Glomerular Endothelial Cells Impairs Activation of Protein C in Human

Total Page:16

File Type:pdf, Size:1020Kb

Glomerular Endothelial Cells Impairs Activation of Protein C in Human TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells This information is current as of September 25, 2021. Sarah E. Sartain, Nancy A. Turner and Joel L. Moake J Immunol published online 16 December 2015 http://www.jimmunol.org/content/early/2015/12/15/jimmun ol.1500960 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/12/15/jimmunol.150096 Material 0.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published December 16, 2015, doi:10.4049/jimmunol.1500960 The Journal of Immunology TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells Sarah E. Sartain,*,† Nancy A. Turner,‡ and Joel L. Moake‡ Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy with severe renal injury secondary to an overactive alternative complement pathway (AP). aHUS episodes are often initiated or recur during inflammation. We investigated gene ex- pression of the surface complement regulatory proteins (CD55, CD59, CD46, and CD141 [thrombomodulin]) and AP components in human glomerular microvascular endothelial cells (GMVECs) and in HUVECs, a frequently used investigational model of endo- thelial cells. Surface complement regulatory proteins were also quantified by flow cytometry. All experiments were done with and without exposure to IL-1b or TNF. Without cytokine stimulation, we found that GMVECs had greater AP activation than did Downloaded from HUVECs. With TNF stimulation, THBD gene expression and corresponding CD141 surface presence in HUVECs and GMVECs were reduced, and gene expression of complement components C3 (C3) and factor B (CFB) was increased. Consequently, AP activation, measured by Ba production, was increased, and conversion of protein C (PC) to activated PC by CD141-bound thrombin was decreased, in GMVECs and HUVECs exposed to TNF. IL-1b had similar, albeit lesser, effects on HUVEC gene expression, and it only slightly affected GMVEC gene expression. To our knowledge, this is the first detailed study of the expression/display of AP components and surface regulatory proteins in GMVECs with and without cytokine stimulation. In http://www.jimmunol.org/ aHUS patients with an underlying overactive AP, additional stimulation of the AP and inhibition of activated PC–mediated anticoagulation in GMVECs by the inflammatory cytokine TNF are likely to provoke episodes of renal failure. The Journal of Immunology, 2016, 196: 000–000. typical hemolytic uremic syndrome (aHUS) is a thrombotic convertase of the AP) (17), releasing the activation product Ba. The microangiopathy presenting with microangiopathic hemo- C3 convertase is stabilized by factor P (FP; properdin) (18–20). The A lytic anemia, thrombocytopenia, and renal failure secondary Bb in C3bBb cleaves C3 to generate additional C3b; as the ratio of to formation of platelet-fibrin clots in the glomerular microvasculature C3btoBbincreases,C3bBbC3b(theC5convertase)formsand (1–3). aHUS is associated with heterozygous mutations in compo- cleaves C5 to C5b, releasing the soluble C5a fragment (17, 21). by guest on September 25, 2021 nents of the alternative complement pathway (AP) that result in ex- The AP is regulated by both soluble and cell surface–bound cessive AP activation. Defects include loss-of-function mutations in proteins. FH and FI are soluble inhibitory regulators of the AP: FH the genes for factor H (FH) (4, 5), factor I (FI) (6, 7), CD46 (8, 9), suppresses the formation or persistence of C3bBb (22, 23), and FI, and CD141 (thrombomodulin) (10), or gain of function mutations in along with FH, promotes the cleavage/inactivation of C3b (24). C3 (11) or factor B (FB) (12). CD46 and CD141 are cell surface membrane regulatory proteins The AP is initiated when C3b is cleaved from C3 and attaches to an that have functions supplementary to FH, that is, all three act as activating surface, releasing