Basic Stress Equations

Total Page:16

File Type:pdf, Size:1020Kb

Basic Stress Equations Dr. D. B. Wallace Basic Stress Equations Centroid of Centroid of Internal Reactions: Cross Section Cross Section Shear Forces Bending Moments y y 6 Maximum (t ) (s) (3 Force Components & 3 Moment Components) x x "Cut Surface" "Cut Surface" V M x P z x T z Vy My Normal Force Torsional Moment (s) or Torque (t ) Force Components Moment Components Normal Force: Centroid y s P "Cut Surface" x s = l Uniform over the entire cross section. A l Axial force must go through centroid. P z Axial Force Axial Stress Shear Forces: Cross Section Point of interest "y" Shear Force y V LINE perpendicular to V through point of interest x b = Length of LINE on the cross section z Vy Aa = Area on one side of the LINE t y Centroid of entire cross section "x" Shear Force y Centroid of area on one side of the LINE Aa x t I = Area moment of inertia of entire cross section about an axis pependicular to V. Vx z y = distance between the two centroids V×bA × yg t = a I× b Note: The maximum shear stress for common cross sections are: Cross Section: Cross Section: Rectangular: tmax = 3 2 × V A Solid Circular: tmax = 4 3× V A I-Beam or Thin-walled H-Beam: flange web tmax = V A web tube: tmax = 2 × V A Basic Stress Equations Dr. D. B. Wallace Torque or Torsional Moment: Solid Circular or Tubular Cross Section: y r = Distance from shaft axis to point of interest R = Shaft Radius x T× r "Cut Surface" t = D = Shaft Diameter J z p× D4 p× R4 T J = = for solid circular shafts Torque t 32 2 16×T p× D 4 - D 4 t = for solid circular shafts e o i j max 3 J = for hollow shafts p × D 32 16×T× D t = o for hollow shafts max 4 4 p ×eDo - Di j Rectangular Cross Section: Cross Section: y t2 Centroid b "Cut Surface" x Note: t1 a a > b T z Torque Torsional Stress Method 1: 2 2 tmax = t1 = T×b3×a +1.8× bg ea ×b j ONLY applies to the center of the longest side Method 2: T a/b a1 a2 t1,2 = a ×a × b2 1.0 .208 .208 1,2 1.5 .231 .269 2.0 .246 .309 Use the appropriate a from the table 3.0 .267 .355 on the right to get the shear stress at 4.0 .282 .378 6.0 .299 .402 either position 1 or 2. 8.0 .307 .414 10.0 .313 .421 ¥ .333 ---- Other Cross Sections: Treated in advanced courses. 2 Basic Stress Equations Dr. D. B. Wallace Bending Moment "x" Bending Moment y x M × y M × x s = x and s = y M z s x Ix Iy "y" Bending Moment y where: Mx and My are moments about indicated axes x y and x are perpendicular from indicated axes z My Ix and Iy are moments of inertia about indicated axes s Moments of Inertia: b D b× h3 4 4 is perpendicular to axis p× D p × R c I = h c R I = = 12 64 4 h 2 I b× h I p× D3 p × R3 Z = = Z = = = c 6 c 32 4 Parallel Axis Theorem: new axis I = Moment of inertia about new axis Area, A d 2 I = Moment of inertia about the centroidal axis I = I + A ×d A = Area of the region centroid d = perpendicular distance between the two axes. Maximum Bending Stress Equations: M ×c M 32× M 6× M s = = smax = bSolid Circular g smax = aRectangularf max I Z p× D3 b × h2 The section modulus, Z, can be found in many tables of properties of common cross sections (i.e., I-beams, channels, angle iron, etc.). Bending Stress Equation Based on Known Radius of Curvature of Bend, r. The beam is assumed to be initially straight. The applied moment, M, causes the beam to assume a radius of curvature, r. Before: y s = E × After: r E = Modulus of elasticity of the beam material y = Perpendicular distance from the centroidal axis to the M r M point of interest (same y as with bending of a straight beam with Mx). r = radius of curvature to centroid of cross section 3 Basic Stress Equations Dr. D. B. Wallace Bending Moment in Curved Beam: Geometry: nonlinear so centroid stress centroidal axis y A distribution co A = cross sectional area e rn = dA r = radius to neutral axis ci n ro zarea r r = radius to centroidal axis si r n r r r e = eccentricity neutral axis i e = r - rn M Stresses: Any Position: Inside (maximum magnitude): Outside: -M × y M ×ci -M ×co s = si = so = e×A ×brn + yg e×A × ri e×A × ro Area Properties for Various Cross Sections: dA Cross Section r A zarea r Rectangle r h r F ro I ri + t ×ln t 2 G J h × t H ri K ri h ro Trapezoid r h ×bti + 2× to g ri + t + t r ro × ti - ri × to F ro I i o 3×bti + to g t - t + ×ln h × t t o i G J 2 i o h H ri K For triangle: r h i set ti or to to 0 ro Hollow Circle r a r L 2 2 2 2 O p×ea2 - b2 j r 2 × pNM r - b - r - a QP