A Topological Approach to Left Eigenvalues of Quaternionic Matrices

M.J. Pereira-S´aez† (joint work with E. Mac´ıas-Virg´os∗)

†Departamento de Econom´ıaAplicada II, Universidade da Coru˜na

∗Departamento de Xeometr´ıae Topolox´ıa, Universidade de Santiago de Compostela

Sevilla, September 9-14, 2012 1 Left eigenvalues Notion Study’s Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 2 / 69 Left eigenvalues

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 3 / 69 Left eigenvalues Notion

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 4 / 69 Left eigenvalues Notion

Notion Definition

Let A ∈ Mn×n(H), a λ ∈ H is said to be a left eigenvalue of the A if Av = λv

for some vector v ∈ Hn, v 6= 0. Equivalently, A − λI is a singular matrix.

For a matrix A ∈ Mn×n(H), we denote σl (A) its left spectrum, i.e. the set of left eigenvalues.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 5 / 69 Huang and So [Linear Algebra Appl., 2001] proved that a 2 × 2 matrix may have one, two or infinite left eigenvalues. A different proof was presented by EMV and MJPS [Electron. J. Linear Algebra, 2009]. Both proofs are algebraic in nature and seemingly difficult to generalize for n > 2.

Left eigenvalues Notion

About the existence of left eigenvalues: Wood [Bull. Lond. Math. Soc., 1985] proved that any n × n quaternionic matrix A has at least one left eigenvalue.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 6 / 69 A different proof was presented by EMV and MJPS [Electron. J. Linear Algebra, 2009]. Both proofs are algebraic in nature and seemingly difficult to generalize for n > 2.

Left eigenvalues Notion

About the existence of left eigenvalues: Wood [Bull. Lond. Math. Soc., 1985] proved that any n × n quaternionic matrix A has at least one left eigenvalue. Huang and So [Linear Algebra Appl., 2001] proved that a 2 × 2 matrix may have one, two or infinite left eigenvalues.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 6 / 69 Both proofs are algebraic in nature and seemingly difficult to generalize for n > 2.

Left eigenvalues Notion

About the existence of left eigenvalues: Wood [Bull. Lond. Math. Soc., 1985] proved that any n × n quaternionic matrix A has at least one left eigenvalue. Huang and So [Linear Algebra Appl., 2001] proved that a 2 × 2 matrix may have one, two or infinite left eigenvalues. A different proof was presented by EMV and MJPS [Electron. J. Linear Algebra, 2009].

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 6 / 69 Left eigenvalues Notion

About the existence of left eigenvalues: Wood [Bull. Lond. Math. Soc., 1985] proved that any n × n quaternionic matrix A has at least one left eigenvalue. Huang and So [Linear Algebra Appl., 2001] proved that a 2 × 2 matrix may have one, two or infinite left eigenvalues. A different proof was presented by EMV and MJPS [Electron. J. Linear Algebra, 2009]. Both proofs are algebraic in nature and seemingly difficult to generalize for n > 2.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 6 / 69 * λ ∈ H is on σl (A) iff the matrix A − λI is not invertible.

Left eigenvalues Notion

– There is no systematic study of left eigenvalues for n > 2. – In this talk we try a topological approach that could be generalized to other dimensions.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 7 / 69 Left eigenvalues Notion

– There is no systematic study of left eigenvalues for n > 2. – In this talk we try a topological approach that could be generalized to other dimensions.

* λ ∈ H is on σl (A) iff the matrix A − λI is not invertible.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 7 / 69 Left eigenvalues Study’s determinant

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 8 / 69 Left eigenvalues Study’s determinant

Study’s determinant It is possible to generalize to the the norm | det | (that is, with real values) of the complex determinant.

Definition

Let the quaternionic matrix A ∈ Mn×n(H) be decomposed as A = X + jY with X , Y ∈ Mn×n(C). We shall call Study’s determinant of A the non-negative real number Sdet(A) := (det c(A))1/2,  X −Y  where c(A) is the complex matrix c(A) = ∈ M ( ). Y X 2n×2n C

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 9 / 69 Left eigenvalues Study’s determinant

Proposition Study’s determinant Sdet is the only functional that verifies the following properties : 1 Sdet(AB) = Sdet(A) · Sdet(B); 2 if A is a complex matrix then Sdet(A) = | det(A)|.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 10 / 69 Left eigenvalues Study’s determinant

The following immediate consequences are very useful for computations. Corollary

1 Sdet(A) > 0 if and only if the matrix A is invertible; −1 2 let A and B = PAP be similar matrices, then Sdet(A) = Sdet(B); 3 Sdet(A) does not change when a (right) multiple of one column is added to another column. 4 Sdet(A) does not change when a (left) multiple of one row is added to another row; 5 Sdet(A) does not change when two columns (or two rows) are permuted.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 11 / 69 Left eigenvalues Study’s determinant

We shall need the following property too Proposition

For any matrix formed by two boxes A, B of order m and n respectively, it holds that A 0 Sdet = Sdet(A) · Sdet(B). ∗ B

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 12 / 69 Left eigenvalues Characteristic map

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 13 / 69 Proposition

The spectrum σl (A) is compact.