a soluble C3a fragment in the process (13, cofactors for FI-mediated proteolysis of C3b (10, 25). CD141 is 14). FB then combines with C3b to form C3bB (15, 16), and factor D found almost exclusively on endothelial cell (EC) surfaces (26) (FD) cleaves FB in this complex to form C3bBb (the active C3 and has AP regulatory function analogous to complement receptor 1 (CD35), found exclusively on human erythrocytes, polymorpho- nuclear leukocytes, monocytes, and B lymphocytes (27, 28). CD141 *Section of Hematology–Oncology, Department of Pediatrics, Texas Children’s Can- cer and Hematology Centers, Houston, TX 77030; †Baylor College of Medicine, also functions as a natural anticoagulant by binding thrombin and Houston, TX 77030; and ‡Department of Bioengineering, Rice University, Houston, diverting thrombin substrate specificity to the activation of protein C TX 77005 (PC). Activated PC, with bound protein S, cleaves and inactivates Received for publication April 24, 2015. Accepted for publication November 13, coagulation factors Va and VIIIa (29) (Fig. 1, Table I). 2015. CD55 and CD59 are two other negative complement surface This work was supported by grants from the Hemostasis and Thrombosis Research regulatory proteins. CD55 accelerates the decay of C3 convertase Society (sponsored by Baxalta US, Inc.), the Mary R. Gibson Foundation, and the Mabel and Everett Hinkson Memorial Fund. (30). CD59 prevents accumulation of additional C9 molecules into Address correspondence and reprint requests to Dr. Sarah E. Sartain, Baylor College the C5b-(9)(1) membrane attack complex (31) (Table I). of Medicine/Texas Children’s Hospital, 6701 Fannin Street, Suite 1580, Houston, TX Uncleaved ultra-large von Willebrand factor (ULVWF) multimeric 77004. E-mail address: [email protected] strings secreted by, and anchored to, stimulated HUVECs serve as The online version of this article contains supplemental material. activating surfaces for C3b binding and AP assembly and activation Abbreviations used in this article: ADAMTS-13, a disintegrin and metalloprotease (32–34). We have previously demonstrated that C3 (as C3b), FB (as with thrombospondin domains type 13; aHUS, atypical hemolytic uremic syndrome; AP, alternative complement pathway; DCT, change in cycle threshold; EC, endothe- Bb), FD, FP, and C5 (as C5b), as well as smaller quantities of FH and lial cell; FB, factor B; FD, factor D; FH, factor H; FI, factor I; FP, factor P; GMVEC, FI, attach to HUVEC-secreted and anchored ULVWF strings. In glomerular microvascular endothelial cell; PC, protein C; ULVWF, ultra-large von contrast, C4 (as C4b) does not attach to the ULVWF strings, indi- Willebrand factor; VWF, von Willebrand factor. cating that the classical and lectin pathways are not activated. The Copyright Ó 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$30.00 attachment to EC-secreted/anchored ULVWF strings of C3b, Bb, and www.jimmunol.org/cgi/doi/10.4049/jimmunol.1500960 2 TNF AND GLOMERULAR ENDOTHELIAL CELLS C5b occurs in quantitative and functional patterns consistent with the projection lens (Nikon, Garden City, NY), SensiCam QE CCD camera assembly of AP components into active complexes of C3 convertase (Cooke, Romulus, MI), motorized stage and dual filter wheels (Prior) with (C3bBb) and C5 convertase (C3bBbC3b) (34). single band excitation and emission filters for FITC/tetramethylrhodamine isothiocyanate/Cy5/DAPI (Chroma, Rockingham, VT). Image areas acquired In aHUS, the kidneys are affected more severely than other at original magnification 360 are 78 3 58 mm, and at 3100 are 41 3 30 mm. organs. The vulnerability of the kidney to AP-mediated injury in aHUS led us to investigate complement surface regulatory protein Flow cytometry expression and membrane presence, as well as AP component ex- Cytokine stimulation of HUVECs and GMVECs. Once confluent in T-25 pression, in glomerular microvascular ECs (GMVECs) and, for flasks, control cells were incubated for 24 h in