The Molecular and Immunologic Evaluation of Nutritionally At-Risk Hosts

Total Page:16

File Type:pdf, Size:1020Kb

The Molecular and Immunologic Evaluation of Nutritionally At-Risk Hosts Nutrition, Immunity, and Infection in Infants and Children, edited by Robert M. Suskind and Kraisid Tontisirin. Nestle Nutrition Workshop Series, Pediatric Program. Vol. 45. Nestec Ltd., Vevey/Lippincott Williams & Wilkins, Philadelphia ©2001. The Molecular and Immunologic Evaluation of Nutritionally At-Risk Hosts Jonathan Powell, Steven H. Yoshida, Judy Van de Water, and M. Eric Gershwin* Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA Without proper nutrition, the immune system would be deprived of the components and mechanisms that are needed to generate an effective immune response. Some im- munologic variables are often used as measures of the status of the immune system and its responsiveness to antigenic challenges, including leukocyte number and mo- bility, oxidant balance, protein activity, antibody production, and interleukin release. All of these immunologic indices, and more, are affected by nutrition. The effects of nutrition on these measurable characteristics also directly affect a person's health. The clinical outcomes of nutritional deficiencies that are of particular interest here in- volve those that compromise an individual's ability to resist infectious microorgan- isms. Decreased leukocyte proliferation and phagocytic activity could result in less clonal expansion of microbe-specific clones of lymphocytes and less vigorous mi- crobial elimination. Shifts in oxidant balance will have repercussions on the cell cy- cle. Alterations in proteins could lead to immunologically important changes in tran- scription regulation (zinc-finger proteins) or antioxidant protection (selenium- glutathione peroxidase). Antibody synthesis is associated with virus neutralization, complement activation, and atopy. Nutritionally related changes in intercellular com- munication could have many effects on immune responsiveness and homeostasis through the disruption of cooperative leukocyte activity. Thus, the immune problems related to nutritional deficiencies could range from increased opportunistic infections to suboptimal responses to vaccinations, and perhaps to other immunologic disorders such as allergies. •"Correspondence to: [email protected] 69 70 EVALUATION OF NUTRITIONALLY AT RISK HOSTS Innate immune mechanisms, unlike acquired immune responses, are defined as those aspects of the immune response that do not appear to be either qualitatively or quantitatively affected by repeated contact with the same specific immunologic stim- ulus. Such responses are not customized for the offending stimulus, and no enhanced response occurs following another exposure with the stimulus because no immuno- logic memory exists of past contacts. Thus, innate immunity is considered a more primitive, basal, or constitutional form of defense. On this foundation, the more flex- ible acquired immune system developed. PHAGOCYTES Phagocytes are cells that consume other cells and particles and become important fol- lowing breaches of physical barriers. As mentioned, phagocytosis was an early de- velopment in the evolution of the immune system and this activity is widely used in both innate and acquired immune responses. Neutrophils (polymorphonuclear cells) and macrophages—the two main phagocytes—are both produced in the bone marrow and released into blood. Mature neutrophils are characterized by a multilobed nu- cleus and a large reservoir of cytoplasmic granules that are used in the degradation of phagocytosed bacteria. Myeloperoxidase, defensins, bactericidal or permeability in- creasing factor, and cathepsin G are contained in the primary azurophilic granules, whereas lactoferrin, lysozyme, alkaline phosphatase, and cytochrome b558 are found in the secondary granules of neutrophils. Macrophages circulate in the blood as monocytes (1) (normally 1 % to 6% of cir- culating leukocytes) and then undergo further maturation to become tissue macrophages or histiocytes. They are widely distributed in the host and, in different tissues, attain distinct morphologic characteristics of separate nomenclature, such as Kupffer cells in liver or osteoclasts in bone. Macrophage granules differ from those in neutrophils as they are cytoplasmic bodies and contain acid hydrolases such as pro- teases, nucleases, and