b 4 Basic Stress Equations Dr. D. B. Wallace Bending Moment in Curved Beam (Inside/Outside Stresses): Stresses for the inside and outside fibers of a curved beam in pure bending can be approximated from the straight beam equation as modified by an appropriate Centroidal curvature factor as determined from the graph below [i refers to the inside, and o Axis refers to the outside]. The curvature factor magnitude depends on the amount of c curvature (determined by the ratio r/c) and the cross section shape. r is the radius M of curvature of the beam centroidal axis, and c is the distance from the centroidal axis to the inside fiber. r M ×c Inside Fiber: s = K × i i I M M ×c Outside Fiber: s = K × o o I B A B A b/8 4.0 b/4 b c Values of K i for inside fiber as at A 3.5 B A B A U or T c 3.0 b/2 b Round or Elliptical A Curvature B 2.5 c Factor Trapezoidal b/3 b/6 b 2.0 B A B A I or hollow rectangular c Ki r 1.5 1.0 I or hollow rectangular Ko 0.5 U or T Round, Elliptical or Trapezoidal Values of Ko for outside fiber as at B 0 1 2 3 4 5 6 7 8 9 10 11 Amount of curvature, r/c 5.
Recommended publications
  • 10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
    EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch.
    [Show full text]
  • Glossary: Definitions
    Appendix B Glossary: Definitions The definitions given here apply to the terminology used throughout this book. Some of the terms may be defined differently by other authors; when this is the case, alternative terminology is noted. When two or more terms with identical or similar meaning are in general acceptance, they are given in the order of preference of the current writers. Allowable stress (working stress): If a member is so designed that the maximum stress as calculated for the expected conditions of service is less than some limiting value, the member will have a proper margin of security against damage or failure. This limiting value is the allowable stress subject to the material and condition of service in question. The allowable stress is made less than the damaging stress because of uncertainty as to the conditions of service, nonuniformity of material, and inaccuracy of the stress analysis (see Ref. 1). The margin between the allowable stress and the damaging stress may be reduced in proportion to the certainty with which the conditions of the service are known, the intrinsic reliability of the material, the accuracy with which the stress produced by the loading can be calculated, and the degree to which failure is unattended by danger or loss. (Compare with Damaging stress; Factor of safety; Factor of utilization; Margin of safety. See Refs. l–3.) Apparent elastic limit (useful limit point): The stress at which the rate of change of strain with respect to stress is 50% greater than at zero stress. It is more definitely determinable from the stress–strain diagram than is the proportional limit, and is useful for comparing materials of the same general class.
    [Show full text]
  • Bending Stress
    Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Figure 40: Sign convention followed. Centroid of an area Scanned by CamScanner If the area can be divided into n parts then the distance Y¯ of the centroid from a point can be calculated using n ¯ Âi=1 Aiy¯i Y = n Âi=1 Ai where Ai = area of the ith part, y¯i = distance of the centroid of the ith part from that point. Second moment of area, or moment of inertia of area, or area moment of inertia, or second area moment For a rectangular section, moments of inertia of the cross-sectional area about axes x and y are 1 I = bh3 x 12 Figure 41: A rectangular section. 1 I = hb3 y 12 Scanned by CamScanner Parallel axis theorem This theorem is useful for calculating the moment of inertia about an axis parallel to either x or y. For example, we can use this theorem to calculate . Ix0 = + 2 Ix0 Ix Ad Bending stress Bending stress at any point in the cross-section is My s = − I where y is the perpendicular distance to the point from the centroidal axis and it is assumed +ve above the axis and -ve below the axis. This will result in +ve sign for bending tensile (T) stress and -ve sign for bending compressive (C) stress. Largest normal stress Largest normal stress M c M s = | |max · = | |max m I S where S = section modulus for the beam. For a rectangular section, the moment of inertia of the cross- 1 3 1 2 sectional area I = 12 bh , c = h/2, and S = I/c = 6 bh .