serum-free media (MCDB- 131 plus insulin-transferrin-selenium, Life Technologies), and experimental comparison, in HUVECs. We hypothesized that GMVECs have cells were incubated for 24 h with CM131 plus TNF (10 ng/ml, Life Tech- differences in AP regulation, compared with HUVECs, thereby nologies)orIL-1b (3 ng/ml, Life Technologies), and then incubated for an explaining their susceptibility to injury in aHUS. Because additional 24 h in serum-free media plus 10 ng/ml TNF or 3 ng/ml IL-1b (total infectious/inflammatory conditions may lead to initial or recurrent cytokine exposure of 48 h). Both control and experimental flasks were incu- episodes of aHUS (35, 36), we also studied the effects of two bated in serum-free
Recommended publications
  • WO 2016/147053 Al 22 September 2016 (22.09.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/147053 Al 22 September 2016 (22.09.2016) P O P C T (51) International Patent Classification: (71) Applicant: RESVERLOGIX CORP. [CA/CA]; 300, A61K 31/551 (2006.01) A61P 37/02 (2006.01) 4820 Richard Road Sw, Calgary, AB, T3E 6L1 (CA). A61K 31/517 (2006.01) C07D 239/91 (2006.01) (72) Inventors: WASIAK, Sylwia; 431 Whispering Water (21) International Application Number: Trail, Calgary, AB, T3Z 3V1 (CA). KULIKOWSKI, PCT/IB20 16/000443 Ewelina, B.; 31100 Swift Creek Terrace, Calgary, AB, T3Z 0B7 (CA). HALLIDAY, Christopher, R.A.; 403 (22) International Filing Date: 138-18th Avenue SE, Calgary, AB, T2G 5P9 (CA). GIL- 10 March 2016 (10.03.2016) HAM, Dean; 249 Scenic View Close NW, Calgary, AB, (25) Filing Language: English T3L 1Y5 (CA). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 62/132,572 13 March 2015 (13.03.2015) US BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/264,768 8 December 2015 (08. 12.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, [Continued on nextpage] (54) Title: COMPOSITIONS AND THERAPEUTIC METHODS FOR THE TREATMENT OF COMPLEMENT-ASSOCIATED DISEASES (57) Abstract: The invention comprises methods of modulating the complement cascade in a mammal and for treating and/or preventing diseases and disorders as sociated with the complement pathway by administering a compound of Formula I or Formula II, such as, for example, 2-(4-(2-hydroxyethoxy)-3,5-dimethylphenyl)- 5,7-dimethoxyquinazolin-4(3H)-one or a pharmaceutically acceptable salt thereof.
    [Show full text]
  • Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders
    Hindawi Publishing Corporation Autism Research and Treatment Volume 2012, Article ID 868576, 6 pages doi:10.1155/2012/868576 Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders Naghi Momeni,1 Lars Brudin,2 Fatemeh Behnia,3 Berit Nordstrom,¨ 4 Ali Yosefi-Oudarji,5 Bengt Sivberg,4 Mohammad T. Joghataei,5 and Bengt L. Persson1 1 School of Natural Sciences, Linnaeus University, 39182 Kalmar, Sweden 2 Department of Clinical Physiology, Kalmar County Hospital, 39185 Kalmar, Sweden 3 Department of Occupational Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 4 Department of Health Sciences, Autism Research, Faculty of Medicine, Lund University, Box 157, 22100 Lund, Sweden 5 Cellular and Molecular Research Centre, Tehran University of Medical Sciences (TUMS), Tehran, Iran Correspondence should be addressed to Bengt Sivberg, [email protected] Received 17 June 2011; Revised 22 August 2011; Accepted 22 August 2011 Academic Editor: Judy Van de Water Copyright © 2012 Naghi Momeni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Autism spectrum disorders (ASDs) are neurodevelopmental and behavioural syndromes affecting social orientation, behaviour, and communication that can be classified as developmental disorders. ASD is also associated with immune system abnormality. Im- mune system abnormalities may be caused partly by complement system factor I deficiency. Complement factor I is a serine pro- tease present in human plasma that is involved in the degradation of complement protein C3b, which is a major opsonin of the complement system.