Left eigenvalues Characteristic map

Characteristic map

Definition

The map µ : H → H is a characteristic map of the matrix A ∈ Mn×n(H) if, up to a constant, its norm verifies

|µ(λ)| = Sdet(A − λI)

for all λ ∈ H.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 14 / 69 Left eigenvalues Characteristic map

Characteristic map

Definition

The map µ : H → H is a characteristic map of the matrix A ∈ Mn×n(H) if, up to a constant, its norm verifies

|µ(λ)| = Sdet(A − λI)

for all λ ∈ H.

Proposition

The spectrum σl (A) is compact.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 14 / 69 Left eigenvalues Characteristic map

For example, let D = diag(q1,..., qn) be a . Then

µ(λ) = (q1 − λ) ··· (qn − λ)

is a characteristic map for D.

For a it is the same.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 15 / 69 Spectrum of 2 × 2 matrices

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 16 / 69 Spectrum of 2 × 2 matrices

Remark The left spectrum is not invariant by similarity. However, if P is an invertible real matrix then Sdet(A − λI) = Sdet(PAP−1 − λI), hence A and PAP−1 have the same characteristic maps.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 17 / 69 if bc = 0 (triangular matrix), σl (A) = {a, d};

µ(λ) = (d − λ)(a − λ).

we study now the bc 6= 0 case.

Proposition

Computing σl (A) is equivalent to finding the roots of a characteristic map like

µ(λ) = c − (d − λ)b−1(a − λ).

Spectrum of 2 × 2 matrices

Let a b A = ∈ M ( ), c d 2×2 H Then,

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 18 / 69 we study now the bc 6= 0 case.

Proposition

Computing σl (A) is equivalent to finding the roots of a characteristic map like

µ(λ) = c − (d − λ)b−1(a − λ).

Spectrum of 2 × 2 matrices

Let a b A = ∈ M ( ), c d 2×2 H Then,

if bc = 0 (triangular matrix), σl (A) = {a, d};

µ(λ) = (d − λ)(a − λ).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 18 / 69 Spectrum of 2 × 2 matrices

Let a b A = ∈ M ( ), c d 2×2 H Then,

if bc = 0 (triangular matrix), σl (A) = {a, d};

µ(λ) = (d − λ)(a − λ).

we study now the bc 6= 0 case.

Proposition

Computing σl (A) is equivalent to finding the roots of a characteristic map like

µ(λ) = c − (d − λ)b−1(a − λ).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 18 / 69 Spectrum of 2 × 2 matrices

Proof .– The rank of a matrix is invariant if the matrix is replaced by another one obtained by adding to a column a right multiple of the other column.

a − λ b   0 b  A − λI = ∼ . c d − λ c − (d − λ)b−1(a − λ) d − λ

The problem of finding the roots of a quaternionic polynomial like µ(λ) was completely solved by Huang and So [Linear Algebra Appl., 2001] by purely algebraic methods.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 19 / 69 Spectrum of 2 × 2 matrices

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 20 / 69 Spectrum of 2 × 2 matrices Topological degree

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 21 / 69 Spectrum of 2 × 2 matrices Topological degree

Topological degree

We want to apply the following well known global result Theorem Let M be a connected closed oriented manifold, let µ: M → M be a differentiable map of degree k. Let m ∈ M be a regular value such that the differential µ∗λ preserves the orientation for any λ in the fiber µ−1(m). Then µ−1(m) is a finite set with k points.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 22 / 69 Spectrum of 2 × 2 matrices Linearization

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 23 / 69 Spectrum of 2 × 2 matrices Linearization

Linearization

Now, in order to obtain the regular values of µ, we show how can we compute the differential µ∗. The existence of the multiplicative norm |q| = (qq¯)1/2 on H guarantees that the usual proof of the Leibniz rule still works.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 24 / 69 Let f : H → H be a differentiable map such that f (λ) 6= 0 for all λ ∈ H. Let (1/f ): H\{0} → H be the map given by (1/f )(λ) = f (λ)−1. Then the differential is given by

−1 −1 (1/f )∗λ(X ) = −f (λ) f∗λ(X )f (λ) .