    [Show full text]
  • Lecture 1: Introduction
    Lecture 1: Introduction E. J. Hinch Non-Newtonian fluids occur commonly in our world. These fluids, such as toothpaste, saliva, oils, mud and lava, exhibit a number of behaviors that are different from Newtonian fluids and have a number of additional material properties. In general, these differences arise because the fluid has a microstructure that influences the flow. In section 2, we will present a collection of some of the interesting phenomena arising from flow nonlinearities, the inhibition of stretching, elastic effects and normal stresses. In section 3 we will discuss a variety of devices for measuring material properties, a process known as rheometry. 1 Fluid Mechanical Preliminaries The equations of motion for an incompressible fluid of unit density are (for details and derivation see any text on fluid mechanics, e.g. [1]) @u + (u · r) u = r · S + F (1) @t r · u = 0 (2) where u is the velocity, S is the total stress tensor and F are the body forces. It is customary to divide the total stress into an isotropic part and a deviatoric part as in S = −pI + σ (3) where tr σ = 0. These equations are closed only if we can relate the deviatoric stress to the velocity field (the pressure field satisfies the incompressibility condition). It is common to look for local models where the stress depends only on the local gradients of the flow: σ = σ (E) where E is the rate of strain tensor 1 E = ru + ruT ; (4) 2 the symmetric part of the the velocity gradient tensor. The trace-free requirement on σ and the physical requirement of symmetry σ = σT means that there are only 5 independent components of the deviatoric stress: 3 shear stresses (the off-diagonal elements) and 2 normal stress differences (the diagonal elements constrained to sum to 0).
    [Show full text]
  • Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems
    NfST Nisr National institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 946 Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems Vincent A. Hackley and Chiara F. Ferraris rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]
  • Navier-Stokes-Equation
    Math 613 * Fall 2018 * Victor Matveev Derivation of the Navier-Stokes Equation 1. Relationship between force (stress), stress tensor, and strain: Consider any sub-volume inside the fluid, with variable unit normal n to the surface of this sub-volume. Definition: Force per area at each point along the surface of this sub-volume is called the stress vector T. When fluid is not in motion, T is pointing parallel to the outward normal n, and its magnitude equals pressure p: T = p n. However, if there is shear flow, the two are not parallel to each other, so we need a marix (a tensor), called the stress-tensor , to express the force direction relative to the normal direction, defined as follows: T Tn or Tnkjjk As we will see below, σ is a symmetric matrix, so we can also write Tn or Tnkkjj The difference in directions of T and n is due to the non-diagonal “deviatoric” part of the stress tensor, jk, which makes the force deviate from the normal: jkp jk jk where p is the usual (scalar) pressure From general considerations, it is clear that the only source of such “skew” / ”deviatoric” force in fluid is the shear component of the flow, described by the shear (non-diagonal) part of the “strain rate” tensor e kj: 2 1 jk2ee jk mm jk where euujk j k k j (strain rate tensro) 3 2 Note: the funny construct 2/3 guarantees that the part of proportional to has a zero trace. The two terms above represent the most general (and the only possible) mathematical expression that depends on first-order velocity derivatives and is invariant under coordinate transformations like rotations.
    [Show full text]
  • Leonhard Euler Moriam Yarrow
    Leonhard Euler Moriam Yarrow Euler's Life Leonhard Euler was one of the greatest mathematician and phsysicist of all time for his many contributions to mathematics. His works have inspired and are the foundation for modern mathe- matics. Euler was born in Basel, Switzerland on April 15, 1707 AD by Paul Euler and Marguerite Brucker. He is the oldest of five children. Once, Euler was born his family moved from Basel to Riehen, where most of his childhood took place. From a very young age Euler had a niche for math because his father taught him the subject. At the age of thirteen he was sent to live with his grandmother, where he attended the University of Basel to receive his Master of Philosphy in 1723. While he attended the Universirty of Basel, he studied greek in hebrew to satisfy his father. His father wanted to prepare him for a career in the field of theology in order to become a pastor, but his friend Johann Bernouilli convinced Euler's father to allow his son to pursue a career in mathematics. Bernoulli saw the potentional in Euler after giving him lessons. Euler received a position at the Academy at Saint Petersburg as a professor from his friend, Daniel Bernoulli. He rose through the ranks very quickly. Once Daniel Bernoulli decided to leave his position as the director of the mathmatical department, Euler was promoted. While in Russia, Euler was greeted/ introduced to Christian Goldbach, who sparked Euler's interest in number theory. Euler was a man of many talents because in Russia he was learning russian, executed studies on navigation and ship design, cartography, and an examiner for the military cadet corps.