    [Show full text]
  • Advances in Hematology
    ADVANCES IN HEMATOLOGY Current Developments in the Management of Hematologic Disorders Hematology Section Editor: Craig M. Kessler, MD Atypical Hemolytic Uremic Syndrome: The Role of Complement Pathway Gene Mutation Analysis Ilene C. Weitz, MD Associate Professor of Clinical Medicine Jane Anne Nohl Division of Hematology Keck School of Medicine of USC Los Angeles, California H&O What causes atypical hemolytic uremic H&O Which mutations in complement alternative syndrome (aHUS)? pathway genes are linked to aHUS? IW We think that most people with aHUS have problems IW Multiple genetic mutations have been linked to with regulation of complement. As a result of excess com- aHUS, especially those involved in the complement plement, endothelial and organ damage occur. We know alternative pathway. These include mutations in comple- that mutations in the genes of complement regulatory pro- ment factor H, complement factor I, membrane cofactor teins are associated with aHUS. In addition, factors other protein, complement factor B, and C3 nephritic factor. than underlying mutations may play a role in increasing Mutations may cause the protein to be normal but low in activation and the expression of the clinical syndrome. quantity, or normal in quantity but abnormal in function; the degree of the abnormality may depend on whether the H&O How is the complement system activated patient is heterozygous or homozygous. and regulated? In addition, other factors such as thrombomodulin have been described that work through other enzymes. IW The complement system is a part of the innate Thrombomodulin is involved in complement regulation immune system that is necessary for fighting infections by activating thrombin activatable fibrinolytic inhibitor and aberrant immunologic stimuli.
    [Show full text]
  • 367.Full.Pdf
    Human Complement Factor I Does Not Require Cofactors for Cleavage of Synthetic Substrates This information is current as Stefanos A. Tsiftsoglou and Robert B. Sim of October 2, 2021. J Immunol 2004; 173:367-375; ; doi: 10.4049/jimmunol.173.1.367 http://www.jimmunol.org/content/173/1/367 Downloaded from References This article cites 41 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/173/1/367.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Complement Factor I Does Not Require Cofactors for Cleavage of Synthetic Substrates1 Stefanos A. Tsiftsoglou2 and Robert B. Sim Complement factor I (fI) plays a major role in the regulation of the complement system. It circulates in an active form and has very restricted specificity, cleaving only C3b or C4b in the presence of a cofactor such as factor H (fH), complement receptor type 1, membrane cofactor protein, or C4-binding protein.
    [Show full text]
  • Crystal Structure of Prethrombin-1
    Crystal structure of prethrombin-1 Zhiwei Chen, Leslie A. Pelc, and Enrico Di Cera1 Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104 Edited by Robert M. Stroud, University of California, San Francisco, CA, and approved September 24, 2010 (received for review July 14, 2010) Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from pro- thrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156–271), A chain (residues 272–320), and B chain (re- sidues 321–579). The X-ray crystal structure of prethrombin-1 solved at 2.2-Å resolution shows an overall conformation signifi- cantly different (rmsd ¼ 3.6 Å) from that of its active form meizo- thrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29° and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Naþ binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 Å apart in mei- zothrombin desF1, to come within 3.3 Å of each other and comple- tely occlude access to the active site.
    [Show full text]
  • Factor B, the Complement Alternative Pathway Serine Proteinase, Is a Major Constitutive Protein Synthesized and Secreted by Resident and Elicited Mouse Macrophages
    FACTOR B, THE COMPLEMENT ALTERNATIVE PATHWAY SERINE PROTEINASE, IS A MAJOR CONSTITUTIVE PROTEIN SYNTHESIZED AND SECRETED BY RESIDENT AND ELICITED MOUSE MACROPHAGES BY JOHN S. SUNDSMO, JENNIE R. CHIN,* RUTH A. PAPIN, DARYL S. FAIR, AND ZENA WERB* From the Department of Molecular Immunology, Scripps Clinic and Research Foundation, La Jolla, California 92037; and the *Laboratory of Radiobiology and Environmental Health, and Department of Anatomy, University of California, San Francisco, California 94143 Mononuclear phagocytes have been increasingly recognized as a source of many of the complement proteins (1, 2). Activities constituting the intact com- plement alternative pathway in serum (factor B, factor D, C3, and properdin) (3-8), as well as the regulatory proteins, factors H and I (5, 8), are produced by mouse peritoneal macrophages and human peripheral blood monocytes. Factors C2 and C4 are also synthesized by mononuclear phagocytes (1, 2, 5, 9-11). Factor B, a glycoprotein of Mr ~0.3,000 that plays a central role in the alternative pathway of complement activation (12, 13), is closely associated with the immune response as a class III gene product of the major histocompatibility complex in mice (14, 15), guinea pigs (16), and humans (17). Activated factor B (Bb, Mr ~60,000) serves as a migration inhibiting factor (18), inducing macro- phage and monocyte spreading (19, 20) and possibly stimulating cytotoxic (21, 22) and bacteriocidai activities (23, 24) of monocytes in vitro. The hemolytic activity of factor B produced by resident mouse peritoneal macrophages (3, 6) increases linearly during 72-96 h in culture, and its synthesis is regulated by lipopolysaccharide (LPS) 1 (24).
