Functional Expression of Complement Factor I Following AAV-Mediated Gene Delivery in the Retina of Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders
Hindawi Publishing Corporation Autism Research and Treatment Volume 2012, Article ID 868576, 6 pages doi:10.1155/2012/868576 Clinical Study High Complement Factor I Activity in the Plasma of Children with Autism Spectrum Disorders Naghi Momeni,1 Lars Brudin,2 Fatemeh Behnia,3 Berit Nordstrom,¨ 4 Ali Yosefi-Oudarji,5 Bengt Sivberg,4 Mohammad T. Joghataei,5 and Bengt L. Persson1 1 School of Natural Sciences, Linnaeus University, 39182 Kalmar, Sweden 2 Department of Clinical Physiology, Kalmar County Hospital, 39185 Kalmar, Sweden 3 Department of Occupational Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 4 Department of Health Sciences, Autism Research, Faculty of Medicine, Lund University, Box 157, 22100 Lund, Sweden 5 Cellular and Molecular Research Centre, Tehran University of Medical Sciences (TUMS), Tehran, Iran Correspondence should be addressed to Bengt Sivberg, [email protected] Received 17 June 2011; Revised 22 August 2011; Accepted 22 August 2011 Academic Editor: Judy Van de Water Copyright © 2012 Naghi Momeni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Autism spectrum disorders (ASDs) are neurodevelopmental and behavioural syndromes affecting social orientation, behaviour, and communication that can be classified as developmental disorders. ASD is also associated with immune system abnormality. Im- mune system abnormalities may be caused partly by complement system factor I deficiency. Complement factor I is a serine pro- tease present in human plasma that is involved in the degradation of complement protein C3b, which is a major opsonin of the complement system. -
Advances in Hematology
ADVANCES IN HEMATOLOGY Current Developments in the Management of Hematologic Disorders Hematology Section Editor: Craig M. Kessler, MD Atypical Hemolytic Uremic Syndrome: The Role of Complement Pathway Gene Mutation Analysis Ilene C. Weitz, MD Associate Professor of Clinical Medicine Jane Anne Nohl Division of Hematology Keck School of Medicine of USC Los Angeles, California H&O What causes atypical hemolytic uremic H&O Which mutations in complement alternative syndrome (aHUS)? pathway genes are linked to aHUS? IW We think that most people with aHUS have problems IW Multiple genetic mutations have been linked to with regulation of complement. As a result of excess com- aHUS, especially those involved in the complement plement, endothelial and organ damage occur. We know alternative pathway. These include mutations in comple- that mutations in the genes of complement regulatory pro- ment factor H, complement factor I, membrane cofactor teins are associated with aHUS. In addition, factors other protein, complement factor B, and C3 nephritic factor. than underlying mutations may play a role in increasing Mutations may cause the protein to be normal but low in activation and the expression of the clinical syndrome. quantity, or normal in quantity but abnormal in function; the degree of the abnormality may depend on whether the H&O How is the complement system activated patient is heterozygous or homozygous. and regulated? In addition, other factors such as thrombomodulin have been described that work through other enzymes. IW The complement system is a part of the innate Thrombomodulin is involved in complement regulation immune system that is necessary for fighting infections by activating thrombin activatable fibrinolytic inhibitor and aberrant immunologic stimuli. -
TMPRSS2 and Furin Are Both Essential for Proteolytic Activation of SARS-Cov-2 in Human Airway Cells
Research Article TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells Dorothea Bestle1,*, Miriam Ruth Heindl1,*, Hannah Limburg1,*, Thuy Van Lam van2 , Oliver Pilgram2, Hong Moulton3, David A Stein3 , Kornelia Hardes2,4, Markus Eickmann1,5, Olga Dolnik1,5 , Cornelius Rohde1,5, Hans-Dieter Klenk1, Wolfgang Garten1, Torsten Steinmetzer2, Eva Bottcher-Friebertsh¨ auser¨ 1 The novel emerged SARS-CoV-2 has rapidly spread around the broad range of mammalian and avian species, causing respiratory world causing acute infection of the respiratory tract (COVID-19) or enteric diseases. CoVs have a major surface protein, the spike (S) that can result in severe disease and lethality. For SARS-CoV-2 to protein, which initiates infection by receptor binding and fusion of enter cells, its surface glycoprotein spike (S) must be cleaved at the viral lipid envelope with cellular membranes. Like fusion two different sites by host cell proteases, which therefore rep- proteins of many other viruses, the S protein is activated by cellular resent potential drug targets. In the present study, we show that S proteases. Activation of CoV S is a complex process that requires can be cleaved by the proprotein convertase furin at the S1/S2 proteolytic cleavage of S at two distinct sites, S1/S2 and S29 (Fig 1), site and the transmembrane serine protease 2 (TMPRSS2) at the generating the subunits S1 and S2 that remain non-covalently S29 site. We demonstrate that TMPRSS2 is essential for activation linked (1, 2, 3). The S1 subunit contains the receptor binding do- of SARS-CoV-2 S in Calu-3 human airway epithelial cells through main, whereas the S2 subunit is membrane-anchored and harbors antisense-mediated knockdown of TMPRSS2 expression. -