lipases. Importantly, unlike the polymorphonuclear cells, macrophages can recycle degraded antigen to the cell surface for antigen presenta- tion to lymphocytes. Phagocytes recognize bacteria in various ways ranging from nonspecific attach- ment through hydrophobicity to specific receptor-ligand interactions. In any case, par- ticles larger than 100 nm in diameter activate intracellular contractile systems that trig- ger phagocytosis and fusion of the cytoplasmic granules with the particle-containing phagosome. Phagocytes also generate reactive oxygen molecules to kill microorgan- isms; this activity is called the respiratory, oxidative, or metabolic burst, owing to the characteristic increase in oxygen consumption (2). Cells are protected from their own toxic oxidative compounds by the sulfhydryl-containing tripeptide, reduced glu- tathione, or catalase, which enzymatically converts H2O2 to water and oxygen. The longer lifespan of macrophages (months) compared with neutrophils (< 48 hours) is reflected by differences in their rate of degradation of engulfed materials. Phagocytosis by macrophages tends to be slower than by neutrophils, and the metabolic burst is less intense. Such a strategy provides both short- and long-term EVALUATION OF NUTRITIONALLY AT RISK HOSTS 71 phagocytic function in the elimination of microbes and other particulate foreign ma- terials. As with all circulating leukocytes, measurement of the frequency of neu- trophils and monocytes is a useful indicator of immune status in an individual. This status can be assessed by the microscopic analysis and counting of cells in a blood film (blood count) or by using flow cytometry, which sorts cells based on their size, granularity, or specific cell surface antigens that are detected with fluorescent mon- oclonal antibodies. The flow cytometer uses a hydraulic system to pass single cells from a cell suspension before a laser source so that leukocytes can be individually phenotyped. Before analysis, cells are incubated with commercially available fluo- rescent monoclonal antibodies, allowing identification of different leukocyte sub- types or their degree of activation. Functional studies include the phagocytic activity, lysosomal activity, metabolic burst, and the resting and stimulated production of the macrophage cytokine interleukin 1 (3). T LYMPHOCYTES All leukocytes develop from a unique, self-renewing, pluripotential hematopoietic stem cell (4) and different developmental signals and tissue microenvironments give rise to the diversity of white blood cells. Much interest exists in the identification, pu- rification, and nature of this stem cell as it may be ideal for bone marrow transplan- tation. Such a cell can reconstitute the full range of leukocytes without the hazards of graft-versus-host reaction that can occur following the implantation of more mature effector donor cells. In graft-versus-host disease, the donor immune system recog- nizes the host as foreign and initiates a reaction to recipient tissues. It is still unre- solved whether the implantation of donor stem cells without also manipulating the tissue microenvironments, some of which change with age (e.g., the thymus), can fully reconstitute an entire immune system. The T (thymic-dependent) lymphocytes develop from self-renewing progenitors, which migrate from the bone marrow to the thymic gland (5,6) where maturation oc- curs. Surface markers are commonly used in staging thymocytes; progenitors are ini- tially CD3~CD4~ CD8~; however, following gene rearrangement in the thymic cor- tex, the T-cell receptor (TCR) is expressed (CD3+). 78 T cells remain CD4~CD8~, whereas a^T cells convert to a CD4+CD8+ phenotype and mature to either CD4~CD8+ or CD4+CD8" cells. Positive clonal selection results in T cells re- stricted to recognize host major histocompatibility complex (MHC). Finally, thymo- cytes migrate to the thymic medulla where clones recognizing self-antigen-MHC complexes are eliminated (negative selection) to minimize the potential for autore- activity. Mature T cells are thus released into the peripheral circulation. Atrophy of the mammalian thymus begins during puberty, but T-cell development can shift to other tissues, in particular to the gastrointestinal tract (7,8). Normally, T cells only recognize antigen that is presented to them by an antigen- presenting cell (APC) such as a macrophage or dendritic