A Petrologic and Isotopic Study of Winonaites: Evidence for Early Partial Melting, Brecciation, and Metamorphism

Total Page:16

File Type:pdf, Size:1020Kb

A Petrologic and Isotopic Study of Winonaites: Evidence for Early Partial Melting, Brecciation, and Metamorphism Geochimica et Cosmochimica Acta, Vol. 62, No. 14, pp. 2535–2553, 1998 Copyright © 1998 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/98 $19.00 1 .00 PII S0016-7037(98)00166-5 A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism 1, 2 1,† 3 3 G. K. BENEDIX, *T.J.MCCOY, K. KEIL, D. D. BOGARD, and D. H. GARRISON 1Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA 2Dept. of Mineral Sciences, MRC NHB-119, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, USA 3Code SN2, NASA/Johnson Space Center, Houston, Texas 77058, USA (Received April 22, 1997; accepted in revised form April 16, 1998) Abstract—We have conducted detailed petrologic, chemical, and isotopic studies of winonaites to ascertain the genesis of this group of meteorites. Winonaites have reduced mineral compositions and mineralogy, and oxygen isotopic compositions distinct from primitive achondrite groups other than silicate inclusions in IAB and IIICD irons. However, winonaites differ from IAB and IIICD irons in that they lack the metallic matrices of the latter and consist mostly of silicates. On the basis of these criteria, Winona, Mount Morris (Wisconsin), Tierra Blanca, Pontlyfni, Y-74025, Y-75300, Y-8005, and QUE 94535 are winonaites and Y-75305 and Y-75261 may be winonaites. Winonaites are fine- to medium-grained, mostly equigranular rocks. Pontlyfni and Mount Morris (Wisconsin) contain what appear to be relict chondrules. Several winonaites contain mm-sized areas that differ substantially in grain size and/or silicate mineralogy from the surrounding matrix. Fe,Ni-FeS veins are common in many winonaites. Mineral compositions are intermediate between E and H chondrites, and reduced sulfides are observed in low-FeO winonaites. Bulk major element compositions are roughly chondritic, although REE elements are fractionated. The 39Ar-40Ar ages of three winonaites range from $4.40 Ga (Mount Morris, Wisconsin) to 4.54 Ga (Pontlyfni). Cosmic-ray exposure ages are ;20–80 Ma. Trapped noble gases in these winonaites resemble those in enstatite chondrites. We suggest that the winonaites formed from a chondritic precursor material unlike that of known chondrites in mineral and oxygen isotopic compositions, and this material may have been heterogeneous in composition. Extensive heating caused metamorphism and partial melting of both Fe,Ni-FeS and silicate material. Impact brecciation during cooling mixed lithologies with different thermal histories, and subsequent metamorphism produced recrys- tallization, grain growth, and reduction of mafic silicates. The 39Ar-40Ar ages indicate that cooling may have been more rapid than observed in IAB irons, although later resetting may have occurred. Copyright © 1998 Elsevier Science Ltd 1. INTRODUCTION winonaites (e.g., Graham et al., 1977; Prinz et al., 1980; Kimura et al., 1992). Detailed studies of asteroidal meteorites suggest that some In this paper, we concentrate on the petrologic, chemical, and asteroids are primitive and never melted, whereas others melted isotopic features of the winonaites. Previous investigators have and differentiated into cores, mantles, and crusts (e.g., 4 Vesta; studied only individual winonaites (e.g., Tierra Blanca; King et Gaffey et al., 1993). However, some meteorites exhibit features al., 1981) or a subset of the winonaites (e.g., Graham et al., intermediate between primitive chondrites and the more 1977; Kimura et al., 1992). In contrast, we examined all mem- evolved achondrites and irons. These rocks experienced incom- bers of the winonaite group. This is also the first study that plete partial melting, and their properties offer insights into and concentrates on the textural features, whereas previous authors constraints on the geologic processes which occurred on small have focused primarily on mineral and bulk elemental compo- bodies in the early solar system. Several groups of meteorites sitions. It should be noted that silicate inclusions in IAB irons which experienced incomplete partial melting have been rec- resemble the winonaites compositionally, mineralogically, and ognized, and these are collectively labeled “primitive achon- texturally. We discuss these meteorites