367.Full.Pdf
Human Complement Factor I Does Not Require Cofactors for Cleavage of Synthetic Substrates This information is current as Stefanos A. Tsiftsoglou and Robert B. Sim of October 2, 2021. J Immunol 2004; 173:367-375; ; doi: 10.4049/jimmunol.173.1.367 http://www.jimmunol.org/content/173/1/367 Downloaded from References This article cites 41 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/173/1/367.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Complement Factor I Does Not Require Cofactors for Cleavage of Synthetic Substrates1 Stefanos A. Tsiftsoglou2 and Robert B. Sim Complement factor I (fI) plays a major role in the regulation of the complement system. It circulates in an active form and has very restricted specificity, cleaving only C3b or C4b in the presence of a cofactor such as factor H (fH), complement receptor type 1, membrane cofactor protein, or C4-binding protein. -
Coagulation Factors Directly Cleave SARS-Cov-2 Spike and Enhance Viral Entry
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.31.437960; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. Edward R. Kastenhuber1, Javier A. Jaimes2, Jared L. Johnson1, Marisa Mercadante1, Frauke Muecksch3, Yiska Weisblum3, Yaron Bram4, Robert E. Schwartz4,5, Gary R. Whittaker2 and Lewis C. Cantley1,* Affiliations 1. Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA. 2. Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA. 3. Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA. 4. Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA. 5. Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA. *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.03.31.437960; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Coagulopathy is recognized as a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. Other host proteases, including TMPRSS2, are recognized to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing viral entry. -
Demonstration of Proteolytic Activation of the Epithelial Sodium Channel (Enac) by Combining Current Measurements with Detection of Cleavage Fragments
Journal of Visualized Experiments www.jove.com Video Article Demonstration of Proteolytic Activation of the Epithelial Sodium Channel (ENaC) by Combining Current Measurements with Detection of Cleavage Fragments Matteus Krappitz1, Christoph Korbmacher1, Silke Haerteis1 1 Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Correspondence to: Silke Haerteis at [email protected] URL: http://www.jove.com/video/51582 DOI: doi:10.3791/51582 Keywords: Biochemistry, Issue 89, two-electrode voltage-clamp, electrophysiology, biotinylation, Xenopus laevis oocytes, epithelial sodium channel, ENaC, proteases, proteolytic channel activation, ion channel, cleavage sites, cleavage fragments Date Published: 7/5/2014 Citation: Krappitz, M., Korbmacher, C., Haerteis, S. Demonstration of Proteolytic Activation of the Epithelial Sodium Channel (ENaC) by Combining Current Measurements with Detection of Cleavage Fragments. J. Vis. Exp. (89), e51582, doi:10.3791/51582 (2014). Abstract The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensitive epithelial sodium channel (ENaC). The final activating step involves cleavage of the channel’s γ-subunit in a critical region potentially targeted by several proteases including chymotrypsin and plasmin. To determine the stimulatory effect of these serine proteases on ENaC, the amiloride-sensitive whole- cell current (ΔIami) was measured twice in the same oocyte before and after exposure to the protease using the two-electrode voltage-clamp technique. -
Fibrinolysis Influences SARS-Cov-2 Infection in Ciliated Cells
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425801; this version posted January 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Fibrinolysis influences SARS-CoV-2 infection in ciliated cells 2 3 Yapeng Hou1, Yan Ding1, Hongguang Nie1, *, Hong-Long Ji2 4 5 1Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical 6 University, Shenyang, Liaoning 110122, China. 2Department of Cellular and Molecular Biology, University 7 of Texas Health Science Center at Tyler, Tyler, TX 75708, USA. 8 9 *Address correspondence to [email protected] 10 11 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425801; this version posted January 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 12 Abstract 13 Rapid spread of COVID-19 has caused an unprecedented pandemic worldwide, and an inserted furin site 14 in SARS-CoV-2 spike protein (S) may account for increased transmissibility. Plasmin, and other host 15 proteases, may cleave the furin site of SARS-CoV-2 S protein and subunits of epithelial sodium channels ( 16 ENaC), resulting in an increment in virus infectivity and channel activity. As for the importance of ENaC in 17 the regulation of airway surface and alveolar fluid homeostasis, whether SARS-CoV-2 will share and 18 strengthen the cleavage network with ENaC proteins at the single-cell level is urgently worthy of consideration. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Structural and Functional Analysis of Complement Factor H: a Crucial Protein in Several Disorders