cell. APCs process and pre- sent antigen with either MHC class I or class II. Both MHC class I and II molecules are transmembrane heterodimers that contain structural domains formed by disulfide 72 EVALUATION OF NUTRITIONALLY AT RISK HOSTS bridging. MHC class I heterodimers are composed of a nonpolymorphic P2 mi- croglobulin from chromosome 15 and a polymorphic a chain with three disulfide- linked domains. Class II antigens are formed by polymorphic a and (3 chains, each with two immunoglobulin domains. Both MHC molecules contain clefts that bind peptide antigens through noncovalent interactions. MHC class I is usually involved in the presentation of endogenous antigen, allowing the detection of abnormal cellu- lar proteins that may arise, for example, from tumorigenesis or viral infections. In contrast, MHC class
Recommended publications
  • Citrullinated Protein Antibody Paratope Drives Epitope Spreading and Polyreactivity in Rheumatoid Arthritis
    Arthritis & Rheumatology Vol. 0, No. 0, Month 2019, pp 1–11 DOI 10.1002/art.40760 © 2019, American College of Rheumatology Affinity Maturation of the Anti–Citrullinated Protein Antibody Paratope Drives Epitope Spreading and Polyreactivity in Rheumatoid Arthritis Sarah Kongpachith, Nithya Lingampalli, Chia-Hsin Ju, Lisa K. Blum, Daniel R. Lu, Serra E. Elliott, Rong Mao and William H. Robinson Objective. Anti–citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA). While epitope spreading of the serum ACPA response is believed to contribute to RA pathogenesis, little is understood regarding how this phenomenon occurs. This study was undertaken to analyze the antibody repertoires of individuals with RA to gain insight into the mechanisms leading to epitope spreading of the serum ACPA response in RA. Methods. Plasmablasts from the blood of 6 RA patients were stained with citrullinated peptide tetramers to identify ACPA- producing B cells by flow cytometry. Plasmablasts were single-cell sorted and sequenced to obtain antibody repertoires. Sixty-nine antibodies were recombinantly expressed, and their anticitrulline reactivities were characterized using a cyclic citrullinated peptide enzyme- linked immuosorbent assay and synovial antigen arrays. Thirty- six mutated antibodies designed either to represent ancestral antibodies or to test paratope residues critical for binding, as determined from molecular modeling studies, were also tested for anticitrulline reactivities. Results. Clonally related monoclonal ACPAs and their shared ancestral antibodies each exhibited differential re- activity against citrullinated antigens. Molecular modeling identified residues within the complementarity-determining region loops and framework regions predicted to be important for citrullinated antigen binding. Affinity maturation re- sulted in mutations of these key residues, which conferred binding to different citrullinated epitopes and/or increased polyreactivity to citrullinated epitopes.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,796,427 B2 Spee Et Al
    USOO8796427B2 (12) United States Patent (10) Patent No.: US 8,796,427 B2 Spee et al. (45) Date of Patent: Aug. 5, 2014 (54) HUMANIZED ANTI-HUMAN NKG2A EP 1036327 A2 9, 2000 MONOCLONAL ANTIBODY JP O3112485 A 5, 1991 JP O3112486 A 5, 1991 (75) Inventors: Petrus Johannes Louis Spee, Allerød E. 2025. A 3.28. (DK); Jianhe Chen, Beijing (CN); JP O3112484 U. 8, 2005 Soren Berg Padkjaer, Vaerlose (DK); WO 99.28748 A2 6, 1999 Jing Su, Beijing (CN); Jinchao Zhang, W 94.9. A2 258 Beijing (CN); Jiujiu Yu, Zhejiang (CN) WO O3,OO8449 A1 1, 2003 WO O3,O95965 A2 11/2003 (73) Assignee: Novo Nordisk A/S, Bagsvaerd (DK) WO 2004.?003.019 A2 1/2004 WO WO-2004/056312 T 2004 (*) Notice: Subject to any disclaimer, the term of this WO WO 2006/070286 12, 2004 patent is extended or adjusted under 35 W. 3:39:23, A. i58. U.S.C. 154(b) by 153 days. WO WO 2006O70286 A2 * T 2006 WO 2007042573 A2 4/2007 (21) Appl. No.: 12/811,990 WO WO 2007042573 A2 * 4, 2007 WO WO 2008/OO9545 1, 2008 (22) PCT Filed: Jan. 23, 2009 WO 2009/092805 A1 T 2009 (86). PCT No.: PCT/EP2009/050795 OTHER PUBLICATIONS S371 (c)(1), Petrie, E. J., et al. (2008), J. Exp. Med. 205: 725-735.* (2), (4) Date: Nov. 19, 2010 Bagot et al., “Functional Inhibitory Receptors Expressed by a Cuta neous T-Cell Lymphoma-Specific Cytolytic Clonal T-Cell Popula (87) PCT Pub. No.: WO2009/0928.05 tion.” Journal ofInvestigative Dermatology, 2000, vol.
