Anytime Heuristic Search: Frameworks and Algorithms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pathfinding in Computer Games
The ITB Journal Volume 4 Issue 2 Article 6 2003 Pathfinding in Computer Games Ross Graham Hugh McCabe Stephen Sheridan Follow this and additional works at: https://arrow.tudublin.ie/itbj Part of the Computer and Systems Architecture Commons Recommended Citation Graham, Ross; McCabe, Hugh; and Sheridan, Stephen (2003) "Pathfinding in Computer Games," The ITB Journal: Vol. 4: Iss. 2, Article 6. doi:10.21427/D7ZQ9J Available at: https://arrow.tudublin.ie/itbj/vol4/iss2/6 This Article is brought to you for free and open access by the Ceased publication at ARROW@TU Dublin. It has been accepted for inclusion in The ITB Journal by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License ITB Journal Pathfinding in Computer Games Ross Graham, Hugh McCabe, Stephen Sheridan School of Informatics & Engineering, Institute of Technology Blanchardstown [email protected], [email protected], [email protected] Abstract One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer games is agent movement. Pathfinding strategies are usually employed as the core of any AI movement system. This report will highlight pathfinding algorithms used presently in games and their shortcomings especially when dealing with real-time pathfinding. With the advances being made in other components, such as physics engines, it is AI that is impeding the next generation of computer games. This report will focus on how machine learning techniques such as Artificial Neural Networks and Genetic Algorithms can be used to enhance an agents ability to handle pathfinding in real-time. -
A Branch-And-Price Approach with Milp Formulation to Modularity Density Maximization on Graphs
A BRANCH-AND-PRICE APPROACH WITH MILP FORMULATION TO MODULARITY DENSITY MAXIMIZATION ON GRAPHS KEISUKE SATO Signalling and Transport Information Technology Division, Railway Technical Research Institute. 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan YOICHI IZUNAGA Information Systems Research Division, The Institute of Behavioral Sciences. 2-9 Ichigayahonmura-cho, Shinjyuku-ku, Tokyo 162-0845, Japan Abstract. For clustering of an undirected graph, this paper presents an exact algorithm for the maximization of modularity density, a more complicated criterion to overcome drawbacks of the well-known modularity. The problem can be interpreted as the set-partitioning problem, which reminds us of its integer linear programming (ILP) formulation. We provide a branch-and-price framework for solving this ILP, or column generation combined with branch-and-bound. Above all, we formulate the column gen- eration subproblem to be solved repeatedly as a simpler mixed integer linear programming (MILP) problem. Acceleration tech- niques called the set-packing relaxation and the multiple-cutting- planes-at-a-time combined with the MILP formulation enable us to optimize the modularity density for famous test instances in- cluding ones with over 100 vertices in around four minutes by a PC. Our solution method is deterministic and the computation time is not affected by any stochastic behavior. For one of them, column generation at the root node of the branch-and-bound tree arXiv:1705.02961v3 [cs.SI] 27 Jun 2017 provides a fractional upper bound solution and our algorithm finds an integral optimal solution after branching. E-mail addresses: (Keisuke Sato) [email protected], (Yoichi Izunaga) [email protected]. -
Heuristic Search Viewed As Path Finding in a Graph
ARTIFICIAL INTELLIGENCE 193 Heuristic Search Viewed as Path Finding in a Graph Ira Pohl IBM Thomas J. Watson Research Center, Yorktown Heights, New York Recommended by E. J. Sandewall ABSTRACT This paper presents a particular model of heuristic search as a path-finding problem in a directed graph. A class of graph-searching procedures is described which uses a heuristic function to guide search. Heuristic functions are estimates of the number of edges that remain to be traversed in reaching a goal node. A number of theoretical results for this model, and the intuition for these results, are presented. They relate the e])~ciency of search to the accuracy of the heuristic function. The results also explore efficiency as a consequence of the reliance or weight placed on the heuristics used. I. Introduction Heuristic search has been one of the important ideas to grow out of artificial intelligence research. It is an ill-defined concept, and has been used as an umbrella for many computational techniques which are hard to classify or analyze. This is beneficial in that it leaves the imagination unfettered to try any technique that works on a complex problem. However, leaving the con. cept vague has meant that the same ideas are rediscovered, often cloaked in other terminology rather than abstracting their essence and understanding the procedure more deeply. Often, analytical results lead to more emcient procedures. Such has been the case in sorting [I] and matrix multiplication [2], and the same is hoped for this development of heuristic search. This paper attempts to present an overview of recent developments in formally characterizing heuristic search. -
Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded)
Cooperative and Adaptive Algorithms Lecture 6 Allaa (Ella) Hilal, Spring 2017 May, 2017 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first search Breadth-first search, depth- first search and uniform- cost search are special cases of best- first search. A* is a special case of uniform-cost search. ECE457A, Dr. Allaa Hilal, Spring 2017 2 1 Minute Quiz (Ungraded) • Select if these statement are true (T) or false (F): Statement T/F Reason Uniform-cost search is a special case of Breadth- first F • Breadth- first search is a special case of Uniform- search cost search when all step costs are equal. Breadth-first search, depth- first search and uniform- T • Breadth-first search is best-first search with f(n) = cost search are special cases of best- first search. depth(n); • depth-first search is best-first search with f(n) = - depth(n); • uniform-cost search is best-first search with • f(n) = g(n). A* is a special case of uniform-cost search. F • Uniform-cost search is A* search with h(n) = 0. ECE457A, Dr. Allaa Hilal, Spring 2017 3 Informed Search Strategies Hill Climbing Search ECE457A, Dr. Allaa Hilal, Spring 2017 4 Hill Climbing Search • Tries to improve the efficiency of depth-first. • Informed depth-first algorithm. • An iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by incrementally changing a single element of the solution. • It sorts the successors of a node (according to their heuristic values) before adding them to the list to be expanded. -
Backtracking / Branch-And-Bound
Backtracking / Branch-and-Bound Optimisation problems are problems that have several valid solutions; the challenge is to find an optimal solution. How optimal is defined, depends on the particular problem. Examples of optimisation problems are: Traveling Salesman Problem (TSP). We are given a set of n cities, with the distances between all cities. A traveling salesman, who is currently staying in one of the cities, wants to visit all other cities and then return to his starting point, and he is wondering how to do this. Any tour of all cities would be a valid solution to his problem, but our traveling salesman does not want to waste time: he wants to find a tour that visits all cities and has the smallest possible length of all such tours. So in this case, optimal means: having the smallest possible length. 1-Dimensional Clustering. We are given a sorted list x1; : : : ; xn of n numbers, and an integer k between 1 and n. The problem is to divide the numbers into k subsets of consecutive numbers (clusters) in the best possible way. A valid solution is now a division into k clusters, and an optimal solution is one that has the nicest clusters. We will define this problem more precisely later. Set Partition. We are given a set V of n objects, each having a certain cost, and we want to divide these objects among two people in the fairest possible way. In other words, we are looking for a subdivision of V into two subsets V1 and V2 such that X X cost(v) − cost(v) v2V1 v2V2 is as small as possible. -
Branch and Bound Algorithm to Determine the Best Route to Get Around Tokyo
Branch and Bound Algorithm to Determine The Best Route to Get Around Tokyo Muhammad Iqbal Sigid - 13519152 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10 Bandung E-mail: [email protected] Abstract—This paper described using branch and bound Fig. 1. State Space Tree example for Branch and Bound Algorithm (Source: algorithm to determined the best route to get around six selected https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma- places in Tokyo, modeled after travelling salesman problem. The Branch-and-Bound-2021-Bagian1.pdf accessed May 8, 2021) bound function used is reduced cost matrix using manual calculation and a python program to check the solution. Branch and Bound is an algorithm design which are usually used to solve discrete and combinatorial optimization Keywords—TSP, pathfinding, Tokyo, BnB problems. Branch and bound uses state space tree by expanding its nodes (subset of solution set) based on the minimum or I. INTRODUCTION maximum cost of the active node. There is also a bound which is used to determine if a node can produce a better solution Pathfinding algorithm is used to find the most efficient than the best one so far. If the node cost violates this bound, route between two points. It can be the shortest, the cheapest, then the node will be eliminated and will not be expanded the faster, or other kind. Pathfinding is closely related to the further. shortest path problem, graph theory, or mazes. Pathfinding usually used a graph as a representation. The nodes represent a Branch and bound algorithm is quite similar to Breadth place to visit and the edges represent the nodes connectivity. -