and the relationship drites” (Prinz et al., 1983). These rocks are characterized by between winonaites and IAB irons in another paper (Benedix et chondritic bulk elemental compositions and chondritic mineral al., 1998). assemblages and by textures that vary from metamorphic to Here, we discuss the criteria for classification of winonaites those suggesting partial melting. These groups include the and list the members of this group. We discuss the properties of acapulcoites and lodranites (Nagahara, 1992; Takeda et al., the group, with special emphasis on textural features and 39Ar- 1994; Mittlefehldt et al., 1996; McCoy et al., 1996b, 1997a, b), 40Ar ages. We also discuss implications for the nature of the silicate inclusions in IAB irons (e.g., Bunch et al., 1970; Bild, precursor chondritic material and the heating, partial melting, 1977; Choi et al., 1995) and IIICD irons (McCoy et al., 1993), metamorphism, and brecciation experienced by these rocks. brachinites (Nehru et al., 1996; Swindle et al., 1998), and 2. CLASSIFICATION *Present address: NASA/Ames Research Center, MS 245-3, Mof- fett Field, California 94035-1000, USA ([email protected]). Three criteria are used to classify the winonaites: (1) The †Also associated with the Hawaii Center for Volcanology. highly reduced mineralogy and mineral compositions, (2) the 2535 2536 G. K. Benedix et al. Fig. 1. Oxygen isotopic compositions for a variety of primitive achondrites (Clayton and Mayeda, 1996). Winonaites can be clearly distinguished from acapulcoites, lodranites, brachinites, and aubrites, but overlap with silicate inclusions in IAB and IIICD irons. Shown are the winonaites Winona, Mount Morris (Wisconsin), Pontlyfni, Tierra Blanca, QUE 94535, Y-74025, Y-75300, and Y-75261. oxygen isotopic compositions, and (3) the abundance and dis- compositions of the winonaites are identical to those of silicate tribution of metal and troilite. Previous workers (e.g., Mason inclusions in IAB and IIICD irons (Fig. 1). and Jarosewich, 1967; Graham et al., 1977; Prinz et al., 1980; Members of the winonaite group which satisfy both the Bild, 1977; Kimura et al., 1992) have demonstrated that the oxygen isotopic composition and mineralogical criteria include olivines of the winonaites are Mg-rich (Fa,5). In addition, the Winona, Pontlyfni, Tierra Blanca, Mount Morris (Wisconsin), winonaites contain some characteristic accessory minerals in- Yamato 74025, Yamato 75300, Yamato 75305, Yamato 8005, cluding alabandite, daubree´lite, schreibersite, and chromite. and QUE 94535 (Graham et al., 1977; Prinz et al., 1980; King Most of the winonaites are fine-grained and have granulitic et al., 1981; Kimura et al., 1992; Clayton and Mayeda, 1996; textures. However, these criteria alone cannot distinguish Mason, 1996; Yugami et al., 1996; R. N. Clayton, pers. com- winonaites from all other primitive achondrites such as the mun., 1996). Yamato 75261 has tentatively been classified as a acapulcoites, some of which are also highly reduced (e.g., ALH winonaite based on oxygen isotopic composition (Clayton and A81187/84190, Fa4.2) and have fine-grained, granulitic textures Mayeda, 1996). We have included literature data in addition to (McCoy et al., 1996). our own results on these meteorites where available. A more useful criterion of classification is the oxygen iso- topic composition (Clayton and Mayeda, 1996). These data 3. SAMPLES AND TECHNIQUES establish the winonaites as a group and allow discrimination We have concentrated our study on those meteorites (Table 1) for from acapulcoites and lodranites as well as some other groups which previously published mineralogical descriptions and oxygen of meteorites (e.g., ureilites, brachinites). The oxygen isotopic isotopic compositions confirm classification as winonaites. Where pos- Geologic History of Winonaites 2537 sible, more than one section of a meteorite was examined to determine for descriptive purposes, allowing us to thoroughly describe the the extent of heterogeneity within and between the individual meteor- range of textural features found in the winonaites. ites. All polished thin sections were examined with an optical micro- We had the opportunity to briefly examine thin sections of scope in transmitted and reflected light. Grain sizes were determined by measuring an average of twenty-five randomly selected grains in the Y-75261 (,51-1 and ,51-2) and Y-75305 in the optical micro- more abundant