Environmental Report the Use of Explosives by the Us Antarctic

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Report the Use of Explosives by the Us Antarctic ORNLA'M-13031 ENVIRONMENTAL REPORT THE USE OF EXPLOSIVES BY THE U.S. ANTARCTIC PROGRAM J. T. Ensminger T. J. BIasing P 1 This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Techni- cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com- pleteness, or usefulness of any information, apparatus, product, or process dis- closed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily consti- tute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ORNLITM- 1303 1 ENVIRONMENTAL REPORT THE USE OF EXPLOSIVES BY THE U.S. ANTARCTIC PROGRAM J. T. Ensminger T. J. Blasing Energy Division Environmental Analysis and Assessment Section June 1995 Prepared for the National Science Foundation Office of Polar Programs Washington, D .C . by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by LOCKHEED MARTIN ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-MOR21400 TABLE OF CONTENTS ... LIST OF FIGURES ................................................. 111 ... LISTOFTABLES .................................................. 111 1. INTRODUCTION ............................................... 1 2 . PAST AND CURRENT USES OF EXPLOSIVES ........................... 2 2.1 SCIENTIFIC RESEARCH ....................................... 4 2.1.1 Seismic Research ........................................ 6 2.1.2 Creating Holes in Sea Ice ................................... 7 2.1.3 Geologic Research ....................................... 8 2.2 CONSTRUCTION AND MAINTENANCE ............................ 9 2.2.1 Fill Material Production ................................... 10 2.2.2 Ice Cornice Removal ..................................... 10 2.2.3 Rock Removal for Construction .............................. 11 2.3 EXPLOSIVES MANAGEMENT AND SAFETY ....................... 11 2.3.1 Explosives Storage ...................................... 12 2.3.2 Explosives Transport .................................... 14 3 . ANTARCTICENVIRONMENT ..................................... 14 3.1 GEOLOGY AND SOILS ....................................... 14 3.2 INLAND WATER RESOURCES ................................. 17 3.3 BIOTA .................................................. 17 3.3.1 Terrestrial Biota ....................................... 17 3.3.2 Aquatic Biota ......................................... 18 3.3.3 Marine Biota .......................................... 18 3.4 CLIMATE AND AIR QUALITY ................................. 19 4 . ENVIRONMENTALCONSEQUENCES ................................ 20 4.1 GEOLOGY. SOILS AND ICE ................................... 20 4.2 INLAND WATER RESOURCES ................................. 22 4.3 BIOTA .................................................. 22 4.3.1 Terrestrial Biota ....................................... 22 4.3.2 Aquatic Biota ......................................... 23 4.3.3 Marine Biota .......................................... 23 4.4 AIRQUALITY ............................................. 28 4.5 CUMULATIVE IMPACTS ..................................... 31 5 . ALTERNATIVES TO THE USE OF EXPLOSIVES ......................... 32 5.1 CONSTRUCTION MAINTENANCE ............................... 32 5.2 RESEARCH ................................................ 33 6 . CONCLUSIONS ............................................... 34 7 . LITERATURECITED ........................................... 36 ii LIST OF FIGURES Figure Pag;e 1 Major features and location of USAP stations on the Antarctic continent ............ 3 2 Direction of ice movement on the Antarctic continent ....................... 15 LIST OF TABLES 1 Approximate explosives use for three working seasons in kg/lb ................. 4 2 Estimated seismic research explosive usage for 1993-94 ...................... 7 3 Explosives inventory for 1993-94 ................................... 13 4 Underwater-blast criteria for mammals diving beneath the water surface ........... 25 5 Underwater-blast criteria for birds diving beneath the water surface ............. 25 6 Estimated annual air pollutant emissions at McMurdo Station .................. 