Syrphid Aphidophagous Predators in a Food-Web Context

Total Page:16

File Type:pdf, Size:1020Kb

Syrphid Aphidophagous Predators in a Food-Web Context REVIEW Eur. J. Entomol. 102: 325–333, 2005 ISSN 1210-5759 Syrphid aphidophagous predators in a food-web context FRANCIS GILBERT School of Biology, Nottingham University, Nottingham NG7 2RD, UK; e-mail: [email protected] Key words. Syrphidae, hoverfly, predator, community, emergent properties, specialisation, holism Abstract. The main influences on the specificity of hoverfly larvae (Diptera: Syrphidae) to particular aphids are outlined. There are four main ones: aphid species, host plant, parasitoid impact and the presence of ants. Studies in the literature are used to illustrate the effect of these factors on larval performance. The use of single components of fitness as measures of performance can be misleading: only “individual fitness” includes all the appropriate components of survival, development time and reproduction. Even generalists appear to choose among aphids on the basis of expected fitness. A new level of complexity is therefore required in studies of food specificity in predatory syrphids. INTRODUCTION their prey, or whether we require a larger scale, food-web In an essay of dazzling scope, Simberloff (1980) pin- approach. pointed the major problem of ecology as one of levels of Most insects are rather specific when choosing their organisation, of hierarchy in the natural world. Above the food (Schoonhoven et al., 1998), including predators level of the individual, there are at least four more layers (Hodek, 1993), and even generalist predators display a in a hierarchically ordered Nature, namely the population, hierarchy of preferences for different hosts (Sadeghi & the species, the community, and the ecosystem. Pace eco- Gilbert, 1999, 2000a). What determines whether any par- system ecologists, Simberloff argued that there are no ticular insect will feed on any particular food? The idea of properties of communities or ecosystems that cannot be an interactive community suggests that the answer to this understood by a study of individual component species. question lies not merely in the availability and suitability His opinion was that adherence to non-Darwinian holistic of the food itself, but also in the embedded network of the concepts such as the “community” or “ecosystems” stems food web within which the particular feeding relationship from Platonic Idealism, and that studies at this level are occurs. quite simply a waste of time unless demonstrated to Until relatively recently, the main two aspects empha- require it. sized as important in understanding specialization were How do we demonstrate the necessity of holism? specific just to the trophic relationship itself, namely the Applying Darwinian thinking to the hierarchy of Nature foraging behaviour of ovipositing females among avail- is clearly a more difficult thing to do than to apply it to a able hosts (especially in species with relatively immobile field such as animal behaviour. Whilst the true impact of larvae), and the subsequent performance of the devel- Darwinian thinking was felt by ethologists in the late oping larvae (e.g. Tauber & Tauber, 1987). Both of these 1960s, it took at least another 10 years for theoretically- involve food availability and suitability. Among herbi- minded ecologists to appreciate it. Furthermore, plant vores, the balance of nutrients that the hostplant provides ecology as a field worked through the paradigms of the is normally rather different from what they require (the Clementsian superorganism to Gleasonian individualism recent and burgeoning field of ecological stoichiometry), in the 1930s, but animal ecology only learned the same and hence the biochemical and physiological ability of the lesson in the 1980s (Jackson, 1994). Thus in a very real larva to cope with the food is important. In the case of sense, theoretical ecology went back to basics in the predators, there are fewer differences between nutritional 1980s and really started again from the null hypothesis requirements and what prey provide: as a result the costs that animal communities were basically non-interactive, of capture, the toxin content of prey, and the mortality Gleasonian entities. Now once again, with increasing evi- risks of foraging are probably relatively more important dence for the importance to terrestrial ecology of