fine-grained regions (matrix) of each section. While scope at the National Institute of Polar Research. We find that averages calculated from a small number of grains carry large standard Y-75305 is among the coarsest-grained winonaites, and we deviations, they sufficiently illustrate the gross differences in grain grouped it with Tierra Blanca and Y-74025. On the other hand, sizes between individual winonaites (Fig. 2). Modal analyses of all thin sections were made in reflected light using a 40x objective. Olivine, Y-75261 is an impact-melt breccia, with fine-grained clasts up orthopyroxene, and clinopyroxene were not distinguished but were to 3 mm in diameter consisting of silicates and finely distrib- collectively determined
Recommended publications
  • Australian Aborigines and Meteorites
    Records of the Western Australian Museum 18: 93-101 (1996). Australian Aborigines and meteorites A.W.R. Bevan! and P. Bindon2 1Department of Earth and Planetary Sciences, 2 Department of Anthropology, Western Australian Museum, Francis Street, Perth, Western Australia 6000 Abstract - Numerous mythological references to meteoritic events by Aboriginal people in Australia contrast with the scant physical evidence of their interaction with meteoritic materials. Possible reasons for this are the unsuitability of some meteorites for tool making and the apparent inability of early Aborigines to work metallic materials. However, there is a strong possibility that Aborigines witnessed one or more of the several recent « 5000 yrs BP) meteorite impact events in Australia. Evidence for Aboriginal use of meteorites and the recognition of meteoritic events is critically evaluated. INTRODUCTION Australia, although for climatic and physiographic The ceremonial and practical significance of reasons they are rarely found in tropical Australia. Australian tektites (australites) in Aboriginal life is The history of the recovery of meteorites in extensively documented (Baker 1957 and Australia has been reviewed by Bevan (1992). references therein; Edwards 1966). However, Within the continent there are two significant areas despite abundant evidence throughout the world for the recovery of meteorites: the Nullarbor that many other ancient civilizations recognised, Region, and the area around the Menindee Lakes utilized and even revered meteorites (particularly of western New South Wales. These accumulations meteoritic iron) (e.g., see Buchwald 1975 and have resulted from prolonged aridity that has references therein), there is very little physical or allowed the preservation of meteorites for documentary evidence of Aboriginal acknowledge­ thousands of years after their fall, and the large ment or use of meteoritic materials.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • CHAPTER 1 Introduction
    Chemical analysis of organic molecules in carbonaceous meteorites Torrao Pinto Martins, Zita Carla Citation Torrao Pinto Martins, Z. C. (2007, January 24). Chemical analysis of organic molecules in carbonaceous meteorites. Retrieved from https://hdl.handle.net/1887/9450 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/9450 Note: To cite this publication please use the final published version (if applicable). ______________________________________________________ CHAPTER 1 ______________________________________________________ Introduction 1.1 Heavenly stones-from myth to science Ancient chronicles, from the Egyptian, Chinese, Greek, Roman and Sumerian civilizations documented the fall1 of meteorites, with Sumerian texts from around the end of the third millennium B. C. describing possibly one of the earliest words for meteoritic iron (Fig. 1.1 Left). Egyptian hieroglyphs meaning “heavenly iron” (Fig. 1.1 Right) found in pyramids together with the use of meteoritic iron in jewellery and artefacts show the importance of meteorites in early Egypt. Meteorites were worshiped by ancient Greeks and Romans, who struck coins to celebrate their fall, with the cult to worship meteorites prevailing for many centuries. For example, some American Indian tribes paid tribute to large iron meteorites, and even in modern days the Black Stone of the Ka´bah in Mecca is worshiped and regarded by Muslims as “an object from heaven”. The oldest preserved meteorite that was observed to fall (19th May 861) was found recently (October 1979) in a Shinto temple in Nogata, Japan. It weighted 472 g and it was stored in a wooden box.