UNIVERSITÀ DEGLI STUDI DI MILANO SCUOLA DI DOTTORATO IN MEDICINA MOLECOLARE CICLO XXVII Anno Accademico 2013/2014 TESI DI DOTTORATO DI RICERCA settore scientifico disciplinare: BIO13 STRUCTURAL AND FUNCTIONAL ANALYSIS OF COMPLEMENT FACTOR H: A CRUCIAL PROTEIN IN SEVERAL DISORDERS Dottorando : Silvia BERRA Matricola N° R09657 TUTORE: Prof. Alberto CLIVIO COORDINATORE DEL DOTTORATO: Prof. Mario CLERICI Sommario Il Fattore H del complemento (FH) è un importante regolatore della via alternativa del complemento: protegge infatti le cellule dell’ospite dall’attacco del sistema del complemento e carenze di FH sia qualitative e quantitative dovute a mutazioni nel gene CFH sono spesso associate ad una serie di malattie umane, come la glomerulonefrite membranoproliferativa (MPGN), la sindrome emolitico-uremica atipica (aHUS) e la degenerazione maculare della retina legata all’età (AMD). Mentre esiste una caratterizzazione genetica per tutte queste malattie, i dati funzionali a livello di proteine sono spesso carenti. Inoltre, il FH gioca un ruolo significativo nelle malattie infettive: molti agenti patogeni sono infatti in grado di reclutare il FH sulla loro superficie sfruttandolo per proteggersi dagli attacchi del complemento. Mentre per alcuni agenti patogeni l'interazione con il FH è stata ben descritta, per gli altri gli "interattori" diretti sono ancora sconosciuti. Tuttavia, lo studio del FH è complicato dalla presenza di proteine FH-related (FHRs) che posseggono un elevato grado di somiglianza con il FH e ne rendono quindi difficile la purificazione e la analisi diretta. Il primo obiettivo di questo progetto è stato lo sviluppo di saggi quantitativi e funzionali FH-specifici, utilizzando un anticorpo monoclonale (Mab 5H5) prodotto nel nostro laboratorio, che si è dimostrato essere specifico per FH. -
Importance of Reelin C-Terminal Region in the Development and Maintenance of the Postnatal Cerebral Cortex and Its Regulation by Specific Proteolysis
4776 • The Journal of Neuroscience, March 18, 2015 • 35(11):4776–4787 Cellular/Molecular Importance of Reelin C-Terminal Region in the Development and Maintenance of the Postnatal Cerebral Cortex and Its Regulation by Specific Proteolysis Takao Kohno,1* Takao Honda,2* Ken-ichiro Kubo,2* Yoshimi Nakano,1 Ayaka Tsuchiya,1 Tatsuro Murakami,1 Hideyuki Banno,1 Kazunori Nakajima,2† and Mitsuharu Hattori1† 1Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Aichi 467-8603, Japan, and 2Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan During brain development, Reelin exerts a variety of effects in a context-dependent manner, whereas its underlying molecular mecha- nisms remain poorly understood. We previously showed that the C-terminal region (CTR) of Reelin is required for efficient induction of phosphorylation of Dab1, an essential adaptor protein for canonical Reelin signaling. However, the physiological significance of the Reelin CTR in vivo remains unexplored. To dissect out Reelin functions, we made a knock-in (KI) mouse in which the Reelin CTR is deleted. The amount of Dab1, an indication of canonical Reelin signaling strength, is increased in the KI mouse, indicating that the CTR is necessary for efficient induction of Dab1 phosphorylation in vivo. Formation of layer structures during embryonic development is normal in the KI mouse. Intriguingly, the marginal zone (MZ) of the cerebral cortex becomes narrower at postnatal stages because upper-layer neurons invade the MZ and their apical dendrites are misoriented and poorly branched. Furthermore, Reelin undergoes proteolytic cleavage by proprotein convertases at a site located 6 residues from the C terminus, and it was suggested that this cleavage abrogates the Reelin binding to the neuronal cell membrane. -
TMPRSS2 and Furin Are Both Essential for Proteolytic Activation and Spread of SARS-Cov-2 in Human Airway Epithelial Cells and Pr
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042085; this version posted April 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS- 2 CoV-2 in human airway epithelial cells and provide promising drug targets 3 4 5 Dorothea Bestle1#, Miriam Ruth Heindl1#, Hannah Limburg1#, Thuy Van Lam van2, Oliver 6 Pilgram2, Hong Moulton3, David A. Stein3, Kornelia Hardes2,4, Markus Eickmann1,5, Olga 7 Dolnik1,5, Cornelius Rohde1,5, Stephan Becker1,5, Hans-Dieter Klenk1, Wolfgang Garten1, 8 Torsten Steinmetzer2, and Eva Böttcher-Friebertshäuser1* 9 10 1) Institute of Virology, Philipps-University, Marburg, Germany 11 2) Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany 12 3) Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon 13 State University, Corvallis, USA 14 4) Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany 15 5) German Center for Infection Research (DZIF), Marburg-Gießen-Langen Site, Emerging 16 Infections Unit, Philipps-University, Marburg, Germany 17 18 #These authors contributed equally to this work. 19 20 *Corresponding author: Eva Böttcher-Friebertshäuser 21 Institute of Virology, Philipps-University Marburg 22 Hans-Meerwein-Straße 2, 35043 Marburg, Germany 23 Tel: 0049-6421-2866019 24 E-mail: [email protected] 25 26 Short title: TMPRSS2 and furin activate SARS-CoV-2 spike protein 27 28 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042085; this version posted April 15, 2020.