tritro- (e.g. Malcolm, 1992). phic interactions (e.g., Ode et al., 2004), trophic cascades In searching among food types, gravid females appear (Matsumoto et al., 2003) and metacommunity effects to have a hierarchy of preference (e.g. Courtney et al., (e.g., Leibold et al., 2004), we have returned to the para- 1989; Sadeghi & Gilbert, 2000a,b) with a variable out- digm of interactive communities, but grounded very much come because, for example, they become less selective more in truly Darwinian basics. with increasing age. Jaenike (1990) concluded that a I am interested in understanding the feeding specializa- female should oviposit in response to a particular food tions of the aphidophagous Syrphidae (Diptera), and in item early in her search if (1) this item is very suitable for this paper I review whether we need to consider solely the her larvae, (2) the probability of finding an alternative is trophic relationship between these insect predators and low, (3) the egg load is high or (4) alternative food items 325 p. 384–390). Evolutionary biologists insist on measuring performance as overall fitness, and hence including sur- vival, growth and subsequent adult reproductive output (Nylin & Janz, 1993). In practice, larval performance has usually been estimated from only one or two components: more than 50% of preference-performance studies have taken only one or two parts of the insect’ life-cycle into account. This leads to difficulties in interpreting the results precisely because components of fitness are used as surrogates for fitness itself: as McGraw & Caswell (1996) point out, responses of different components of fitness to variation in the environment can be different in both sign and magnitude. There are additional difficulties. For example, relating laboratory data to the field situation is problematic: survival in the field is the key parameter for natural selection rather than the laboratory measure of survival solely due to food quantity and quality. Many discussions in the literature have a rather Fig. 1. The hierarchy-threshold model of host choice typological concept of specialization in insects. In fact, (Courtney et al., 1989) applied to a gravid female syrphid variation in degree of specialization occurs at all levels. searching among a set of possible prey (A to E). The assump- The most obvious is among species, but important varia- tions of this model include that: slow (co-)evolutionary proc- tion occurs among populations within species (Fox & esses have moulded population genetics such that each Morrow, 1981), and among individuals within popula- individual female has an intrinsic preference for each prey type, tions (Ng, 1988; Schoonhoven et al., 1998; Sadeghi & resulting in a rank order of preference among prey types that Gilbert, 1999). The consequences of this variation are does not change throughout the female’ lifetime; females that profound. To take a single example, consider the textbook accept a low-ranking prey type will also accept all higher- ranking types; actual acceptance of an encountered prey type cases of Müllerian and Batesian mimetic butterflies (Rit- depends on whether the stimulus of that prey exceeds the cur- land, 1991; Moranz & Brower, 1998). In the standard rent acceptance threshold (which varies with factors such as story, Monarch (Danaus plexippus) and Queen (Danaus current availability of prey types, age or eggload). gilippus) butterflies sequester cardiac glycosides from their milkweed (Asclepiadaceae) hostplants, making them are unpredictable in space or time. In their hierarchy toxic; there exists a harmless Batesian mimic, the Viceroy threshold model (Fig. 1), Courtney et al. (1989) formal- (Limenitis archippus). However, some Danaine caterpil- ized these ideas about food choice by individual insects. lars feed on milkweeds with low toxin levels, or do not In this model, females possess an intrinsic evolved degree sequester toxins at all even if present, and populations of preference for each food type, producing a rank order differ in this propensity. Thus individuals and populations of preference among prey that does not change of Danaine “models” vary greatly in toxicity. Futhermore, throughout an individual’s lifetime; individuals accepting at least some Viceroys are toxic, based on completely dif- a low-ranking food type will also accept all higher- ferent chemical components. ranking types; and actual acceptance of