    [Show full text]
  • Analysis of Iron Meteorites by Instrumental Neutron Activation with a Slowpoke Reactor
    ANALYSIS OF IRON METEORITES BY INSTRUMENTAL NEUTRON ACTIVATION WITH A SLOWPOKE REACTOR J. Holzbecher and D^ E^ Ryan SLOWPOKE Facility, Dalhousie University Halifax, N. S., Canada, B3H 4J1 R. R. Brooks Department of Chemistry and Biochemistry Massey University Palmerston North, New Zealand In order to devise new methods of chemical classification of iron meteorites - as a refinement of Professor John Wasson's original work [1] - a comprehensive analysis programme has been initiated. The programme involves neutron activation analysis at Dalhousie University; inductively coupled plasma-mass spectrometry (ICP-MS) at the Geological Survey of Canada, Ottawa; mineralogical studies at William Rainey Harper College, Palatine, IL, USA; ICP, graphite furnace, and hydride generatioii atomic absorption spectrometry at Massey University. Analysis of 6 specimens of each of the 14 classes recognized by Professor Wasson are contemplated. This abstract summarizes the experiences in the direct neutron activation analysis of nearly 100 iron meteorites for rhodium, iridium, osmium and gold. At the concentration levels encountered in iron meteorites Rh, Os, Ir, Au, in addition to As and Co, can be readily quantified by direct, instrumental neutron activation analysis thus avoiding more commonly used time - consuming radiochemical separations. Two irradiation, decay and counting time schemes were used: 1) t. =5 min, t, = 1 min, t = 5 min , Samples were irradiated in a Cd-shielded site and counted with an LEP detector; the epithermal irradiation decreases the production of mCo (main activity) much more than that of ^tfi. The LEP detector is advantageous because of the low energies of both nuclides, i.e., 51.5 keV for Rh and 58.6 keV for Co respectively.
    [Show full text]
  • List of Meteorites in the Collections of the Central Siberian Geological Museum at the V.S.Sobolev Institute of Geology and Mineralogy SB RAS (SIGM)
    List of meteorites in the collections of the Central Siberian Geological Museum at the V.S.Sobolev Institute of Geology and Mineralogy SB RAS (SIGM). Year Mass in Pieces in Main mass in Indication Meteorite Country Type found SIGM SIGM SIGM in MB Novosibirsk Russia 1978 H5/6 9.628 kg 2 yes 59 Markovka Russia 1967 H4 7.9584 kg 5 yes 48 Ochansk Russia 1887 H4 407 g 1 Kunashak Russia 1949 L6 268 g 1 6 Saratov Russia 1918 L4 183.4 g 1 Elenovka Ukraine 1951 L5 148.7 g 2 6 Zhovtnevyi Ukraine 1938 H6 88.5 g 1 Nikolskoe Russia 1954 L4 39.5 g 1 6 Krymka Ukraine 1946 LL3.2 11.1 g 1 Yurtuk Ukraine 1936 Howardite 5.3 g 1 Pervomaisky Russia 1933 L6 595 g 1 Ivanovka Russia 1983 H5 904 g 1 63 Tsarev Russia 1968 H5 1.91972 kg 3 59 Norton County USA 1948 Aubrite 144 g 1 Stannern Cz. Republic 1808 18.1 g 1 Eucrite-mmict Poland 1868 H5 63.02 g 1 Pultusk Chelyabinsk Russia 2013 LL5 1.55083 kg 28 102 Yaratkulova Russia 2016 H5 25.71 g 1 105 Tobychan Russia 1971 Iron, IIE 41.4998 kg 2 yes 51 Elga Russia 1959 Iron, IIE 10.5 kg 1 16 Sikhote-Alin Russia 1947 Iron, IIAB 37.1626 kg 12 Chebankol Russia 1938 Iron, IAB-sHL 87.1 g 1 Chinga (Chinge) Russia 1912 Iron, ungrouped 5.902 kg 3 13 Kaalijarv (Kaali) Estonia 1937 2.88 g a lot of Iron, IAB-MG Boguslavka Russia 1916 Iron, IIAB 55.57 g 1 Bilibino Russia 1981 Iron, IIAB 570.94 g 1 60 Anyujskij Russia 1981 Iron, IIAB 435.4 g 1 60 Sychevka Russia 1988 Iron, IIIAB 1.581 kg 1 70 Darjinskoe Kazakhstan 1984 Iron, IIC 6 kg 1 yes 78 Maslyanino Russia 1992 Iron, IAB complex 58 kg 2 yes 78 Onello Russia 1998 Iron, ungrouped