    [Show full text]
  • Neural Message Passing for Joint Paratope-Epitope Prediction
    Neural message passing for joint paratope-epitope prediction Alice Del Vecchio 1 Andreea Deac 2 3 4 Pietro Lio` 1 Petar Velickoviˇ c´ 4 Abstract Hence, both the antibody and the antigen may be viewed as sequences of amino acid residues. Their binding site Antibodies are proteins in the immune system consists of two regions: the paratope on the antibody, and which bind to antigens to detect and neutralise the epitope on its corresponding antigen. Predicting them them. The binding sites in an antibody-antigen can therefore be posed as a binary classification problem: interaction are known as the paratope and epitope, for each amino acid residue in the antibody and antigen, respectively, and the prediction of these regions respectively, do they participate in the binding? is key to vaccine and synthetic antibody develop- ment. Contrary to prior art, we argue that paratope However, proteins can also be considered as graphs with its and epitope predictors require asymmetric treat- residues as nodes, with two nodes sharing an edge if their ment, and propose distinct neural message passing residues are spatially close. Recently, such contact graphs architectures that are geared towards the specific have been directly leveraged for protein function prediction aspects of paratope and epitope prediction, re- by Gligorijevic et al.(2020). spectively. We obtain significant improvements The advantage of considering a sequence based approach on both tasks, setting the new state-of-the-art and over a graph-based approach is that structural information recovering favourable qualitative predictions on is much harder to obtain. However, recent advancements antigens of relevance to COVID-19.
    [Show full text]
  • Antigen Mimicry-Recognizing Paratope
    Structural Evaluation of a Mimicry-Recognizing Paratope: Plasticity in Antigen−Antibody Interactions Manifests in Molecular Mimicry This information is current as of September 28, 2021. Suman Tapryal, Vineet Gaur, Kanwal J. Kaur and Dinakar M. Salunke J Immunol published online 3 June 2013 http://www.jimmunol.org/content/early/2013/06/01/jimmun ol.1203260 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 3, 2013, doi:10.4049/jimmunol.1203260 The Journal of Immunology Structural Evaluation of a Mimicry-Recognizing Paratope: Plasticity in Antigen–Antibody Interactions Manifests in Molecular Mimicry Suman Tapryal,*,1 Vineet Gaur,*,1 Kanwal J. Kaur,* and Dinakar M. Salunke*,† Molecular mimicry manifests antagonistically with respect to the specificity of immune recognition. However, it often occurs because different Ags share surface topologies in terms of shape or chemical nature.
    [Show full text]
  • IMMUNOCHEMICAL TECHNIQUES Antigens Antibodies
    Imunochemical Techniques IMMUNOCHEMICAL TECHNIQUES (by Lenka Fialová, translated by Jan Pláteník a Martin Vejražka) Antigens Antigens are macromolecules of natural or synthetic origin; chemically they consist of various polymers – proteins, polypeptides, polysaccharides or nucleoproteins. Antigens display two essential properties: first, they are able to evoke a specific immune response , either cellular or humoral type; and, second, they specifically interact with products of this immune response , i.e. antibodies or immunocompetent cells. A complete antigen – immunogen – consists of a macromolecule that bears antigenic determinants (epitopes) on its surface (Fig. 1). The antigenic determinant (epitope) is a certain group of atoms on the antigen surface that actually interacts with the binding site on the antibody or lymphocyte receptor for the antigen. Number of epitopes on the antigen surface determines its valency. Low-molecular-weight compound that cannot as such elicit production of antibodies, but is able to react specifically with the products of immune response, is called hapten (incomplete antigen) . antigen epitopes Fig. 1. Antigen and epitopes Antibodies Antibodies are produced by plasma cells that result from differentiation of B lymphocytes following stimulation with antigen. Antibodies are heterogeneous group of animal glycoproteins with electrophoretic mobility β - γ, and are also called immunoglobulins (Ig) . Every immunoglobulin molecule contains at least two light (L) and two heavy (H) chains connected with disulphidic bridges (Fig. 2). One antibody molecule contains only one type of light as well as heavy chain. There are two types of light chains - κ and λ - that determine type of immunoglobulin molecule; while heavy chains exist in 5 isotypes - γ, µ, α, δ, ε; and determine class of immunoglobulins - IgG, IgM, IgA, IgD and IgE .