an encountered Thus characterizing a species as a “generalist” or a type depends on whether the stimulus of that food type “specialist” can be misleading, even though most ento- exceeds the current motivational threshold (which can mologists think about their study species in this way. Spe- vary with factors such as age or egg-load). The model is cies can indeed consist of individuals all of whom are particularly useful because it synthesizes two disparate specialized to the same particular food type. However, a strands of adaptive explanations of specialization (Beren- generalist species may be made up of specialized popula- baum, 1990), one involving slow processes of evolu- tions, each specializing on different food types; or it may tionary change based usually on various sorts of tradeoff consist of generalized populations
Recommended publications
  • Larval Dispersal Behaviour and Survival on Non-Prey Food of The
    Ecological Entomology (2018), 43, 578–590 DOI: 10.1111/een.12636 Dealing with food shortage: larval dispersal behaviour and survival on non-prey food of the hoverfly Episyrphus balteatus ILKA VOSTEEN,∗ JONATHAN GERSHENZON and GRIT KUNERT Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany Abstract. 1. Predatory larvae often have to face food shortages during their develop- ment, and thus the ability to disperse and find new feeding sites is crucial for survival. However, the dispersal capacity of predatory larvae, the host finding cues employed, and their use of alternative food sources are largely unknown. These aspects of the foraging behaviour of the aphidophagous hoverfly (Episyrphus balteatus De Geer) larvae were investigated in the present study. 2. It was shown that these hoverfly larvae do not leave a plant as long as there are aphids available, but that dispersing larvae are able to find other aphid colonies in the field. Dispersing hoverfly larvae accumulated on large aphid colonies, but did not distinguish between different pea aphid race–plant species combinations. Large aphid colonies might be easier to detect because of intensified searching by hoverfly larvae following the encounter of aphid cues like honeydew that accumulate around large colonies. 3. It was further shown that non-prey food, such as diluted honey or pollen, was insufficient for hoverfly larvae to gain weight, but prolonged the survival of thelarvae compared with unfed individuals. As soon as larvae were switched back to an aphid diet, they rapidly gained weight and some pupated after a few days. Although pupation and adult hatching rates were strongly reduced compared with hoverflies continuously fed with aphids, the consumption of non-prey food most probably increases the probability that hoverfly larvae find an aphid colony and complete their development.
    [Show full text]
  • Diptera: Syrphidae
    This is a repository copy of The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/80035/ Version: Accepted Version Article: Penney, HD, Hassall, C orcid.org/0000-0002-3510-0728, Skevington, JH et al. (2 more authors) (2014) The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae). The American Naturalist, 183 (2). pp. 281-289. ISSN 0003-0147 https://doi.org/10.1086/674612 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae)1 Heather D. Penney, Christopher Hassall, Jeffrey H. Skevington, Brent Lamborn & Thomas N. Sherratt Abstract Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated, or to augment an already close morphological resemblance.
    [Show full text]
  • A Preliminary Invertebrate Survey
    Crane Park, Twickenham: preliminary invertebrate survey. Richard A. Jones. 2010 Crane Park, Twickenham: preliminary invertebrate survey BY RICHARD A. JONES F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ CONTENTS Summary . 2 Introduction . 3 Methods . 3 Site visits . 3 Site compartments . 3 Location and collection of specimens . 4 Taxonomic coverage . 4 Survey results . 4 General . 4 Noteworthy species . 5 Discussion . 9 Woodlands . 9 Open grassland . 10 River bank . 10 Compartment breakdown . 10 Conclusion . 11 References . 12 Species list . 13 Page 1 Crane Park, Twickenham: preliminary invertebrate survey. Richard A. Jones. 