    [Show full text]
  • 3D Laser Imaging and Modeling of Iron Meteorites and Tektites
    3D laser imaging and modeling of iron meteorites and tektites by Christopher A. Fry A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Earth Science Carleton University Ottawa, Ontario ©2013, Christopher Fry ii Abstract 3D laser imaging is a non-destructive method devised to calculate bulk density by creating volumetrically accurate computer models of hand samples. The focus of this research was to streamline the imaging process and to mitigate any potential errors. 3D laser imaging captured with great detail (30 voxel/mm2) surficial features of the samples, such as regmaglypts, pits and cut faces. Densities from 41 iron meteorites and 9 splash-form Australasian tektites are reported here. The laser-derived densities of iron meteorites range from 6.98 to 7.93 g/cm3. Several suites of meteorites were studied and are somewhat heterogeneous based on an average 2.7% variation in inter-fragment density. Density decreases with terrestrial age due to weathering. The tektites have an average laser-derived density of 2.41+0.11g/cm3. For comparison purposes, the Archimedean bead method was also used to determine density. This method was more effective for tektites than for iron meteorites. iii Acknowledgements A M.Sc. thesis is a large undertaking that cannot be completed alone. There are several individuals who contributed significantly to this project. I thank Dr. Claire Samson, my supervisor, without whom this thesis would not have been possible. Her guidance and encouragement is largely the reason that this project was completed.
    [Show full text]
  • Elements M Meteoritic Minerals
    SMITHSONIAN CONTRIBUTIONS TO THE EARTH SCIENCES NUMBER 3 Brian Mason Minor and Trace and A. L. Graham pi t Elements m Meteoritic Minerals SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1970 ABSTRACT Mason, Brian and A. L. Graham. Minor and Trace Elements in Meteoritic Minerals. Smithsonian Contributions to the Earth Sciences, 3:1—17. 1970.—Nickel-iron, troilite, olivine, pyroxenes, plagioclase, chromite, and phosphate minerals (chlor- apatite and/or merrillite) have been separated from a number of meteorites (Modoc, St. Severin, Winona, Haraiya, Marjalahti, Springwater, Johnstown, Mt. Egerton, Soroti) and analyzed for minor and trace elements with the spark-source mass spectrometer. The elements Ni, Go, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt, and Au are concentrated in nickel-iron: Se and Ag in troilite; Th, U, and the lanthanides in the phosphate minerals and in diopside; Eu, Sr, Ba, Rb, and Gs in plagioclase. Molybdenum and tellurium are concentrated in nickel-iron and troilite. The elements Ti, Sc, V, Cu, Zn, Mn, and Ga are distributed over several coexisting minerals. Official publication date is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1970 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 30 cents (paper cover) Brian Mason Minor and Trace and A. L. Graham Elements in Meteoritic Minerals Introduction Vilcsek and Wanke (1965) and Honda and Shima (1967) ; however, study of their results indicates that During the past decade a very large amount of data this selective solution is seldom completely quantitative.