29 iii 17te Use of fidosives by the U.S. Antarctic Program 1. INTRODUCTION This environmental report on the use of explosives in Antarctica has been prepared by the U.S. National Science Foundation (NSF) to assist principal investigators and others in complying with the National Environmental Policy Act (NEPA) and the Protocol on Environmental Protection to the Antarctic Treaty (Protocol). Implementing regulations for NEPA are found at 40 CFR 1500-1508. Environmental protection under the Antarctic Treaty is addressed in the Protocol, which was adopted by 26 countries in 1991. In the United States, responsibility for compliance with these requirements rests with the NSF Office of Polar Programs (OPP), which manages the U.S. Antarctic Program (USAP). NEPA and its implementing regulations require that federal agencies consider the effects of major actions on the human environment before deciding to act. The vehicle for this consideration is an environmental analysis, either an environmental assessment (EA) or an environmental impact statement (EIS), depending on the expected significance of the effects. A programmatic EIS on the impacts of the USAP was published in 1980. A supplemental EIS addressing the safety, environment and health initiative undertaken by USAP was published in 1991. A new draft programmatic EIS is under preparation and will be published in mid-1995. The Protocol designates Antarctica as “a natural reserve, devoted to peace and science” (Article 2), and identifies principles for protection of the antarctic environment (Article 3). In considering protection of the antarctic environment, the Protocol recognizes its wilderness and aesthetic values as well as its value as an area for the conduct of scientific research. Under Article 3 of the Protocol, environmental protection requires that activities in the Antarctic Treaty area be planned and conducted so as to limit adverse impacts on the antarctic environment and dependent and associated ecosystems. Environmental analysis is required, with an initial environmental evaluation (IEE) and comprehensive environmental evaluation (CEE) being essentially equivalent to the EA and EIS, respectively. Annex Il of the Protocol prohibits taking’ of or harmful interference*with ‘‘Take” or “taking” means to kill, injure, capture, handle, or molest a native mammal or bird or to remove or damage such quantities of native plants that their local distribution or abundance would be significantly affected. ’HarmfUl interference is a prohibition not contained in the Antarctic Conservation Act, and includes activities that disturb concentrations of birds and seals, such as flying or landing helicopters, and operating vehicles in close proximity. Harmful interference also generally includes “any activity that results in the significant adverse modification of habitats of any species or population of native mammal, bud, plant, or invertebrate.” Page 1 The Use of Explosives by the US. Antarctic Program antarctic fauna and flora except in accordance with a permit. Because most of Antarctica is essentially pristine, application of these principles means that disturbance which might be considered negligible elsewhere could be significant in Antarctica. The continent of Antarctica (Fig. 1) includes an area of about 14.3 million km’ (5.5 million miles’) and is completely surrounded by the southern oceans. About 98% of the land area is covered by ice and snow. Glacial ice of the continent forms ice shelves hundreds of meters thick in place, extending over the ocean. The USAP maintains three year-round stations on the continent to support scientific research: McMurdo Station on Ross Island, the Amundsen-Scott South Pole Station near the geographic south pole on the polar plateau, and Palmer Station on the Antarctic Peninsula (Fig. 1). Byrd Station in West Antarctica is also occupied intermittently during the austral summer. McMurdo Station is the major logistic support base for the South Pole Station and numerous scientific field camps on the continent during each austral summer. The United States has maintained a presence and performed research in Antarctica since 1957. The operations, which were originally overseen by the U.S. Navy, are now managed by NSF. Support is provided to the USAP by the Naval Support Force Antarctica (NSFA) and a civilian contractor, Antarctic Support Associates
Recommended publications
  • Springtime Flood Risk Reduction in Rural Arctic: a Comparative Study of Interior Alaska, United States and Central Yakutia, Russia