Module 5: Backtracking
Module-5 : Backtracking Contents 1. Backtracking: 3. 0/1Knapsack problem 1.1. General method 3.1. LC Branch and Bound solution 1.2. N-Queens problem 3.2. FIFO Branch and Bound solution 1.3. Sum of subsets problem 4. NP-Complete and NP-Hard problems 1.4. Graph coloring 4.1. Basic concepts 1.5. Hamiltonian cycles 4.2. Non-deterministic algorithms 2. Branch and Bound: 4.3. P, NP, NP-Complete, and NP-Hard 2.1. Assignment Problem, classes 2.2. Travelling Sales Person problem Module 5: Backtracking 1. Backtracking Some problems can be solved, by exhaustive search. The exhaustive-search technique suggests generating all candidate solutions and then identifying the one (or the ones) with a desired property. Backtracking is a more intelligent variation of this approach. The principal idea is to construct solutions one component at a time and evaluate such partially constructed candidates as follows. If a partially constructed solution can be developed further without violating the problem’s constraints, it is done by taking the first remaining legitimate option for the next component. If there is no legitimate option for the next component, no alternatives for any remaining component need to be considered. In this case, the algorithm backtracks to replace the last component of the partially constructed solution with its next option. It is convenient to implement this kind of processing by constructing a tree of choices being made, called the state-space tree. Its root represents an initial state before the search for a solution begins. The nodes of the first level in the tree represent the choices made for the first component of a solution; the nodes of the second level represent the choices for the second component, and soon. -
Memory-Constrained Pathfinding Algorithms for Partially-Known Environments
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2007 Memory-constrained pathfinding algorithms for partially-known environments Denton Cockburn University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Cockburn, Denton, "Memory-constrained pathfinding algorithms for partially-known environments" (2007). Electronic Theses and Dissertations. 4672. https://scholar.uwindsor.ca/etd/4672 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Memory-Constrained Pathfinding Algorithms for Partially-Known Environments by Denton Cockbum A Thesis Submitted to the Faculty of Graduate Studies through The School of Computer Science in Partial Fulfillment of the -
Exploiting the Power of Local Search in a Branch and Bound Algorithm for Job Shop Scheduling Matthew J
Exploiting the Power of Local Search in a Branch and Bound Algorithm for Job Shop Scheduling Matthew J. Streeter1 and Stephen F. Smith2 Computer Science Department and Center for the Neural Basis of Cognition1 and The Robotics Institute2 Carnegie Mellon University Pittsburgh, PA 15213 {matts, sfs}@cs.cmu.edu Abstract nodes in the branch and bound search tree. This paper presents three techniques for using an iter- 2. Branch ordering. In practice, a near-optimal solution to ated local search algorithm to improve the performance an optimization problem will often have many attributes of a state-of-the-art branch and bound algorithm for job (i.e., assignments of values to variables) in common with shop scheduling. We use iterated local search to obtain an optimal solution. In this case, the heuristic ordering (i) sharpened upper bounds, (ii) an improved branch- of branches can be improved by giving preference to a ordering heuristic, and (iii) and improved variable- branch that is consistent with the near-optimal solution. selection heuristic. On randomly-generated instances, our hybrid of iterated local search and branch and bound 3. Variable selection. The heuristic solutions used for vari- outperforms either algorithm in isolation by more than able selection at each node of the search tree can be im- an order of magnitude, where performance is measured proved by local search. by the median amount of time required to find a globally optimal schedule. We also demonstrate performance We demonstrate the power of these techniques on the job gains on benchmark instances from the OR library. shop scheduling problem, by hybridizing the I-JAR iter- ated local search algorithm of Watson el al. -
An Evolutionary Algorithm for Minimizing Multimodal Functions