Spectrum of 2 × 2 matrices Linearization

Let f , g : H → H be two differentiable maps. Then the differential of the product is given by

(fg)∗λ(X ) = f∗λ(X )g(λ) + f (λ)g∗λ(X ).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 25 / 69 Spectrum of 2 × 2 matrices Linearization

Let f , g : H → H be two differentiable maps. Then the differential of the product is given by

(fg)∗λ(X ) = f∗λ(X )g(λ) + f (λ)g∗λ(X ).

Let f : H → H be a differentiable map such that f (λ) 6= 0 for all λ ∈ H. Let (1/f ): H\{0} → H be the map given by (1/f )(λ) = f (λ)−1. Then the differential is given by

−1 −1 (1/f )∗λ(X ) = −f (λ) f∗λ(X )f (λ) .

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 25 / 69 Proposition

A polynomial map like µ and the power map λ2 are homotopic, hence they have the same topological degree, which equals 2.

Spectrum of 2 × 2 matrices Linearization

We remark that the characteristic map µ: H → H, µ(λ) = c − (d − λ)b−1(a − λ) can be extended to a continuous map

µ: S 4 → S 4

on the sphere S 4 = H ∪ {∞}, because lim |µ(λ)| = ∞. |λ|→∞

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 26 / 69 Spectrum of 2 × 2 matrices Linearization

We remark that the characteristic map µ: H → H, µ(λ) = c − (d − λ)b−1(a − λ) can be extended to a continuous map

µ: S 4 → S 4

on the sphere S 4 = H ∪ {∞}, because lim |µ(λ)| = ∞. |λ|→∞

Proposition

A polynomial map like µ and the power map λ2 are homotopic, hence they have the same topological degree, which equals 2.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 26 / 69 Spectrum of 2 × 2 matrices Linearization

Proposition For the characteristic map µ, we have

−1 −1 µ∗λ(X ) = Xb (a − λ) + (d − λ)b X . We shall classify the different possible spectra of 2 × 2 quaternionic matrices depending on the rank of this map. So, if we call

P = (d − λ)b−1, Q = b−1(a − λ),

we have XQ + PX = 0, that is, the so-called Sylvester equation.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 27 / 69 Spectrum of 2 × 2 matrices Sylvester equation

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 28 / 69 Spectrum of 2 × 2 matrices Sylvester equation

Sylvester equation

Let P, Q, R ∈ H. We want to study the rank of the R-linear map Σ: H → H given by Σ(X ) = PX + XQ.

The equation Σ(X ) = R has been widely studied, sometimes under the name of Sylvester equation [Bull. Am. Math. Soc., 1944].

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 29 / 69 Spectrum of 2 × 2 matrices Sylvester equation

The following Proposition is a reformulation of the results by Janovsk´aand Opfer [Mitt. Math. Ges. Hamb., 2008] .

Proposition

1 The rank of Σ is even, namely 0, 2 or 4; 2 rank Σ < 4 if and only if P and −Q are similar quaternions, that is they have the same norm and the same real part; 3 rank Σ = 0 if and only if P is a real number and Q = −P.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 30 / 69 Spectrum of 2 × 2 matrices Sylvester equation

Proof.– Let

P = t + xi + yj + zk Q = s + ui + vj + wk.

The matrix associated to Σ with respect to the basis {1, i, j, k} is

 t + s −x − u −y − v −z − w x + u t + s −z + w y − v  J =   y + v z − w t + s −x + u  z + w −y + v x − u t + s

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 31 / 69 Spectrum of 2 × 2 matrices Sylvester equation

Since we have an explicit expression for det J,

det J = (t + s)4 + 2(t + s)2(x 2 + y 2 + z2 + u2 + v 2 + w 2)+ (x 2 + y 2 + z2 − u2 − v 2 − w 2)2 ≥ 0,

it is easy to study the rank J.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 32 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 33 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

Classification of left spectra

Now we are in a position to reformulate the following result from Huang and So. a b Let λ ∈ be an eigenvalue of A = with b 6= 0. And, let us denote H c d

−1 −1 2 a0 = −b c, a1 = b (a − d), ∆ = a1 − 4a0.

Theorem The matrix A has one, two or infinite left eigenvalues.