    [Show full text]
  • Immunoglobulins.Pdf
    Immunoglobulins RAKESH SHARDA Department of Veterinary Microbiology NDVSU College of Veterinary Science & A.H., MHOW Structure and Functions Definition • Immunoglobulins are glycoprotein molecules belonging to γ-globulins class of plasma proteins produced in response to a non-self or an altered self immunogen and act as antibodies in humoral adaptive immune response. • Immunoglobulins are produced in vertebrates by plasma cells, which are the terminally differentiated B lymphocytes + - albumin globulins α α β γ Amount of protein of Amount 1 2 Immune serum Ag adsorbed serum Mobility Basic Immunoglobulin Structure • γ-globulin • glycoprotein • heterodimer • ‘Y’ shaped molecule • coded by immunoglobulin supergene family Basic Immunoglobulin Structure Disulfide bond Carbohydrate C V L L CH CH CH 2 3 V 1 Hinge Region H Immunoglobulin Structure – a monomer (H2L2) Disulfide bond • 2 Heavy & 2 Light chains Carbohydrate • Disulfide bonds CL – Inter-chain VL CH2 CH3 – Intra-chain CH1 Hinge Region VH Immunoglobulin Structure • Variable & Constant Disulfide bond regions in each chain – VL & CL Carbohydrate – VH & CH C • Forms globular loop L like structure called as VL CH2 CH3 domains CH1 Hinge Region • Hinge Region VH Basic Immunoglobulin Structure • A monomer (H2L2) of an immunoglobulin molecule is made up of: – 2 Light Chains (identical) ~25 KDa – 2 Heavy Chains (identical) ~50 KDa • Each light chain bound to heavy chain by disulfide bonds (H-L) • Each heavy chain bound to heavy chain by disulfide bonds (H-H) • The ¼ portion of each H chain and ½ of each L chain towards amino terminal are more variable (110 aa each - VH and VL) in amino acid composition as compared to the remaining portion towards carboxyl terminal (CH and CL) in each monomer, which has nearly constant composition in each domain of a given isotype.
    [Show full text]
  • A Case Report of Nephrotic Syndrome While Undergoing Quinine Therapy
    Open Access Case Report DOI: 10.7759/cureus.2283 A Case Report of Nephrotic Syndrome While Undergoing Quinine Therapy Brittany Albrecht 1 , Shelley Giebel 2 , Michelle McCarron 3 , Bhanu Prasad 2 1. College of Medicine, University of Saskatchewan 2. Department of Nephrology, Regina General Hospital 3. Research and Performance Support, Saskatchewan Health Authority Corresponding author: Brittany Albrecht, [email protected] Abstract We summarize the case of an 81-year-old Caucasian female who presented to her family physician with signs and symptoms of nephrotic syndrome following a brief exposure to quinine. Prior to that visit, she was clinically well with no chronic medical ailments and met with her family physician for annual physical assessments. She had taken 11 tablets of quinine for nocturnal leg cramps over the course of 28 days before starting to notice mild peripheral edema, which subsequently progressed, leading to a family physician review. Her initial serum albumin level was 12 g/L, and a 24-hour urine protein output was quantified at 8.14 g/day; she was diagnosed as having nephrotic syndrome. A kidney biopsy confirmed the diagnosis of minimal change disease (MCD). Quinine therapy was stopped, and she was initiated on a tapering regime of prednisone with concurrent cyclosporine therapy. Within a fortnight of starting therapy, she went into remission and her immunosuppressive medications were rapidly tapered and discontinued. This paper reports an association between the use of quinine and subsequent MCD. This case report proposes that the use of quinine has an association with, and may be causal for, the development of minimal change disease.