    geosciences Article Springtime Flood Risk Reduction in Rural Arctic: A Comparative Study of Interior Alaska, United States and Central Yakutia, Russia Yekaterina Y. Kontar 1,* ID , John C. Eichelberger 2, Tuyara N. Gavrilyeva 3,4 ID , Viktoria V.Filippova 5 ID , Antonina N. Savvinova 6 ID , Nikita I. Tananaev 7 ID and Sarah F. Trainor 2 1 Science Diplomacy Center, The Fletcher School of Law and Diplomacy, Tufts University, Medford, MA 02155, USA 2 International Arctic Research Center (IARC), University of Alaska Fairbanks, Fairbanks, AK 99775-7340, USA; [email protected] (J.C.E.); [email protected] (S.F.T.) 3 Institute of Engineering & Technology, North-Eastern Federal University, Yakutsk 677007, Russia; [email protected] 4 Department of Regional Economic and Social Studies, Yakutian Scientific Center of the Russian Academy of Sciences, Yakutsk 677007, Russia 5 The Institute for Humanities Research and Indigenous Studies of the North, Russian Academy of Sciences Siberian Branch, Yakutsk 677000, Russia; fi[email protected] 6 Institute of Natural Sciences, North-Eastern Federal University, Yakutsk 677000, Russia; [email protected] 7 The Melnikov Permafrost Institute, Siberian Branch of the Russian Academy of Sciences, Yakutsk 677010, Russia; [email protected] * Correspondence: [email protected]; Tel.: +1-402-450-2267 Received: 30 November 2017; Accepted: 3 March 2018; Published: 8 March 2018 Abstract: Every spring, riverine communities throughout the Arctic face flood risk. As the river ice begins to thaw and break up, ice jams—accumulation of chunks and sheets of ice in the river channel, force melt water and ice floes to back up for dozens of kilometers and flood vulnerable communities upstream.
    [Show full text]
  • Novel Hydraulic Structures and Water Management in Iran: a Historical Perspective
    Novel hydraulic structures and water management in Iran: A historical perspective Shahram Khora Sanizadeh Department of Water Resources Research, Water Research Institute������, Iran Summary. Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. This paper intends to acquaint the readers with some of the famous Iranian historical water monuments. Keywords. Historic – Water – Monuments – Iran – Qanat – Ab anbar – Dam. Structures hydrauliques et gestion de l’eau en Iran : une perspective historique Résumé. L’Iran est situé dans une région aride, semi-aride. La répartition défavorable des eaux de surface a conduit la population iranienne à créer de meilleures conditions d’utilisation d’une ressource aussi vitale que l’eau pour faire face à la demande et aux fluctuations des débits saisonniers annuels. Ce travail vise à faire connaître certains des monuments hydrauliques historiques parmi les plus fameux de l’Iran. Mots-clés. Historique – Eau – Monuments – Iran – Qanat – Ab anbar – Barrage. I - Introduction Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. Iran is located in the south of Asia between 44º 02´ and 63º 20´ eastern longitude and 25º 03´ to 39º 46´ northern latitude. The country covers an area of about 1.648 million km2.
    [Show full text]
  • A Dendrochronology Study of East and West Facing Slopes in Glacier
    A Dendrochronology Study of East and West Facing Slopes in Glacier National Park: A Case Study Examine the Effects of Microclimates in High Elevation Subalpine Fir (Abies lasiocarpa) Stands University of Victoria, Geography Department Geography 477 Michael Guindon & Mike Kit November 8, 2012 1 Abstract Subalpine fir (Abies lasiocarpa) tree cores were collected from two Englemann Spruce Subalpine Fir sites in Glacier National Park, British Columbia. Dendrochronology techniques were used to examine growth limiting factors at each site. Low series intercorrelation values were calculated for most trees, indicating that there were no common growth patterns found between tree cores. Therefore, individual trees within the stand behave differently and are influenced by microsite conditions. Differences in exposure, topography, soils, nutrient availability, moisture level, competition and genetics are likely mechanisms causing different growth rates between trees in both study sites. The behaviour of trees within these sites contradicts most subalpine and alpine tree growth studies and has implications for the Biogeoclimatic Ecosystem Classification system and climate change modelling in subalpine environments. 2 Table of Contents Abstract…………………………………………………………………………... 1 Table of Content…………………………………………………………………. 2 List of Figures & Tables…………………………………………………………. 3 Acknowledgements……………………………………………………………… 4 1.0 Introduction……………………………………………....................................... 5 2.0 Literature Review……………………………………........................................