The latter case is equivalent to the following conditions: a0, a1 are real numbers such that a0 6= 0 and ∆ < 0.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 34 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

Remark Let us call spherical the infinite case, because the spectrum

2 σl (A) = {(1/2)(a + d + bq): q = ∆}

2 is diffeomorphic to the sphere S ⊂ H0 = hi, j, ki.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 35 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

– Let λ ∈ H be an eigenvalue of A, that is µ(λ) = 0. In the next Propositions we shall apply the previous result about the Sylvester Equation to the differential Σ = µ∗λ given by

−1 −1 µ∗λ(X ) = Xb (a − λ) + (d − λ)b X .

Following the notation of Sylvester equation, let us remember that

P = (d − λ)b−1, Q = b−1(a − λ).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 36 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

Non-generic cases

Proposition (Rank 0)

If rank µ∗λ = 0, then a0, a1 are real numbers and ∆ = 0. Moreover λ equals (a + d)/2 and this is the only left eigenvalue of the matrix (this is a spherical degenerate spectrum).

Proof .– Since the rank is null, we know from the Sylvester Equation that

P = t ∈ R, Q = −t,

2 then a1 = −2t and 2λ = a + d. From µ(λ) = 0 it follows that a0 = +t , so ∆ = 0. Now it is easy to check that λ = a + tb is the only left eigenvalue of A.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 37 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

Proposition (Rank 2)

If rank µ∗λ = 2 two things may happen: 1 either the spectrum is spherical and all the eigenvalues of A are of rank 2; 2 or the matrix has just one eigenvalue.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 38 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

0 Proof .– By using the diffeomorphism a + bσl (A ) = σl (A) we can substitute A by the so-called “

 0 1  A0 = . −a0 −a1

Now, we apply our proposition about the Sylvester Equation. Since the rank is 2, we have that

P = t + α, Q = −t + β

with α, β ∈ H0 = hi, j, ki, |α| = |β|= 6 0. Then

a1 = −2t + β − α.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 39 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

The first possibility is that β = α, then a1 = −2t. It follows from µ(λ) = 0 that

2 2 a0 = t + |β| 6= 0, ∆ = −4|β|2 < 0.

Then we have the so-called spherical case. In particular

2λ = −a1 + q, q = −2β.

The other eigenvalues have the form

2 2 (−a1 + q)/2, q = −4|β| ,

then the differential of µ verifies P = t − q−1/2 and Q = −t − q/2, and so they have rank 2 too.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 40 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

The second possibility is that β 6= α. Then

a1 = −2t + β − α,

a0 = (t + α)(t − β)

and the following lemma shows that the only eigenvalue is

λ = t − β.

Lemma Let A, B be two similar quaternions that do not commute. Then the equation λ2 − (A + B)λ + AB = 0 has the unique solution λ = B.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 41 / 69 Since the differential has maximal rank at the eigenvalue λ, the matrix A cannot be in the previous cases, hence all its eigenvalues are of rank 4. Then by the inverse function theorem the fiber µ−1(0) is discrete (in fact compact) and its cardinal equals the degree of the map µ, which is 2 (µ is homotopic to λ2 on the S 4). *Notice that the Jacobian is nonnegative.

Spectrum of 2 × 2 matrices Classification of left spectra

Generic case

Proposition (Rank 4)

If rank µ∗λ = 4 then the matrix has two different eigenvalues.

Proof .–

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 42 / 69 Then by the inverse function theorem the fiber µ−1(0) is discrete (in fact compact) and its cardinal equals the degree of the map µ, which is 2 (µ is homotopic to λ2 on the S 4). *Notice that the Jacobian is nonnegative.

Spectrum of 2 × 2 matrices Classification of left spectra

Generic case

Proposition (Rank 4)

If rank µ∗λ = 4 then the matrix has two different eigenvalues.

Proof .– Since the differential has maximal rank at the eigenvalue λ, the matrix A cannot be in the previous cases, hence all its eigenvalues are of rank 4.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 42 / 69 Spectrum of 2 × 2 matrices Classification of left spectra

Generic case

Proposition (Rank 4)

If rank µ∗λ = 4 then the matrix has two different eigenvalues.

Proof .– Since the differential has maximal rank at the eigenvalue λ, the matrix A cannot be in the previous cases, hence all its eigenvalues are of rank 4. Then by the inverse function theorem the fiber µ−1(0) is discrete (in fact compact) and its cardinal equals the degree of the map µ, which is 2 (µ is homotopic to λ2 on the S 4). *Notice that the Jacobian is nonnegative.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 42 / 69 3 × 3 matrices

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 43 / 69 – We shall find a map µA such that |µA(λ)| = Sdet(A − λI).