    [Show full text]
  • 4 Antibodies from Other Species Melissa L
    85 4 Antibodies from Other Species Melissa L. Vadnais1, Michael F. Criscitiello2, and Vaughn V. Smider1 1Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, USA 2Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Pathobiology, 400 Raymond Stotzer Parkway, College Station, TX 77843, USA 4.1 Introduction Immunoglobulins are the molecular basis of humoral immunity. Across different species, these macromolecules maintain a common quaternary structure, which is typically comprised of two identical heavy chains with covalently attached oligosaccharide groups and two identical non-glycosylated, light chains. These glycoprotein molecules recognize and bind a particular antigen in a highly complex and exceedingly specific immune response. Antibodies are the primary protective molecules elicited by most vaccines, and recombinant antibodies are now a major class of therapeutics for multiple diseases. The earliest antibody therapeutics were derived from serum of nonhuman species. In particular, horse serum served as anti-venom yet had substantial toxicity (serum sickness) due totheimmuneresponseagainstthenonhumanantibodyprotein[1,2].Other antibody preparations such as anti-thymocyte globulin produced in rabbit had therapeutic benefit but also had significant toxicity. The use of alternative species for these therapeutic preparations was largely due to ease of production, as they were developed prior to the advent of modern molecular biology techniques, which have enabled rapid discovery and engineering of recombinant antibodies. Thus, most current approaches for producing recombinant antibodies rely on humanizing antibodies derived from other species, usually mice, or beginning with human scaffolds engineered into libraries or transgenic “humanized” mice. Recently, however, novel features of antibodies derived from other species have sparked interest in developing antibodies that may have particular unique features in binding certain antigens or epitopes [3–7].
    [Show full text]
  • Monoclonal Immunoglobulin
    Chapter 2 Monoclonal Immunoglobulin Marie-Christine Kyrtsonis, Efstathios Koulieris, Vassiliki Bartzis, Ilias Pessah, Eftychia Nikolaou, Vassiliki Karalis, Dimitrios Maltezas, Panayiotis Panayiotidis and Stephen J. Harding Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55855 1. Introduction Secretion of monoclonal immunoglobulins (M-Ig) may be associated with several malignant conditions, also called M-protein, paraprotein, or M-component they are produced by an abnormally expanded single (‘’mono-‘’) clone of plasma cells in an amount that can be detected in serum, urine, or rarely in other body fluids [1]. The M-Ig can be an intact immunoglobulin (Ig) (containing both heavy and light chains), or light chains in the absence of heavy chain (encountered in light chain myeloma, light chain deposition disease, AL amyloidosis), or rarely heavy chains in the absence of light chains only (heavy chain disease). All intact Igs have the same structure, made up of mirror imaged identical light and heavy chains. There are five classes of heavy chain, γ, α, μ, δ and ε with two classes of light chain κ and λ. Igs are secreted by terminally differentiated B-lymphocytes and their normal function is to act as antibodies recognizing a specific antigen. During B-cell maturation, the rearrangement of Ig heavy and light chain genes takes place early in pre-B-cell development and ends in memory B-cells or Ig producing plasma cells that have a unique heavy and light chain gene rearrangement, thus being selected to recognize a given antigen. During, oncogenic events which occur randomly during this process, the B cell may acquire a survival advantage, and proliferate into identical (clonal) daughter B-cells able to differentiate into Ig producing cells secreting a monoclonal component.
    [Show full text]
  • Brief History of Important Immunologic Discoveries and Developments
    Brief History of Important Immunologic Discoveries and Developments Year Event Author(s) 1798 Cowpox vaccination Edward Jenner 1866 Wound disinfection Joseph Lister 1876 Discovery of B. antracis, foundation of Robert Koch bacteriology 1880 Discovery of attenuated vaccine by Louis Pasteur invitro passages 1883 Phagocytosis, cellular immunity theory Elie I. I. Metchnikoff 1888 Discovery of bacterial toxins P. P. Emile Roux and Alexandre E. J. Y ersin 1890 Discovery of antitoxins, foundation of Emil A. von Behring and serotherapy Shibasaburo Kitasato 1894 Immunologic bacteriolysis Richard F. J. Pfeiffer and Vasily I. Isaeff 1894 Discovery of antibody and complement Jules J.B. V. Bordet activity as the active factors in bacteriolysis 1896 Discovery of specific agglutination Herbert E. Durham and Max von Gruber 1896 Agglutination test for the diagnosis of Georges F. I. Widal and typhoid (Widal test) Jean-Marie-Athanase Sicard 1900 Formulation of side-chain theory of anti- Paul Ehrlich body formation 1900 Discovery of A, B, 0 blood groups Karl Landsteiner 1900 Development of complement fixation Jules J.B. V. Bordet and reaction Octave Gengou 1902 Discovery of anaphylaxis Charles R. Richet and Paul Portier 1903 Local anaphylaxis due to antibody- Nicholas M. Arthus antigen complex: Arthus reaction 1903 Discovery of opsonization Almroth E. Wright and Steward R. Douglas 440 Brief History of Important Immunologic Discoveries and Developments Year Event Author(s) 1905 Description of serum sickness Clemens von Pirquet and Bela Schick 1910 Introduction of salvarsan, later neo- Paul Ehrlich and Sahachiro Hata salvarsan, foundation of chemotherapy of infections 1910 Development of anaphylaxis test William Schultz (Schultz-Dale) 1914 Formulation of genetic theory of tumor Clarence C.