    [Show full text]
  • The Sea: Its Stirring Story of Adventure, Peril, {Protect
    The Project Gutenberg EBook of The Sea: Its Stirring Story of Adventure, Peril, & Heroism. Volume 3 by Frederick Whymper This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at http://www.gutenberg.org/license Title: The Sea: Its Stirring Story of Adventure, Peril, & Heroism. Volume 3 Author: Frederick Whymper Release Date: April 1, 2012 [Ebook 39343] Language: English ***START OF THE PROJECT GUTENBERG EBOOK THE SEA: ITS STIRRING STORY OF ADVENTURE, PERIL, & HEROISM. VOLUME 3*** MORGAN’S ATTACK ON GIBRALTAR. THE SEA Its Stirring Story of Adventure, Peril, & Heroism. BY F. WHYMPER, AUTHOR OF “TRAVELS IN ALASKA,” ETC. ivThe Sea: Its Stirring Story of Adventure, Peril, & Heroism. Volume 3 ILLUSTRATED. *** CASSELL,PETTER,GALPIN &CO.: LONDON, PARIS & NEW YORK. [ALL RIGHTS RESERVED] [iii] CONTENTS. CHAPTER I. THE PIRATES AND BUCANIERS. PAGE Who was the First Pirate?—The Society of Bu- 1 caniers—Home of the Freebooters—Rise of the Band—Impecunious Spanish Governors and their Roguery—Great Capture of Spanish Treasure—An Un- just Seizure, but no Redress—Esquemeling’s Narra- tive—Voyage from Havre—“Baptism” of the French Mariners—Other Ceremonies—At Tortuga—Occupied and Reoccupied by French and Spanish—The French West India Company—Esquemeling twice Sold as a Slave—He Joins the Society of Pi- rates—Wild Boars and Savage Mastiffs—How the Wild Dogs came to the Islands—Cruelty of the Planters—A Terrible Case of Retribution—The Mur- derer of a Hundred Slaves—The First Tortugan Pi- rate—Pierre le Grand—A Desperate Attack—Rich Prize Taken—Rapid Spread of Piracy—How the Rovers Armed their Ships—Regulations of their Voy- ages—“No Prey, no Pay”—The richly-laden Vessels of New Spain—The Pearl Fisheries—An Enterprising Pirate—Success and Failure—His Final Surrender CHAPTER II.
    [Show full text]
  • 2007 Minutes
    2007 MINUTES XX1 City council met in regular session on January 2, 2007. Mayor Kaumo called the meeting to order at 7:00 p.m. Members present included Councilmen Neil Kourbelas, David Tate, Kent Porenta, Harry Horn, Rob Zotti, Chad Banks, Joyce Corcoran, Carl Demshar, and Mayor Tim Kaumo. Department heads present included Mike Lowell, Vince Crow, Vess Walker, Brad Sarff, Paul Kauchich, Dave Silovich and Lisa Tarufelli. A moment of silence was observed in honor of President Gerald R. Ford, 38th president of the United States, whose funeral was held today in Washington, D.C. Paul Thomas Glause, municipal court judge, administered the oath of office to re- elected Mayor Timothy Kaumo and to re-elected council members Neil Kourbelas, Chad Banks, Kent Porenta and newly elected council member Joyce Jansa Corcoran. Mayor’s Address To begin his new term of office, Mayor Kaumo thanked council members for their support and dedication to the city and to his family for their understanding over the past four years. He quoted Ann Richards who said, “In politics your enemies can’t hurt you, but your friends will kill you.” He attributed council with being one of the hardest working councils Rock Springs has seen in many years and having brought great projects and great ideas to the city as well as replacing outdated policies and ordinances with updated ones based on constituents’ needs. He added, “Taxpayers should feel proud of the representation from these councilmen in each of our four wards. Communication has been the utmost importance to not only ourselves and our staff, but to our legislators and governor of the great state of Wyoming as well.