    [Show full text]
  • Factor B Catalog Number
    Name: Factor B Catalog Number: A135 Sizes Available: 250 µg/vial Concentration: 1.0 mg/mL (see Certificate of Analysis for actual concentration) Form: Frozen liquid Activity: >90% versus normal human serum standard. Purity: >95% by SDS-PAGE Buffer: 10 mM Sodium phosphate, 145 mM NaCl, pH 7.2 Molecular weight: 93,000 Da (single chain) Extinction Coeff.: A280 nm = 1.27 at 1.0 mg/mL Preservative: None, 0.22 µm filtered Storage: -70oC or below. Avoid repeated freeze/thaw. Source: Normal human serum (shown by certified tests to be negative for HBsAg and for antibodies to HCV, HIV-1 and HIV-II). Precautions: Use normal precautions for handling human blood products. Origin: Manufactured in the USA. General Description Complement factor B (fB) is purified from normal human serum. Complement factor B is a glycosylated protein composed of a single 93,000 Da polypeptide chain. It is an essential component of the alternative pathway of complement activation and is found in plasma at approximately 200 µg/mL. In the presence of Mg++ factor B binds to C3b and the C3b,B complex can be activated by factor D, a serine protease that circulates as an active trypsin-like serine protease. Cleavage of factor B by factor D causes the release of the Ba fragment (33,000 Da) and leaves the 60,000 Bb fragment bound to C3b. This Bb subunit is a serine protease. C3b,Bb is called a C3 and a C5 convertase because it converts both of these proteins to their active forms by cleaving off the small peptides C3a and C5a, respectively (Morikis, D.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Structural and Functional Analysis of Complement Factor H: a Crucial Protein in Several Disorders
    UNIVERSITÀ DEGLI STUDI DI MILANO SCUOLA DI DOTTORATO IN MEDICINA MOLECOLARE CICLO XXVII Anno Accademico 2013/2014 TESI DI DOTTORATO DI RICERCA settore scientifico disciplinare: BIO13 STRUCTURAL AND FUNCTIONAL ANALYSIS OF COMPLEMENT FACTOR H: A CRUCIAL PROTEIN IN SEVERAL DISORDERS Dottorando : Silvia BERRA Matricola N° R09657 TUTORE: Prof. Alberto CLIVIO COORDINATORE DEL DOTTORATO: Prof. Mario CLERICI Sommario Il Fattore H del complemento (FH) è un importante regolatore della via alternativa del complemento: protegge infatti le cellule dell’ospite dall’attacco del sistema del complemento e carenze di FH sia qualitative e quantitative dovute a mutazioni nel gene CFH sono spesso associate ad una serie di malattie umane, come la glomerulonefrite membranoproliferativa (MPGN), la sindrome emolitico-uremica atipica (aHUS) e la degenerazione maculare della retina legata all’età (AMD). Mentre esiste una caratterizzazione genetica per tutte queste malattie, i dati funzionali a livello di proteine sono spesso carenti. Inoltre, il FH gioca un ruolo significativo nelle malattie infettive: molti agenti patogeni sono infatti in grado di reclutare il FH sulla loro superficie sfruttandolo per proteggersi dagli attacchi del complemento. Mentre per alcuni agenti patogeni l'interazione con il FH è stata ben descritta, per gli altri gli "interattori" diretti sono ancora sconosciuti. Tuttavia, lo studio del FH è complicato dalla presenza di proteine FH-related (FHRs) che posseggono un elevato grado di somiglianza con il FH e ne rendono quindi difficile la purificazione e la analisi diretta. Il primo obiettivo di questo progetto è stato lo sviluppo di saggi quantitativi e funzionali FH-specifici, utilizzando un anticorpo monoclonale (Mab 5H5) prodotto nel nostro laboratorio, che si è dimostrato essere specifico per FH.