    [Show full text]
  • Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM)
    Table 1. The list of meteorites in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences (FMM). Leninskiy prospect 18 korpus 2, Moscow, Russia, 119071. Pieces Year Mass in Indication Meteorite Country Type in found FMM in MB FMM Seymchan Russia 1967 Pallasite, PMG 500 kg 9 43 Kunya-Urgench Turkmenistan 1998 H5 402 g 2 83 Sikhote-Alin Russia 1947 Iron, IIAB 1370 g 2 Sayh Al Uhaymir 067 Oman 2000 L5-6 S1-2,W2 63 g 1 85 Ozernoe Russia 1983 L6 75 g 1 66 Gujba Nigeria 1984 Cba 2..8 g 1 85 Dar al Gani 400 Libya 1998 Lunar (anorth) 0.37 g 1 82 Dhofar 935 Oman 2002 H5S3W3 96 g 1 88 Dhofar 007 Oman 1999 Eucrite-cm 31.5 g 1 84 Muonionalusta Sweden 1906 Iron, IVA 561 g 3 Omolon Russia 1967 Pallasite, PMG 1,2 g 1 72 Peekskill USA 1992 H6 1,1 g 1 75 Gibeon Namibia 1836 Iron, IVA 120 g 2 36 Potter USA 1941 L6 103.8g 1 Jiddat Al Harrasis 020 Oman 2000 L6 598 gr 2 85 Canyon Diablo USA 1891 Iron, IAB-MG 329 gr 1 33 Gold Basin USA 1995 LA 101 g 1 82 Campo del Cielo Argentina 1576 Iron, IAB-MG 2550 g 4 36 Dronino Russia 2000 Iron, ungrouped 22 g 1 88 Morasko Poland 1914 Iron, IAB-MG 164 g 1 Jiddat al Harasis 055 Oman 2004 L4-5 132 g 1 88 Tamdakht Morocco 2008 H5 18 gr 1 Holbrook USA 1912 L/LL5 2,9g 1 El Hammami Mauritani 1997 H5 19,8g 1 82 Gao-Guenie Burkina Faso 1960 H5 18.7 g 1 83 Sulagiri India 2008 LL6 2.9g 1 96 Gebel Kamil Egypt 2009 Iron ungrouped 95 g 2 98 Uruacu Brazil 1992 Iron, IAB-MG 330g 1 86 NWA 859 (Taza) NWA 2001 Iron ungrouped 18,9g 1 86 Dhofar 224 Oman 2001 H4 33g 1 86 Kharabali Russia 2001 H5 85g 2 102 Chelyabinsk
    [Show full text]
  • Meteorite Collections: Catalog
    Meteorite Collections: Catalog Institute of Meteoritics Department of Earth and Planetary Sciences University of New Mexico July 25, 2011 Institute of Meteoritics Meteorite Collection The IOM meteorite collection includes samples from approximately 600 different meteorites, representative of most meteorite types. The last printed copy of the collection's Catalog was published in 1990. We will no longer publish a printed catalog, but instead have produced this web-based Online Catalog, which presents the current catalog in searchable and downloadable forms. The database will be updated periodically. The date on the front page of this version of the catalog is the date that it was downloaded from the worldwide web. The catalog website is: Although we have made every effort to avoid inaccuracies, the database may still contain errors. Please contact the collection's Curator, Dr. Rhian Jones, ([email protected]) if you have any questions or comments. Cover photos: Top left: Thin section photomicrograph of the martian shergottite, Zagami (crossed nicols). Brightly colored crystals are pyroxene; black material is maskelynite (a form of plagioclase feldspar that has been rendered amorphous by high shock pressures). Photo is 1.5 mm across. (Photo by R. Jones.) Top right: The Pasamonte, New Mexico, eucrite (basalt). This individual stone is covered with shiny black fusion crust that formed as the stone fell through the earth's atmosphere. Photo is 8 cm across. (Photo by K. Nicols.) Bottom left: The Dora, New Mexico, pallasite. Orange crystals of olivine are set in a matrix of iron, nickel metal. Photo is 10 cm across. (Photo by K.