    [Show full text]
  • Anti-Idiotype Antibodies: Powerful Tools for Antibody Drug Development
    Anti-Idiotype Antibodies: Powerful Tools for Antibody Drug Development Michelle Parker, Ph.D. [email protected] Table of Contents 1 What is an Anti-Idiotype Antibody? 2 Anti-Idiotype Antibody Applications 3 Obstacles & Solutions to the Generation of Anti-Idiotype Abs 4 Downstream Assay Development 5 Features of GenScript’s Anti-Idiotype Antibody Services 6 GenScript Anti-Idiotype Antibody Packages Make Research Easy 2 Antibody: Structure and Function Antibody (Ab): Recognition proteins found in the serum and other bodily fluids of vertebrates that react specifically with the antigens that induced their formation. Overall structure: • 2 identical light chains (blue) • 2 identical heavy chains (green/purple) Variable regions and constant regions 5 classes of Abs: • IgG, IgA, IgM, IgD, IgE • All contain either λ or κ light chains • Biological effector functions are mediated by the C domain Chemical structure explains 3 functions of Abs: 1. Binding versatility 2. Binding specificity 3. Biological activity Make Research Easy 3 Antibody Binding Regions Idiotope – the antigenic determinants in or close to the variable portion of an antibody (Ab) Paratope – the part of an Ab that recognizes an antigen, the antigen-binding site of an Ab or complementarity determining region (CDR) Epitope – the part of the antigen to which the paratope binds Make Research Easy 4 Anti-Idiotype Antibodies Anti-idiotype antibodies (Anti-IDs) – Abs directed against the paratope (or CDR region) of another Ab Hypervariable regions (or the idiotype
    [Show full text]
  • Determination of the Rituximab Binding Site to the CD20 Epitope
    Determination of the Rituximab Binding Site to the CD20 Epitope Using SPOT Synthesis and Surface Plasmon Resonance Analyses Laure Bar, Christophe Nguyen, Mathieu Galibert, Francisco Santos-Schneider, Gudrun Aldrian, Jérôme Dejeu, Rémy Lartia, Liliane Coche-Guérente, Franck Molina, Didier Boturyn To cite this version: Laure Bar, Christophe Nguyen, Mathieu Galibert, Francisco Santos-Schneider, Gudrun Aldrian, et al.. Determination of the Rituximab Binding Site to the CD20 Epitope Using SPOT Synthesis and Surface Plasmon Resonance Analyses. Analytical Chemistry, American Chemical Society, In press, 93 (17), pp.6865-6872. 10.1021/acs.analchem.1c00960. hal-03216003 HAL Id: hal-03216003 https://hal.archives-ouvertes.fr/hal-03216003 Submitted on 3 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Determination of the rituximab binding site to the CD20 epitope by using SPOT-synthesis and surface plasmon resonance analyses Laure Bar,† Christophe Nguyen,‡ Mathieu Galibert,† Francisco Santos-Schneider,‡ Gudrun Aldrian,‡ Jérôme Dejeu,† Rémy Lartia,† Liliane Coche-Guérente,† Franck Molina,‡ Didier Boturyn*,† †Univ. Grenoble-Alpes, CNRS, DCM UMR 5250, 570 rue de la chimie, CS 40700, 38058 Grenoble Cedex 9, France. Email: [email protected] ‡Sys2Diag, CNRS – ALCEDIAG, Cap delta/Parc Euromédecine, 1682 rue de la Valsière, CS 61003, 34184 Montpellier Cedex 4, France.
    [Show full text]