2010 Crane Park, Twickenham: preliminary invertebrate survey BY RICHARD A. JONES F.R.E.S., F.L.S. 135 Friern Road, East Dulwich, London SE22 0AZ SUMMARY An invertebrate survey of Crane Park in Twickenham was commissioned by the London Borough of Richmond to establish a baseline fauna list. Site visits were made on 12 May, 18 June, 6 and 20 September 2010. Several unusual and scarce insects were found. These included: Agrilus sinuatus, a nationally scarce jewel beetle that breeds in hawthorn Argiope bruennichi, the wasp spider, recently starting to spread in London Dasytes plumbeus, a nationally scarce beetle found in grassy places Ectemnius ruficornis, a nationally scarce wasp which nests in dead timber Elodia ambulatoria, a nationally rare fly thought to be a parasitoid of tineid moths breeding in bracket fungi Eustalomyia hilaris, a nationally rare fly that breeds in wasp burrows in dead timber
    [Show full text]
  • Hoverfly Newsletter No
    Dipterists Forum Hoverfly Newsletter Number 48 Spring 2010 ISSN 1358-5029 I am grateful to everyone who submitted articles and photographs for this issue in a timely manner. The closing date more or less coincided with the publication of the second volume of the new Swedish hoverfly book. Nigel Jones, who had already submitted his review of volume 1, rapidly provided a further one for the second volume. In order to avoid delay I have kept the reviews separate rather than attempting to merge them. Articles and illustrations (including colour images) for the next newsletter are always welcome. Copy for Hoverfly Newsletter No. 49 (which is expected to be issued with the Autumn 2010 Dipterists Forum Bulletin) should be sent to me: David Iliff Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email:[email protected], to reach me by 20 May 2010. Please note the earlier than usual date which has been changed to fit in with the new bulletin closing dates. although we have not been able to attain the levels Hoverfly Recording Scheme reached in the 1980s. update December 2009 There have been a few notable changes as some of the old Stuart Ball guard such as Eileen Thorpe and Austin Brackenbury 255 Eastfield Road, Peterborough, PE1 4BH, [email protected] have reduced their activity and a number of newcomers Roger Morris have arrived. For example, there is now much more active 7 Vine Street, Stamford, Lincolnshire, PE9 1QE, recording in Shropshire (Nigel Jones), Northamptonshire [email protected] (John Showers), Worcestershire (Harry Green et al.) and This has been quite a remarkable year for a variety of Bedfordshire (John O’Sullivan).
    [Show full text]
  • Hoverflies of Assam (Diptera: Syrphidae): New JEZS 2019; 7(4): 965-969 © 2019 JEZS Records and Their Diversity Received: 10-05-2019 Accepted: 12-06-2019
    Journal of Entomology and Zoology Studies 2019; 7(4): 965-969 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Hoverflies of Assam (Diptera: Syrphidae): New JEZS 2019; 7(4): 965-969 © 2019 JEZS records and their diversity Received: 10-05-2019 Accepted: 12-06-2019 Rojeet Thangjam Rojeet Thangjam, Veronica Kadam, Kennedy Ningthoujam and Mareena College of Agriculture, Central Sorokhaibam Agricultural University, Kyrdemkulai, Meghalaya, India Abstract Veronica Kadam Hoverflies, generally known as Syrphid flies belongs to family Syrphidae, which is one of the largest College of Post Graduate Studies families of order Diptera. The adults use to feed on nectar and pollen of many flowering plants and larval in Agricultural Sciences, Umiam stages of some species are predaceous to homopteran insects. The objective of the present investigation (CAU-Imphal) Meghalaya, India was focused on the assessment of the diversity and abundance of hoverfly at Assam Agricultural University, Jorhat, Assam during 2015-16. A total of 225 individual hoverflies were recorded during the Kennedy Ningthoujam study out of which 23 species belonging to 16 genera under 2 sub-families viz., Eristalinae and Syrphinae College of Post Graduate Studies were observed. Among them, ten species viz., Eristalinus tristriatus, Eristalis tenax, Eristalodes paria, in Agricultural Sciences, Umiam (CAU-Imphal) Meghalaya, India Lathyrophthalmus arvorum, Lathyrophthalmus megacephalus, Lathyrophthalmus obliquus, Phytomia errans, Pandasyopthalmus rufocinctus, Metasyrphus bucculatus and Sphaerophoria macrogaster were Mareena Sorokhaibam newly recorded from Assam. Among the species, Episyrphus viridaureus and Lathyrophthalmus College of Agriculture, Central arvorum were found to be the most abundant species with the relative abundance of 16.89 and 10.22% Agricultural University, Imphal, respectively.