– µA will be in most cases a rational function instead of a polynomial.

3 × 3 matrices

The only known results about the left spectrum of 3 × 3 matrices are due to W. So [Southeast Asian Bull. Math., 2005]. W. So did a case by case study, depending on some relationships among the entries of the matrix. In general, there is no known method for solving the resulting equations.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 44 / 69 3 × 3 matrices

The only known results about the left spectrum of 3 × 3 matrices are due to W. So [Southeast Asian Bull. Math., 2005]. W. So did a case by case study, depending on some relationships among the entries of the matrix. In general, there is no known method for solving the resulting equations.

– We shall find a map µA such that |µA(λ)| = Sdet(A − λI).

– µA will be in most cases a rational function instead of a polynomial.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 44 / 69 3 × 3 matrices

Characteristic map  a b c  Consider the quaternionic matrix A =  f g h  ∈ M3×3(H). p q r

Let Pαβ be the real matrix obtained by interchanging the rows α, β in the . Left (right) multiplication by this matrix permutes rows (columns).

Remark

Let A ∈ Mn×n(H) and π any permutation of the indices 1,..., n sending i to 1 and j to n. Then π can be written as a composition of transpositions Pαβ and the −1 resulting matrix PAP has the initial entry aij in the place (1, n).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 45 / 69 3 × 3 matrices Polynomial case

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 46 / 69 3 × 3 matrices Polynomial case

Polynomial case First, suppose that the matrix has a zero in the entry c = 0. Then

 a − λ b 0  Sdet(A − λI) = Sdet  f g − λ h  . p q r − λ

There are three possibilities:

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 47 / 69 2 if b = 0 but h 6= 0, we reduce to the 2 × 2 case and we obtain

µ(λ) = q − (r − λ)h−1(g − λ) (a − λ);

3 finally, b 6= 0. We do a zero in the first row:

 0 b 0  Sdet(A − λI) = Sdet  f − (g − λ)b−1(a − λ) g − λ h  , p − qb−1(a − λ) q r − λ

then

µ(λ) = p − qb−1(a − λ) − (r − λ)h−1 f − (g − λ)b−1(a − λ) .

3 × 3 matrices Polynomial case

1 if b, h = 0, we have a triangular matrix, so we can take

µ(λ) = (r − λ)(g − λ)(a − λ);

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 48 / 69 3 finally, b 6= 0. We do a zero in the first row:

 0 b 0  Sdet(A − λI) = Sdet  f − (g − λ)b−1(a − λ) g − λ h  , p − qb−1(a − λ) q r − λ

then

µ(λ) = p − qb−1(a − λ) − (r − λ)h−1 f − (g − λ)b−1(a − λ) .

3 × 3 matrices Polynomial case

1 if b, h = 0, we have a triangular matrix, so we can take

µ(λ) = (r − λ)(g − λ)(a − λ);

2 if b = 0 but h 6= 0, we reduce to the 2 × 2 case and we obtain

µ(λ) = q − (r − λ)h−1(g − λ) (a − λ);

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 48 / 69 3 × 3 matrices Polynomial case

1 if b, h = 0, we have a triangular matrix, so we can take

µ(λ) = (r − λ)(g − λ)(a − λ);

2 if b = 0 but h 6= 0, we reduce to the 2 × 2 case and we obtain

µ(λ) = q − (r − λ)h−1(g − λ) (a − λ);

3 finally, b 6= 0. We do a zero in the first row:

 0 b 0  Sdet(A − λI) = Sdet  f − (g − λ)b−1(a − λ) g − λ h  , p − qb−1(a − λ) q r − λ

then

µ(λ) = p − qb−1(a − λ) − (r − λ)h−1 f − (g − λ)b−1(a − λ) .

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 48 / 69 Suppose that aij = 0, with i 6= j. Then there is a real P such that the transformation PAP−1 does not change the spectrum and it gives a matrix with a13 = 0.

3 × 3 matrices Polynomial case

Theorem

If the matrix A ∈ M3×3(H) has some zero entry outside the diagonal, then it admits a polynomial characteristic map.

Proof .–

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 49 / 69 3 × 3 matrices Polynomial case

Theorem

If the matrix A ∈ M3×3(H) has some zero entry outside the diagonal, then it admits a polynomial characteristic map.