    [Show full text]
  • Superconductivity Found in Meteorites
    Superconductivity found in meteorites James Wamplera,b,1, Mark Thiemensc,1, Shaobo Chengd, Yimei Zhud, and Ivan K. Schullera,b,1 aDepartment of Physics, University of California San Diego, La Jolla, CA 92093; bCenter for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093; cDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093; and dCondensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 Contributed by Mark Thiemens, January 16, 2020 (sent for review October 18, 2019; reviewed by Zachary Fisk, Laura H. Greene, and Munir Humayun) Meteorites can contain a wide range of material phases due to the possible minute phases within inhomogeneous materials (12). extreme environments found in space and are ideal candidates to MFMMS has been used to search for novel superconductivity in search for natural superconductivity. However, meteorites are several types of inhomogeneous samples, such as phase spread chemically inhomogeneous, and superconducting phases in them alloys (13), bulk samples (14), and even natural samples, in- could potentially be minute, rendering detection of these phases cluding meteorites (15, 16). However, previous searches for super- difficult. To alleviate this difficulty, we have studied meteorite samples conductivity in meteorites have not identified any superconducting with the ultrasensitive magnetic field modulated microwave spectros- compounds. copy (MFMMS) technique [J. G. Ramírez, A. C. Basaran, J. de la Venta, J. Pereiro, I. K. Schuller, Rep. Prog. Phys. 77, 093902 (2014)]. Here, we Results report the identification of superconducting phases in two meteorites, MFMMS measurements were made on a powder sample Mundrabilla, a group IAB iron meteorite [R.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 1
    CHAPTER SEVEN Classzfication Numerous schemes for classification have been pro­ Also, the ratio between the number of finds and the posed since Partsch (1843) and Shepard (1846) presented num ber of falls has been calculated. This ratio mainly serves the first serious attempts, at that time on the basis of only to indicate how easily meteorites will be recognized by about 65 stones and 25 irons. The system which has layman: the higher the ratio, the easier the meteorite type basically proved most efficient was suggested by Rose will be distinguished from terrestrial rocks and reported. To (1863). It has been revised and improved by Tschermak a minor degree the ratio also reflects the resistance of (1872a), Brezina (1896), Prior (1920), Yavnel (1968b) and meteorites to terrestrial weathering: the higher the ratio, Mason (1971). Basically different classifications have also the more stable the meteorite type. been proposed. Daubree (1867b) and Meunier (1884; Within the iron division, it was deemed necessary to 1893a) thus introduced a system which won wide support exclude certain meteorites from those which were class­ in France, Italy, Spain and most of the Latin-American ified. Those excluded are insufficiently known, be it due to countries. It has, however, been rightly criticized as rich in inaccessibility, state of corrosion or for other reasons; see inconsistencies and superficial analogies (see e.g. , Cohen page 37 and Appendix 2. By comparison, it is surprising to 1905: 19); it has nevertheless persisted to our day as the observe how homogeneous the chondritic classes apparently basis for classification of some of the less important are, and how neatly all chondrites apparently can be collections.
    [Show full text]
  • Silicate-Bearing Iron Meteorites and Their Implications for the Evolution Of
    Chemie der Erde 74 (2014) 3–48 Contents lists available at ScienceDirect Chemie der Erde j ournal homepage: www.elsevier.de/chemer Invited Review Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies ∗ Alex Ruzicka Cascadia Meteorite Laboratory, Portland State University, 17 Cramer Hall, 1721 SW Broadway, Portland, OR 97207-0751, United States a r t a b i c s t l r e i n f o a c t Article history: Silicate-bearing iron meteorites differ from other iron meteorites in containing variable amounts of sili- Received 17 July 2013 cates, ranging from minor to stony-iron proportions (∼50%). These irons provide important constraints Accepted 15 October 2013 on the evolution of planetesimals and asteroids, especially with regard to the nature of metal–silicate Editorial handling - Prof. Dr. K. Heide separation and mixing. I present a review and synthesis of available data, including a compilation and interpretation of host metal trace-element compositions, oxygen-isotope compositions, textures, miner- Keywords: alogy, phase chemistries, and bulk compositions of silicate portions, ages of silicate and metal portions, Asteroid differentiation and thermal histories. Case studies for the petrogeneses of igneous silicate lithologies from different Iron meteorites groups are provided. Silicate-bearing irons were formed on multiple parent bodies under different con- Silicate inclusions Collisions ditions. The IAB/IIICD irons have silicates that are mainly chondritic in composition, but include some igneous lithologies, and were derived from a volatile-rich asteroid that underwent small amounts of silicate partial melting but larger amounts of metallic melting. A large proportion of IIE irons contain fractionated alkali-silica-rich inclusions formed as partial melts of chondrite, although other IIE irons have silicates of chondritic composition.
    [Show full text]