    [Show full text]
  • Hoverflies: the Garden Mimics
    Article Hoverflies: the garden mimics. Edmunds, Malcolm Available at http://clok.uclan.ac.uk/1620/ Edmunds, Malcolm (2008) Hoverflies: the garden mimics. Biologist, 55 (4). pp. 202-207. ISSN 0006-3347 It is advisable to refer to the publisher’s version if you intend to cite from the work. For more information about UCLan’s research in this area go to http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>. For information about Research generally at UCLan please go to http://www.uclan.ac.uk/research/ All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the policies page. CLoK Central Lancashire online Knowledge www.clok.uclan.ac.uk Hoverflies: the garden mimics Mimicry offers protection from predators by convincing them that their target is not a juicy morsel after all. it happens in our backgardens too and the hoverfly is an expert at it. Malcolm overflies are probably the best the mimic for the model and do not attack Edmunds known members of tbe insect or- it (Edmunds, 1974). Mimicry is far more Hder Diptera after houseflies, blue widespread in the tropics than in temperate bottles and mosquitoes, but unlike these lands, but we have some of the most superb insects they are almost universally liked examples of mimicry in Britain, among the by the general public. They are popular hoverflies.
    [Show full text]
  • Testing the Global Malaise Trap Program – How Well Does the Current Barcode Reference Library Identify Flying Insects in Germany?
    Biodiversity Data Journal 4: e10671 doi: 10.3897/BDJ.4.e10671 General Article Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany? Matthias F. Geiger‡, Jerome Moriniere§, Axel Hausmann§, Gerhard Haszprunar§, Wolfgang Wägele‡, Paul D.N. Hebert|, Björn Rulik ‡ ‡ Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany § SNSB-Zoologische Staatssammlung, München, Germany | Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, Guelph, Canada Corresponding author: Matthias F. Geiger ([email protected]) Academic editor: Lyubomir Penev Received: 28 Sep 2016 | Accepted: 29 Nov 2016 | Published: 01 Dec 2016 Citation: Geiger M, Moriniere J, Hausmann A, Haszprunar G, Wägele W, Hebert P, Rulik B (2016) Testing the Global Malaise Trap Program – How well does the current barcode reference library identify flying insects in Germany? Biodiversity Data Journal 4: e10671. https://doi.org/10.3897/BDJ.4.e10671 Abstract Background Biodiversity patterns are inherently complex and difficult to comprehensively assess. Yet, deciphering shifts in species composition through time and space are crucial for efficient and successful management of ecosystem services, as well as for predicting change. To better understand species diversity patterns, Germany participated in the Global Malaise Trap Program, a world-wide collection program for arthropods using this sampling method followed by their DNA barcode analysis. Traps were deployed at two localities: “Nationalpark Bayerischer Wald” in Bavaria, the largest terrestrial Natura 2000 area in Germany, and the nature conservation area Landskrone, an EU habitats directive site in the Rhine Valley. Arthropods were collected from May to September to track shifts in the taxonomic composition and temporal succession at these locations.