Proof .–

Suppose that aij = 0, with i 6= j. Then there is a real invertible matrix P such that the transformation PAP−1 does not change the spectrum and it gives a matrix with a13 = 0.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 49 / 69 3 × 3 matrices Rational case

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 50 / 69 3 × 3 matrices Rational case

Rational case Using the properties of Sdet, we can compute the Study’s determinant of the matrix A by doing zeroes in the first row. Then

 0 0 c  Sdet(A) = Sdet  f − hc−1a g − hc−1b h  . p − rc−1a q − rc−1b r

Definition

−1 We shall call pole of the matrix A ∈ M3×3(H) the point πA = g − hc b.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 51 / 69 2 for λ 6= πA we define

 −1 µ(λ) = (πA − λ) p − (r − λ)c (a − λ) − −1  −1 −1  q − (r − λ)c b (πA − λ) f − hc (a − λ) .

3 × 3 matrices Rational case

We obtain the following characteristic map for A. Proposition

Let A be a matrix of order 3 × 3 such that c 6= 0. A characteristic map can be defined as follows: −1 1 if πA = g − hc b is the pole of A, then

−1  −1  µ(πA) = q − (r − πA)c b f − hc (a − πA) ;

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 52 / 69 3 × 3 matrices Rational case

We obtain the following characteristic map for A. Proposition

Let A be a matrix of order 3 × 3 such that c 6= 0. A characteristic map can be defined as follows: −1 1 if πA = g − hc b is the pole of A, then

−1  −1  µ(πA) = q − (r − πA)c b f − hc (a − πA) ;

2 for λ 6= πA we define

 −1 µ(λ) = (πA − λ) p − (r − λ)c (a − λ) − −1  −1 −1  q − (r − λ)c b (πA − λ) f − hc (a − λ) .

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 52 / 69 However, the following example shows that µ may not be continuous at the pole πA.

3 × 3 matrices Rational case

Continuity.– Up to now we have defined maps which verify that

|µA(λ)| = Sdet(A − λI) for all λ ∈ H. Since Sdet is a continuous map we have

lim |µ(λ)| = |µ(πA)|. λ→πA

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 53 / 69 3 × 3 matrices Rational case

Continuity.– Up to now we have defined maps which verify that

|µA(λ)| = Sdet(A − λI) for all λ ∈ H. Since Sdet is a continuous map we have

lim |µ(λ)| = |µ(πA)|. λ→πA However, the following example shows that µ may not be continuous at the pole πA.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 53 / 69 3 × 3 matrices Rational case

Example

The pole πA = −i is not a left eigenvalue:

 0 i 1  A =  3i − k 0 1  . k −1 + j + k 0

We have

µ(πA) = (−1 + j + k + 1)(3i − k − i) = 1 − i + 2j − 2k.

Let us take limits following a restricted direction:

lim µ(−i + εq) = −q(j + k)q−1(2i − k); ε→0

they depend on q ∈ H, hence the limit lim µ(λ) does not exist. λ→πA

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 54 / 69 Whether it is always possible or not to find a polynomial, or at least a continuous characteristic map for a given matrix A it is open to discussion. What we can say is that there are matrices which can not be reduced to the polynomial case c = 0.

3 × 3 matrices Rational case

We can prove that Theorem

The characteristic map µA is continuous if and only if the pole πA is a left eigenvalue of A.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 55 / 69 What we can say is that there are matrices which can not be reduced to the polynomial case c = 0.

3 × 3 matrices Rational case

We can prove that Theorem

The characteristic map µA is continuous if and only if the pole πA is a left eigenvalue of A.

Whether it is always possible or not to find a polynomial, or at least a continuous characteristic map for a given matrix A it is open to discussion.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 55 / 69 3 × 3 matrices Rational case

We can prove that Theorem

The characteristic map µA is continuous if and only if the pole πA is a left eigenvalue of A.

Whether it is always possible or not to find a polynomial, or at least a continuous characteristic map for a given matrix A it is open to discussion. What we can say is that there are matrices which can not be reduced to the polynomial case c = 0.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 55 / 69 3 × 3 matrices Rational case

Example (The pole πA = 1 + j is an eigenvalue)  0 −j i  A =  −1 + j j k  , p q r with p, q, r ∈ H arbitrary. In fact,

µ(πA) = (q − (r − 1 − j)k)(−1 + j + j(−1 − j)) = 0.

*In fact, by moving around the entries outside the diagonal one can obtain up to six different characteristic maps, each one with a different pole.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 56 / 69 3 × 3 matrices Rational case

Extension to the infinite point.– We can prove that it is possible to extend the rational map µ defined in the c 6= 0 4 case to S = H ∪ {∞} (may be with a discontinuity at the pole πA).