    [Show full text]
  • Sr-86-32 Equipment for Making Access Holes Through Arctic Sea
    Special Report 86-32 US Army Corps November 1986 of Engineers Cold Regions Research & Engineering Laboratory Equipment for making access holes through arctic sea ice Malcolm Mellor Prepared for NAVAL CIVIL ENGINEERING LABORATORY Approved for public release; distribution Is unlimited. Unclassified SEC URITY CLASSIF ICATIO N OF THIS PAGE Form Approve d REPORT DOCUMENTATION PAGE OM B No 0704·0 1BB ElIp Date Ju n ]O, 1986 , . REPORT SECUR ITY CLASSI FICATION 1b RESTR ICTIV E MARKINGS Unclassified 2 • . SEC URIT Y ClASSIFI(A nON A UTH ORITY 3 DISTR IBUTION I AVAILAB ILITY OF REPORT 2b. DECLASSIF ICATION / DOWNGRADING SCHED ULE Approved for public release; d istribution is unlimited. 4. PERFORMING ORGANIZATI ON REPOR T NUMBER(S ) S M ONITORING ORGAN IZA TI ON RE PORT NUMBER(S) Specia l Re po rt 86-32 6 • . NAM E OF PERFO RMING O RGAN IZATION 6b. OFFIC E SY MBOL 7. NAME OF MONITORING O RGANIZATION U.S. Army Cold Regions Researc h (If applicable) Naval Civil Enginee ring Laboratory and Engineering Laboratory C RREL 6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (C;ty, State, and ZIP Code) 72 Lyme Road Port Hueneme, Califo rnia 93043-5003 Hanove r, New Hampsh ire 03755- 1290 8• . NAME OF FUNDING / SPONSORI NG 8b. OFFIC E SY MBOL 9. PROCUREMENT INSTR UMENT IDE NTIFICA TION NUMBER ORGANIZATION (I f appl;cable) N68305 86WR60128 8e. ADDRES S (City, State, and ZIP Code) 10. SOURCE O F FUNDING NUMBERS PROGRAM PROJ ECT TASK WO RK UNIT ELEMENT NO. NO NO ACCESS IO N NO 11 .
    [Show full text]
  • Nuclear Weapons – the Third Era After Cold War, Science-Based Stockpile Stewardship Eras, Sandia Will Play Key Role in the Stockpile Modernization Age
    LIGHTING THE WAY — Luminarias, a New Mexico tradition dating back to the 16th century, light the dreds of people joined the holiday celebration on Dec. 7, which included the lighting of the city’s hol- plaza and the historic San Felipe de Neri church during the annual Old Town Stroll. This year, hun- iday tree and performances by local high school singing groups. (Photo by Randy Montoya) Sandia’s Quality Journey sense of urgency and seriousness A springs from the Strategic Quality Management System Team as they dis- cuss the need to deliver by Dec. 15 the framework for an integrated quality management system to strengthen the Vol. 64, No. 24 December 14, 2012 Labs’ current approach to quality. Read the story on pages 4-5. Managed by Sandia Corporation for the National Nuclear Security Administration Inside Nuclear weapons – the third era After Cold War, Science-Based Stockpile Stewardship eras, Sandia will play key role in the Stockpile Modernization age By Jerry McDowell, Deputy Labs Director and Executive Vice President for National Security Programs or more than 60 years, the United States has relied on its stockpile of nuclear weapons to provide the AIRBORNE PODS seek to trace nuclear bombs’ origins . 6 F ultimate strategic deterrent to adversaries who would do harm to the US and its closest allies. and . While the stockpile has played a profoundly impor- tant role in modern American history and US relation- Legacy hardware removed from ships with friend and foes alike, the story of its develop- California building. 3 ment and maintenance has not been written in one Page 10 Clouds and climate change .