    [Show full text]
  • Baccha (Ocyptamus) Medina, B
    The Syrphidae of Puerto Rico1'2 H. S. Telford3-* One cannot state with certainty when the first syrphid was collected from Puerto Rico and adjacent islands. Fabricius described a number of 1 Manuscript submitted to Editorial Board October 30, 1972. 2 Scientific paper number 3914. College of Agriculture Research Center, Washing­ ton State University, Pullman, Washington. Work was conducted under Project No. 0046. 3 Professor and Entomologist, Department of Entomology, Washington State University; Visiting Scientist, Department of Entomology, Agricultural Experiment Station, Mayagiiez Campus, Uío Piedras, Puerto Rico, September 1968-March 1969. This study was made possible by financial support from the Department of En­ tomology, Agricultural Experiment Station, Mayagiiez Campus, University of Puerto Rico, Río Piedras. I wish to thank Dr. L. P. R. F. Martorell, formerly Chairman, Department of Entomology, Agricultural Experiment Station, especially for his support and aid in all aspects of the project. Mr. Silverio Medina Gaud, Associate Entomologist, Agricultural Experiment Station, was of considerable help. He ac­ companied me on almost all field trips, assisted in sorting and preparing the material and made valuable field trips on his own. Dr. J. R. Vockeroth, Entomology Research Institute, Ottawa, Canada, verified many determinations and offered advice on nomenclatural problems. Others who materially aided in the loan of specimens, verified determinations or in other ways were: Dr. George Drury, U.S. Atomic Energy Commission, El Verde-Caribbean National Forest, Puerto Rico; Dr. Y. S. Sedman, Western Illinois University; Dr. L. V. Knutson, Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture; Dr. P. W. Wygodzinsky, American Museum of Natural History; Dr.
    [Show full text]
  • Syrphidae of Southern Illinois: Diversity, Floral Associations, and Preliminary Assessment of Their Efficacy As Pollinators
    Biodiversity Data Journal 8: e57331 doi: 10.3897/BDJ.8.e57331 Research Article Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators Jacob L Chisausky‡, Nathan M Soley§,‡, Leila Kassim ‡, Casey J Bryan‡, Gil Felipe Gonçalves Miranda|, Karla L Gage ¶,‡, Sedonia D Sipes‡ ‡ Southern Illinois University Carbondale, School of Biological Sciences, Carbondale, IL, United States of America § Iowa State University, Department of Ecology, Evolution, and Organismal Biology, Ames, IA, United States of America | Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Canada ¶ Southern Illinois University Carbondale, College of Agricultural Sciences, Carbondale, IL, United States of America Corresponding author: Jacob L Chisausky ([email protected]) Academic editor: Torsten Dikow Received: 06 Aug 2020 | Accepted: 23 Sep 2020 | Published: 29 Oct 2020 Citation: Chisausky JL, Soley NM, Kassim L, Bryan CJ, Miranda GFG, Gage KL, Sipes SD (2020) Syrphidae of Southern Illinois: Diversity, floral associations, and preliminary assessment of their efficacy as pollinators. Biodiversity Data Journal 8: e57331. https://doi.org/10.3897/BDJ.8.e57331 Abstract Syrphid flies (Diptera: Syrphidae) are a cosmopolitan group of flower-visiting insects, though their diversity and importance as pollinators is understudied and often unappreciated. Data on 1,477 Syrphid occurrences and floral associations from three years of pollinator collection (2017-2019) in the Southern Illinois region of Illinois, United States, are here compiled and analyzed. We collected 69 species in 36 genera off of the flowers of 157 plant species. While a richness of 69 species is greater than most other families of flower-visiting insects in our region, a species accumulation curve and regional species pool estimators suggest that at least 33 species are yet uncollected.
    [Show full text]
  • Hoverflies Family: Syrphidae
    Birmingham & Black Country SPECIES ATLAS SERIES Hoverflies Family: Syrphidae Andy Slater Produced by EcoRecord Introduction Hoverflies are members of the Syrphidae family in the very large insect order Diptera ('true flies'). There are around 283 species of hoverfly found in the British Isles, and 176 of these have been recorded in Birmingham and the Black Country. This atlas contains tetrad maps of all of the species recorded in our area based on records held on the EcoRecord database. The records cover the period up to the end of 2019. Myathropa florea Cover image: Chrysotoxum festivum All illustrations and photos by Andy Slater All maps contain Contains Ordnance Survey data © Crown Copyright and database right 2020 Hoverflies Hoverflies are amongst the most colourful and charismatic insects that you might spot in your garden. They truly can be considered the gardener’s fiend as not only are they important pollinators but the larva of many species also help to control aphids! Great places to spot hoverflies are in flowery meadows on flowers such as knapweed, buttercup, hogweed or yarrow or in gardens on plants such as Canadian goldenrod, hebe or buddleia. Quite a few species are instantly recognisable while the appearance of some other species might make you doubt that it is even a hoverfly… Mimicry Many hoverfly species are excellent mimics of bees and wasps, imitating not only their colouring, but also often their shape and behaviour. Sometimes they do this to fool the bees and wasps so they can enter their nests to lay their eggs. Most species however are probably trying to fool potential predators into thinking that they are a hazardous species with a sting or foul taste, even though they are in fact harmless and perfectly edible.