    [Show full text]
  • Factor D Catalog Number
    Name: Factor D Catalog Number: A136 Sizes Available: 25 µg/vial Concentration: 0.1 mg/mL (see Certificate of Analysis for actual concentration) Form: Frozen liquid Activity: >95% versus normal human serum standard Purity: >95% by SDS-PAGE Buffer: 10 mM sodium phosphate, 145 mM NaCl, pH 7.3 Extinction Coeff.: A280 nm = 1.1 at 1.0 mg/mL Molecular weight: 24,000 Da (single chain) Preservative: None, 0.22 µm filtered Storage: -70oC or below. Avoid freeze/thaw. Source: Normal human serum (shown by certified tests to be negative for HBsAg and for antibodies to HCV, HIV-1 and HIV-II). Precautions: Use normal precautions for handling human blood products. Origin: Manufactured in the USA. General Description Factor D is a glycosylated protein composed of a single 24,000 Da polypeptide chain. It is an essential component of the alternative pathway of complement activation. Its only known function is to cleave and activate factor B when factor B is bound to C3b or a C3b-like protein such as C3(H2O) or CVF. Factor D is a serine protease that circulates as a mature protease, but it exhibits a highly restricted specificity and it appears to be substrate activated. Factor D cleaves factor B bound to C3b between Arg233 and Lys234 causing the release of the Ba fragment (33,000 Da) and leaving the 60,000 Bb fragment bound to C3b. The C3b,Bb complex is called a C3 or C5 convertase because it converts these proteins to their active forms by cleaving off the small peptides C3a and C5a, respectively (Law, S.K.A.
    [Show full text]
  • Strategies of Targeting Alternative and Lectin Pathway Components in Complement- Mediated Diseases
    REVIEW published: 08 August 2018 doi: 10.3389/fimmu.2018.01851 Be on Target: Strategies of Targeting Alternative and Lectin Pathway Components in Complement- Mediated Diseases József Dobó, Andrea Kocsis and Péter Gál* Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary The complement system has moved into the focus of drug development efforts in the last decade, since its inappropriate or uncontrolled activation has been recognized in many diseases. Some of them are primarily complement-mediated rare diseases, such as paroxysmal nocturnal hemoglobinuria, C3 glomerulonephritis, and atypical hemolytic uremic syndrome. Complement also plays a role in various multifactorial diseases that affect millions of people worldwide, such as ischemia reperfusion injury (myocardial infarction, stroke), age-related macular degeneration, and several neurodegenerative disorders. In this review, we summarize the potential advantages of targeting various Edited by: complement proteins with special emphasis on the components of the lectin (LP) and Nicole Thielens, UMR5075 Institut de Biologie the alternative pathways (AP). The serine proteases (MASP-1/2/3, factor D, factor B), Structurale (IBS), France which are responsible for the activation of the cascade, are straightforward targets of Reviewed by: inhibition, but the pattern recognition molecules (mannose-binding lectin, other collectins, Cordula M. Stover, and ficolins), the regulatory components (factor H, factor I, properdin), and C3 are also University of Leicester, United Kingdom subjects of drug development. Recent discoveries about cross-talks between the LP Maciej Cedzynski, and AP offer new approaches for clinical intervention. Mannan-binding lectin-associated Institute for Medical Biology (PAN), Poland serine proteases (MASPs) are not just responsible for LP activation, but they are also Christian Drouet, indispensable for efficient AP activation.
    [Show full text]
  • Role of Complement in Diabetes
    This is a repository copy of Role of complement in diabetes. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/151783/ Version: Accepted Version Article: Ajjan, RA and Schroeder, V (2019) Role of complement in diabetes. Molecular Immunology, 114. pp. 270-277. ISSN 0161-5890 https://doi.org/10.1016/j.molimm.2019.07.031 (c) 2019, Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Molecular Immunology, Special Issue EMCHD 2019 Review Article Role of Complement in Diabetes Ramzi A. Ajjan a, Verena Schroeder b* a Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom b Experimental Haemostasis Group, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland * Corresponding author: Verena Schroeder Experimental Haemostasis Group Department for BioMedical Research (DBMR) University of Bern Murtenstrasse 40 3008 Bern Switzerland Tel.: +41 31 632 9618 E-mail: [email protected] 1 Abstract Accumulating evidence suggests a role for the complement system in the pathogenesis of diabetes and the vascular complications that characterise this condition.
    [Show full text]