the public and private sectors. The agency is currently than 400 staff members. • Maintain 400 gigabytes of data. implementing an ambitious e-strategy to further enhance its services to customers and help grow the business. Results The national mapping agency licenses organizations to use its data. Its • Added ability to store approximately customers are organizations such as local and central governments one-half billion topographic and and utilities that have a Service Level Agreement with Ordnance Survey. other features They regularly receive updates of data at various scales for their • Developed systems for quality area of interest. A geographic information system (GIS) is an essential assurance, validation, and job and component of Ordnance Survey’s data services production. data management • Acquired support for a vast range of business and public-sector services The Challenge Ordnance Survey’s GIS has developed and grown in different departments and has multiple “The decision to adopt ESRI databases.
- 
												  Ordnance Survey and the Depiction of Antiquities on Maps: Past, Present and FutureView metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publikationsserver der Universität Tübingen Ordnance Survey and the Depiction of Antiquities on Maps: Past, Present and Future. The Current and Future Role of the Royal Commissions as CAA97 Suppliers of Heritage Data to the Ordnance Survey Diana Murray Abstract The background and history of the mapping of archaeological sites is described, followed by an account of the method used to transfer information on 'antiquities' to the Ordnance Survey today. The impact of digitisation on the appearance of archaeology on OS maps has been of concern but the use of digital technology by the Royal Commissions, in particular GIS, opens up many opportunities for future mapping of the archaeological landscape. 1 Background Society, having had its attenticxi recently directed to the fact that many of the primitive moiuments of our natiaial history, partly From the earliest stages of the develcpment of modem mapping, from the progress of agricultural improvements, and in part 'antiquities' have been depicted as integral and important visual from neglect and spoilation, were in the course of being elements of the landscape. Antiquities appear on maps as early removed, was of the opini<xi, that it would be of great as the 17th century but it was oily when, in the mid-18th consequence to have all such historical monuments laid down century the systematic mapping of Scotland was undertaken for cm the Ordnance Survey of Scotland in the course of military purposes in response to the 1745 rebelliai, that preparation'.
- 
												  Long Term Management Nr Final.Pdf 725.91 KBSection III – Thematic Issues ***** 5.0 Long-Term Management of Natural Resources EXPERTS Hannah Jaenicke 1, André Bassolé 2. Based on first version by André Nonguierma 3 and Philippe Mayaux 4 INSTITUTIONS 1 Consultant, Burghof 26, 53501 Grafschaft, Germany. [email protected] 2 Centre d’Etudes, de Recherche et de Production en Information pour l’Environnement et le Développement Durable (CERPINEDD) 979, Avenue de l’Armée, Cité An3, Ouagadougou, Burkina Faso. [email protected] 3 United Nations Economic Commission for Africa (UNECA), Information, Sciences & Technology Division, P.O Box 3005 Addis Ababa, Ethiopia. [email protected] 4 Institute for Environment and Sustainability, DG Joint Research Centre - European Commission, TP 440, 2749 via E. Fermi, I-21027 Ispra (VA), Italy. [email protected] CONTRIBUTIONS The following individuals have provided valuable written comments during the revision process: Mamdouh M. Abdeen (NARSS, Egypt); Ganiyu I. Agbaje (NARSDA, Nigeria); Luc André (MRAC, Belgium); Islam Abou El- Magd (NARSS, Egypt); Johannes van der Kwast (AfroMaison, The Netherlands); Richard Mavisi Liahona (MHEST, Kenya); Ana Morgado (BRAGMA); Paolo Roggeri (JRC, EC); Abel Romoelo (CSIR, South Africa), Hervé Trebossen (OSS); Peter Zeil (PLUS, Austria). In addition, the active contribution of the delegates to the workshop in Sharm-El-Sheikh 25-26 June 2013, and the comments provided during the GMES and Africa online discussion forum in 2010 and 2011 are acknowledged. 1 TABLE OF CONTENTS Executive Summary