    [Show full text]
  • Ellicott Creek, New York
    Intended for New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233 Document type Final Report Date June 2021 RESILIENT NEW YORK FLOOD MITIGATION INITIATIVE ELLICOTT CREEK, NEW YORK Prepared for: 1 ~ EWYORK Department of wvoRK Office of !:i1Al t tJI I ~ rar L_,. tir.-.=ul#..., Env1ro11mll!ntal oro.,-d~TI' General Services ' h-- Cor:i.serva'tion Project Team: GoMEZAND SULLIVAN HIGHLAND E GINEERS PLANNING IN NOVEMBER 2018, NEW YORK STATE GOVERNOR ANDREW CUOMO COMMITTED FUNDING TO UNDERTAKE ADVANCED MODELING TECHNIQUES AND FIELD ASSESSMENTS OF 48 FLOOD- PRONE STREAMS TO IDENTIFY PRIORITY PROJECTS AND ACTIONS TO REDUCE COMMUNITY FLOOD AND ICE JAM RISKS, WHILE IMPROVING HABITAT. THE OVERALL GOAL OF THE PROGRAM IS TO MAKE NEW YORK STATE MORE RESILIENT TO FUTURE FLOODING. This copyrighted material represents the proprietary work product of Gomez and Sullivan Engineers, D.P.C. This material was prepared for the specific purpose of securing a contract with the above client. No other use, reproduction, or distribution of this material or of the approaches it contains, is authorized without the prior express written consent of Gomez and Sullivan Engineers, D.P.C. However, the recipient may make as many copies of this document as deemed necessary for the sole purpose of evaluating this document for final selection and award. Gomez and Sullivan Engineers, D.P.C. © 2021 All Rights Reserved RESILIENT NEW YORK FLOOD MITIGATION INITIATIVE TABLE OF CONTENTS Introduction ....................................................................................................................................1
    [Show full text]
  • CDRP HRS Hydrological (Pdf)
    Hazard Resilience Strategies Hydrological Hazards (related to water and snow) Avalanches - Natural and Human Caused Flash Floods Ice Jam Floods Local Floods Rain Storm Floods Snow Melt Floods Glaciers Icebergs, Sea Ice and Ice floes, Lake Outbursts In order to avoid repetition, resiliency factors that only apply to human-caused hazards are in italics. Avalanche – Natural and Human Caused Ensure areas are forested or reforestation is in place in order to retain snow. Ensure community-based avalanche exercises have taken place in the community-at- large (e.g., table-top or full-scale functional exercises). Ensure most persons (residents and visitors) using mountains for snow related activities, outside ski resorts and privately monitored areas, frequently check with avalanche forecasting agencies such as the Canadian Avalanche Centre or contact experts to get avalanche risk reports based on depth of snow, precipitation and temperature and also incorporate Traditional Knowledge and practices related to avalanches. Ensure persons moving through mountainous areas by snowmobile, dog sled (qamutiq) or other form of transportation are prepared for and know how to protect themselves if their activities trigger an avalanche (e.g., carry a rescue beacon, a small shovel, avoid fresh accumulation and windblown snow which is less secure). Ensure plans and personnel are in place to implement appropriate strategies to reduce avalanche hazards by: triggering snow avalanches in a controlled environment; testing and promoting slope stability or similar strategy. Ensure plans are in place to identify areas with a high risk of experiencing an avalanche as off-bound areas for snowmobilers, skiers, and dog sleds (qamutiq) and there are the required personnel to mark and monitor use of this area.