An Evolutionary Algorithm for Minimizing Multimodal Functions D.G. Sotiropoulos, V.P. Plagianakos, and M.N. Vrahatis Department of Mathematics, University of Patras, GR–261.10 Patras, Greece. University of Patras Artificial Intelligence Research Center–UPAIRC. e–mail: {dgs,vpp,vrahatis}@math.upatras.gr Abstract—A new evolutionary algorithm for are precluded. In such cases direct search approaches the global optimization of multimodal functions are the methods of choice. is presented. The algorithm is essentially a par- allel direct search method which maintains a If the objective function is unimodal in the search populations of individuals and utilizes an evo- domain, one can choose among many good alterna- lution operator to evolve them. This operator tives. Some of the available minimization methods in- has two functions. Firstly, to exploit the search volve only function values, such as those of Hook and space as much as possible, and secondly to form Jeeves [2] and Nelder and Mead [5]. However, if the an improved population for the next generation. objective function is multimodal, the number of avail- This operator makes the algorithm to rapidly able algorithms is reduced to very few. In this case, converge to the global optimum of various diffi- the algorithms quoted above tend to stop at the first cult multimodal test functions. minimum encountered, and cannot be used easily for finding the global one. Index Terms—Global optimization, derivative free methods, evolutionary algorithms, direct Search algorithms which enhance the exploration of the search methods. feasible region through the use of a population, such as Genetic Algorithms (see, [4]), and probabilistic search techniques such as Simulated Annealing (see, [1, 7]), I. -
Branch-And-Price: Column Generation for Solving Huge Integer Programs ,Y
BranchandPrice Column Generation for y Solving Huge Integer Programs Cynthia Barnhart Ellis L Johnson George L Nemhauser Martin WPSavelsb ergh Pamela H Vance School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta GA Abstract We discuss formulations of integer programs with a huge number of variables and their solution by column generation metho ds ie implicit pricing of nonbasic variables to generate new columns or to prove LP optimality at a no de of the branch andb ound tree We present classes of mo dels for whichthisapproach decomp oses the problem provides tighter LP relaxations and eliminates symmetryWethen discuss computational issues and implementation of column generation branchand b ound algorithms including sp ecial branching rules and ecientways to solvethe LP relaxation February Revised May Revised January Intro duction The successful solution of largescale mixed integer programming MIP problems re quires formulations whose linear programming LP relaxations give a go o d approxima Currently at MIT Currently at Auburn University This research has b een supp orted by the following grants and contracts NSF SES NSF and AFORS DDM NSF DDM NSF DMI and IBM MHV y An abbreviated and unrefereed version of this pap er app eared in Barnhart et al tion to the convex hull of feasible solutions In the last decade a great deal of attention has b een given to the branchandcut approach to solving MIPs Homan and Padb erg and Nemhauser and Wolsey give general exp ositions of this metho dology The basic -
Hybridization of Interval Methods and Evolutionary Algorithms for Solving Difficult Optimization Problems
THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Institut National Polytechnique de Toulouse (INP Toulouse) Présentée et soutenue le January 27, 2015 par : Charlie Vanaret Hybridization of interval methods and evolutionary algorithms for solving difficult optimization problems JURY Nicolas Durand ENAC Directeur de thèse Jean-Baptiste Gotteland ENAC Co-encadrant de thèse El-Ghazali Talbi Université de Lille Rapporteur Gilles Trombettoni Université de Montpellier Rapporteur Jean-Marc Alliot IRIT Examinateur Jin-Kao Hao Université d’Angers Examinateur arXiv:2001.11465v1 [math.NA] 30 Jan 2020 Thomas Schiex INRA Toulouse Examinateur Marc Schoenauer INRIA Saclay Examinateur École doctorale et spécialité : MITT : Domaine STIC : Intelligence Artificielle Unité de Recherche : IRIT-APO (UMR 5505) Abstract Reliable global optimization is dedicated to finding a global minimum in the presence of rounding errors. The only approaches for achieving a numerical proof of optimality in global optimization are interval-based methods that interleave branching of the search-space and pruning of the subdomains that cannot contain an optimal solution. The exhaustive interval branch and bound methods have been widely studied since the 1960s and have benefitted from the development of refutation methods and filtering algorithms, stemming from the interval analysis and interval constraint programming communities. It is of the utmost importance: i) to compute sharp enclosures of the objective function and the constraints on a given subdomain; ii) to find a good approximation (an upper bound) of the global minimum. State-of-the-art solvers are generally integrative methods, that is they embed local optimization algorithms to compute a good upper bound of the global minimum over each subspace.