Proposition The characteristic maps µ for the 3 × 3matrices verify that lim |µ(λ)| = ∞. |λ|→∞

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 57 / 69 3 × 3 matrices Topological study of the 3 × 3 case

1 Left eigenvalues Notion Study’s determinant Characteristic map

2 Spectrum of 2 × 2 matrices Topological degree Linearization Sylvester equation Classification of left spectra

3 3 × 3 matrices Polynomial case Rational case Topological study of the 3 × 3 case

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 58 / 69 2 We have the explicit expression of µ∗ for the two cases (polynomial and rational).

3 For a given eigenvalue λ of a matrix, we are able to compute the rank of µ∗λ (different eigenvalues may have µ∗λ with different rank).

3 × 3 matrices Topological study of the 3 × 3 case

Topological study of the 3 × 3 case

1 We cannot establish a complete classification.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 59 / 69 3 For a given eigenvalue λ of a matrix, we are able to compute the rank of µ∗λ (different eigenvalues may have µ∗λ with different rank).

3 × 3 matrices Topological study of the 3 × 3 case

Topological study of the 3 × 3 case

1 We cannot establish a complete classification.

2 We have the explicit expression of µ∗ for the two cases (polynomial and rational).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 59 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Topological study of the 3 × 3 case

1 We cannot establish a complete classification.

2 We have the explicit expression of µ∗ for the two cases (polynomial and rational).

3 For a given eigenvalue λ of a matrix, we are able to compute the rank of µ∗λ (different eigenvalues may have µ∗λ with different rank).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 59 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Now, we have to deal with a local notion of degree. The main result we need is the following Theorem Let Ω be a bounded open set in Rn. Let µ: Ω → Rn be a map continuous on the closure Ω and differentiable on Ω. Suppose that 0 is a regular value of µ and that 0 ∈/ µ(∂Ω). Then X deg(µ, Ω, 0) = sgn[Jµ(λ)] λ∈µ−1(0)

where we denote by Jµ the Jacobian of µ.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 60 / 69 2 if b = 0, h 6= 0 then

−1 −1  −1 µ∗λ(X ) = Xh (g−λ)(a−λ)− q − (r − λ)h (g − λ) X +(r−λ)h X (a−λ);

3 otherwise,

−1 −1 −1 µ∗λ(X ) = qb − (r − λ)h (g − λ)b X +Xh −1 f − (g − λ)b−1(a − λ) − (r − λ)h−1Xb −1(a − λ).

3 × 3 matrices Topological study of the 3 × 3 case

Proposition Let λ be a left eigenvalue of a matrix with c = 0. Then the differential of the polynomial characteristic map µA is given by 1 if b, h = 0 then

µ∗λ(X ) = −X (g − λ)(a − λ) − (r − λ)(g − λ)X − (r − λ)X (a − λ);

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 61 / 69 3 otherwise,

−1 −1 −1 µ∗λ(X ) = qb − (r − λ)h (g − λ)b X +Xh −1 f − (g − λ)b−1(a − λ) − (r − λ)h−1Xb −1(a − λ).

3 × 3 matrices Topological study of the 3 × 3 case

Proposition Let λ be a left eigenvalue of a matrix with c = 0. Then the differential of the polynomial characteristic map µA is given by 1 if b, h = 0 then

µ∗λ(X ) = −X (g − λ)(a − λ) − (r − λ)(g − λ)X − (r − λ)X (a − λ);

2 if b = 0, h 6= 0 then

−1 −1  −1 µ∗λ(X ) = Xh (g−λ)(a−λ)− q − (r − λ)h (g − λ) X +(r−λ)h X (a−λ);

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 61 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Proposition Let λ be a left eigenvalue of a matrix with c = 0. Then the differential of the polynomial characteristic map µA is given by 1 if b, h = 0 then

µ∗λ(X ) = −X (g − λ)(a − λ) − (r − λ)(g − λ)X − (r − λ)X (a − λ);

2 if b = 0, h 6= 0 then

−1 −1  −1 µ∗λ(X ) = Xh (g−λ)(a−λ)− q − (r − λ)h (g − λ) X +(r−λ)h X (a−λ);

3 otherwise,

−1 −1 −1 µ∗λ(X ) = qb − (r − λ)h (g − λ)b X +Xh −1 f − (g − λ)b−1(a − λ) − (r − λ)h−1Xb −1(a − λ).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 61 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Example (Three different eigenvalues, all of them with maximal rank 4) Let  k 0 0  A =  3i − j −i i  . 1 − 2k j −j The characteristic map is

µ(λ) = (−1 − k + λi)λ(k − λ)

hence σl (A) = {k, 0, −i − j}. The differential of µ at each eigenvalue is:

µ∗k(X ) = (−1 − i + k)X ;

µ∗0(X ) = −(1 + k)X k;

µ∗(−i−j)(X ) = −X (−1 − i + j) + X (i + j + k).