    [Show full text]
  • Prof. Tomasz Kolerski
    Ice Jam Flood Mitigation Methods Tomasz Kolerski , PhD, DSc. Civil and Environmental Engineering, Gdańsk University of Technology Februray 2021 River Ice Research Engineering and Environmental Problems Ice formation can affect many fields of hydraulics, hydrology, civil engineering, ship design and ecology such as for example: • Ice jamming and flood protection • Ice damage on shoreline and onshore facilities • Ice load on bridge and bridge piers • Sediment transport problems • Design of Icebreakers and arctic ships • Habitat improvements projects and river restoration in cold regions River ice formation processes Calm water Skim ice Border ice Static cover Open water Suspended (fall-winter) frazil Turbulent Frazil ice Anchor ice flow Juxtaposed ice cover Pancake ice Freeze-up ice jams River ice formation processes Calm water Skim ice Border ice Static cover Open water Suspended (fall-winter) frazil Turbulent Frazil ice Anchor ice flow Juxtaposed ice cover Pancake ice Freeze-up ice jams River ice formation processes Calm water Skim ice Border ice Static cover Open water Suspended (fall-winter) frazil Turbulent Frazil ice Anchor ice flow Juxtaposed ice cover Pancake ice Freeze-up ice jams Breakup process Staedy state Thermal melt out Open water Ice jam floods Spring warm up Intake Formation and blockage Rapid change Forced release of in flow breakup breakup ice jams Navigation problems Shoreline erosin Ice jam formation Ice jam control methods • Non-structural – artificial breakup – Ice blasting – Excavators; dredging machines – Ice breakers
    [Show full text]
  • 2017 Spring 2
    Senior Issue 1 Table Of Contents Senior Bios 3 Staff, Contact Information 4 “A Moment of 2016: My Response” by Morgan Brant 5 “The Difficult Choice: A Short Story” by Anna Freidin 28 “From The Beginning” by Debbie Fultz 39 “The Note” by Mikayla Gray 47 “The Problems of Avoiding Racial Diversity and the Solution for Seneca County High Schools” by Sarah Heindel 57 “Post World War Two Plays” by Anika Maiberger 65 “The Symbolism of Birds: The Roles of Plumage, Behavior, Flight, and Song” by Sarah Miller 74 “Grace” by Rachel Redolf 83 “The Adventures of Willow and Gerald” by Hannah Taulbee 92 Morpheus Literary Magazine Senior Bios Morgan Brant Morgan is a senior political science and english writing double major. She will be graduating May 2017 with her bachelors of science and attend The Ohio State Moritz College of Law in the fall. She is also in Student Senate and Model United Nations of the Far West through Heidelberg University. Inspired by her two passions, political science and writing, Morgan chose to create a poetry collec- tion based on the news-filled year of 2016. Each poem is inspired by a newspaper article. There is a wide variety of topics within the collection to represent the varied world we live in, something Morgan wishes to bring to her audience’s attention. Anna Freidin I am an English Literature and Writing minor. I grew up in West Virginia and have traveled abroad since I was an infant. After graduation, I plan on going to graduate school or/and getting a job in the UK or Ireland.
    [Show full text]
  • Mathematical Modeling of Ice Dynamics As a Decision Support Tool in River Engineering
    Article Mathematical Modeling of Ice Dynamics as a Decision Support Tool in River Engineering Tomasz Kolerski Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland; [email protected]; Tel.: +48-583-442-930 Received: 16 August 2018; Accepted: 13 September 2018; Published: 13 September 2018 Abstract: The prediction of winter flooding is a complicated task since it is affected by many meteorological and hydraulic factors. Typically, information on river ice conditions is based on historical observations, which are usually incomplete. Recently, data have been supplemented by information extracted from satellite images. All the above mentioned factors provide a good background of the characteristics of ice processes, but are not sufficient for a detailed analysis of river ice, which is highly dynamic and has a local extent. The main aim of this paper is to show the possibility of the prediction of ice jams in a river using a mathematical model. The case of the Odra River was used here. Within the Lower and Middle Odra River, the most significant flood risk, in winter conditions, is posed by ice jams created when movable ice is stopped by existing obstacles such as shallow areas in the riverbed, the narrowing of the riverbed, and other obstacles caused as a result of sudden changes of the river current, backwater from sea waters, and north winds, which contribute to the creation of ice jams. This in turn causes the damming of water and flooding of adjacent areas. The DynaRICE model was implemented at two locations along the Odra River, previously selected as ice-prone areas.
    [Show full text]