    [Show full text]
  • Man Ual Ofnearctic Diptera Volume 2
    Man ual ofNearctic Diptera volume 2 Coordinated by J. F. McAlpine (Editor) B. V. Peterson G. E. Shewell H. J. Teskey J. R. Vockeroth D„ M. Wood Biosystematics Research Centre (formerly Institute) Ottawa, Ontario Research Branch Agriculture Canada Monograph No. 28 1987 M M \ SYRPHIDAE 52 J. R. VOCKEROTH AND F. C. THOMPSON Fig. 52.1. Adult male of Syrphus torvus Osten Sacken. Small to large, very slender to robust flies (Figs. 1-3), Mouthparts variable in length, usually correlated with length 4-25 mm long. Body usually black, very often with yellow of subcranial cavity; taxonomic significance of variation or orange markings on head and thorax and particularly on unknown. Antenna sometimes borne on a short or long fron- abdomen, more rarely predominantly brown, yellow, tal prominence (Figs. 12, 13); scape and pedicel subcylin- metallic green, or blue, or with various combinations of these drical but varying greatly in length, with hairs or setae; first or other colors. Integument usually smooth but sometimes flagellomere varying greatly in shape, and often with a partly or totally punctate, sculptured, or rugose, usually near- distinct sensory pit on lower part of inner surface; arista ly covered with dense short hairs, rarely with long hairs or usually with two aristomeres but sometimes with three, usual- nearly bare; some hairs sometimes flattened or scale-like and ly dorsal but sometimes subapical or apical, usually longer forming dense tomentum, or on thorax strong and bristle- than first flagellomere but very short in some Microdontinae like; both haired and bare portions shining, slightly to densely and in some groups with apical arista, usually bare or with pruinose, or with very short dense pile.
    [Show full text]
  • Composition and Seasonal Abundance of Hover Flies (Diptera: Syrphidae) at a Midelevation Site in Central Utah
    Western North American Naturalist Volume 77 Number 4 Article 8 1-12-2018 Composition and seasonal abundance of hover flies (Diptera: Syrphidae) at a midelevation site in central Utah Tyson J. Terry Brigham Young University, Provo, UT, [email protected] C. Riley Nelson Brigham Young University, Provo, UT, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Terry, Tyson J. and Nelson, C. Riley (2018) "Composition and seasonal abundance of hover flies (Diptera: Syrphidae) at a midelevation site in central Utah," Western North American Naturalist: Vol. 77 : No. 4 , Article 8. Available at: https://scholarsarchive.byu.edu/wnan/vol77/iss4/8 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 77(4), © 2017, pp. 487–499 COMPOSITION AND SEASONAL ABUNDANCE OF HOVER FLIES (DIPTERA: SYRPHIDAE) AT A MIDELEVATION SITE IN CENTRAL UTAH TYson J. TerrY 1,2 and C. RileY Nelson 1 ABSTRACT .—Dipteran pollinators are important in the successful reproduction of manY plants, Yet are less studied than other groups. We knoW that these insects affect the biodiVersitY of natural landscapes, Yet much remains unknoWn about the eXtent of their influence in pollination sYstems and flight seasons. In this studY, We collected hoVer flies (Diptera: SYrphidae) With 3 Malaise traps at a mideleVation site in central Utah throughout the flies’ flight season of 2015.
    [Show full text]