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 62 / 69 Regarding the differential, for the null eigenvalue it has maximal range, and for λ = −i − j it is null.

µ∗0(X ) = (1 + k)X (i + j);

µ∗(−i−j)(X ) = 0.

3 × 3 matrices Topological study of the 3 × 3 case

Example (Different rank of µ∗λ for different eigenvalues) −i − j 0 0  A =  k −i i  1 − i j −j

A has two eigenvalues. This time,

µ(λ) = (1 + k − λi)λ(i + j + λ)

so σl (A) = {0, −i − j}.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 63 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Example (Different rank of µ∗λ for different eigenvalues) −i − j 0 0  A =  k −i i  1 − i j −j

A has two eigenvalues. This time,

µ(λ) = (1 + k − λi)λ(i + j + λ)

so σl (A) = {0, −i − j}. Regarding the differential, for the null eigenvalue it has maximal range, and for λ = −i − j it is null.

µ∗0(X ) = (1 + k)X (i + j);

µ∗(−i−j)(X ) = 0.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 63 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Example (Three different eigenvalues)  −1 1 0  A =  j 0 −1  has three different eigenvalues 1 − j −1 1

λ1 = 0, q √  √  λ2, λ3 = ± −1 + 2 1 + 2 + j

because the characteristic map is

µ(λ) = −λ(2 + j) + λ3.

For λ1 the differential is the right translation µ∗0(X ) = −X (2 + j); for λ2 and λ3 it has the associated matrix  5 0 −5 0   0 7 0 1  M =   ,  5 0 5 0  0 −1 0 0

which is of maximal rank too.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 64 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Example (with µ∗ of odd range)  j 1 0  A =  2i −k 1  . 2 − i − 2j −1 − j + k −i − k The characteristic map is

µ(λ) = 2 − i − 2j + (1 + j − k)(j − λ) + (i + k − λ) (2i + (k + λ)(j − λ)) .

For the left eigenvalue λ = 0 the differential is

µ∗0(X ) = kX + X i + (i + k)X j,

whose real associated matrix  0 −2 0 0   0 0 −2 0  M =    0 0 0 0  2 0 −2 0

has rank 3.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 65 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Conclusion.–

We have proved that a generic 2 × 2 quaternionic matrix has two different left eigenvalues. The singular cases are the spherical one (infinitely many eigenvalues) or a spectrum with just one point.

We have a characteristic map for any 3 × 3 quaternionic matrix (and µ∗!). The 3 × 3 case is still lacking a complete classification.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 66 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Deimling, K. Nonlinear functional analysis. Springer-Verlag, 1985. Eilenberg, S.; Steenrod, N. Foundations of algebraic topology. Princeton Mathematical Series, No.15, Princeton: University Press, XIV, 1952. Huang, L.; So, W. On left eigenvalues of a quaternionic matrix. Linear Algebra Appl., 323, No.1-3:105–116, 2001. Huang, L.; So, W. Quadratic formulas for quaternions. Appl. Math. Lett., 15, No.5:533–540, 2002. Janovsk´a,D.; Opfer, G. Linear equations in quaternionic variables. Mitt. Math. Ges. Hamb., 27:223-234, 2008.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 67 / 69 3 × 3 matrices Topological study of the 3 × 3 case

Mac´ıas-Virg´os,E.; Pereira-S´aez,M.J. Left eigenvalues of 2 × 2 symplectic matrices. Electron. J. Linear Algebra, 18:274–280, 2009. So, W. Quaternionic left eigenvalue problem. Southeast Asian Bull. Math. 29 No. 3:555-565, 2005. Wood, R.M.W. Quaternionic eigenvalues. Bull. Lond. Math. Soc., 17:137–138, 1985. Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl., 251:21–57, 1997. Zhang, F. Gerˇsgorin type theorems for quaternionic matrices. Linear Algebra Appl., 424, No. 1:139–153, 2007.

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 68 / 69 3 × 3 matrices Topological study of the 3 × 3 case

[email protected]

M.J. Pereira-S´aez(UDC) Left Eigenvalues of Quaternionic Matrices Sevilla, September 9-14, 2012 69 / 69