    [Show full text]
  • Euler and Chebyshev: from the Sphere to the Plane and Backwards Athanase Papadopoulos
    Euler and Chebyshev: From the sphere to the plane and backwards Athanase Papadopoulos To cite this version: Athanase Papadopoulos. Euler and Chebyshev: From the sphere to the plane and backwards. 2016. hal-01352229 HAL Id: hal-01352229 https://hal.archives-ouvertes.fr/hal-01352229 Preprint submitted on 6 Aug 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EULER AND CHEBYSHEV: FROM THE SPHERE TO THE PLANE AND BACKWARDS ATHANASE PAPADOPOULOS Abstract. We report on the works of Euler and Chebyshev on the drawing of geographical maps. We point out relations with questions about the fitting of garments that were studied by Chebyshev. This paper will appear in the Proceedings in Cybernetics, a volume dedicated to the 70th anniversary of Academician Vladimir Betelin. Keywords: Chebyshev, Euler, surfaces, conformal mappings, cartography, fitting of garments, linkages. AMS classification: 30C20, 91D20, 01A55, 01A50, 53-03, 53-02, 53A05, 53C42, 53A25. 1. Introduction Euler and Chebyshev were both interested in almost all problems in pure and applied mathematics and in engineering, including the conception of industrial ma- chines and technological devices. In this paper, we report on the problem of drawing geographical maps on which they both worked.
    [Show full text]
  • Using Lenterra Shear Stress Sensors to Measure Viscosity
    Application Note: Using Lenterra Shear Stress Sensors to Measure Viscosity Guidelines for using Lenterra’s shear stress sensors for in-line, real-time measurement of viscosity in pipes, thin channels, and high-shear mixers. Shear Stress and Viscosity Shear stress is a force that acts on an object that is directed parallel to its surface. Lenterra’s RealShear™ sensors directly measure the wall shear stress caused by flowing or mixing fluids. As an example, when fluids pass between a rotor and a stator in a high-shear mixer, shear stress is experienced by the fluid and the surfaces that it is in contact with. A RealShear™ sensor can be mounted on the stator to measure this shear stress, as a means to monitor mixing processes or facilitate scale-up. Shear stress and viscosity are interrelated through the shear rate (velocity gradient) of a fluid: ∂u τ = µ = γµ & . ∂y Here τ is the shear stress, γ˙ is the shear rate, µ is the dynamic viscosity, u is the velocity component of the fluid tangential to the wall, and y is the distance from the wall. When the viscosity of a fluid is not a function of shear rate or shear stress, that fluid is described as “Newtonian.” In non-Newtonian fluids the viscosity of a fluid depends on the shear rate or stress (or in some cases the duration of stress). Certain non-Newtonian fluids behave as Newtonian fluids at high shear rates and can be described by the equation above. For others, the viscosity can be expressed with certain models.
    [Show full text]
  • On the Geometric Character of Stress in Continuum Mechanics
    Z. angew. Math. Phys. 58 (2007) 1–14 0044-2275/07/050001-14 DOI 10.1007/s00033-007-6141-8 Zeitschrift f¨ur angewandte c 2007 Birkh¨auser Verlag, Basel Mathematik und Physik ZAMP On the geometric character of stress in continuum mechanics Eva Kanso, Marino Arroyo, Yiying Tong, Arash Yavari, Jerrold E. Marsden1 and Mathieu Desbrun Abstract. This paper shows that the stress field in the classical theory of continuum mechanics may be taken to be a covector-valued differential two-form. The balance laws and other funda- mental laws of continuum mechanics may be neatly rewritten in terms of this geometric stress. A geometrically attractive and covariant derivation of the balance laws from the principle of energy balance in terms of this stress is presented. Mathematics Subject Classification (2000). Keywords. Continuum mechanics, elasticity, stress tensor, differential forms. 1. Motivation This paper proposes a reformulation of classical continuum mechanics in terms of bundle-valued exterior forms. Our motivation is to provide a geometric description of force in continuum mechanics, which leads to an elegant geometric theory and, at the same time, may enable the development of space-time integration algorithms that respect the underlying geometric structure at the discrete level. In classical mechanics the traditional approach is to define all the kinematic and kinetic quantities using vector and tensor fields. For example, velocity and traction are both viewed as vector fields and power is defined as their inner product, which is induced from an appropriately defined Riemannian metric. On the other hand, it has long been appreciated in geometric mechanics that force should not be viewed as a vector, but rather a one-form.
    [Show full text]
  • Dealing with Stress! Anurag Gupta, IIT Kanpur Augustus Edward Hough Love (1863‐1940) Cliffor D Aabmbrose Tdlltruesdell III (1919‐2000)
    Dealing with Stress! Anurag Gupta, IIT Kanpur Augustus Edward Hough Love (1863‐1940) Cliffor d AbAmbrose TdllTruesdell III (1919‐2000) (Portrait by Joseph Sheppard) What is Stress? “The notion (of stress) is simply that of mutual action between two bodies in contact, or between two parts of the same body separated by an imagined surface…” ∂Ω ∂Ω ∂Ω Ω Ω “…the physical reality of such modes of action is, in this view, admitted as part of the conceptual scheme” (Quoted from Love) Cauchy’s stress principle Upon the separang surface ∂Ω, there exists an integrable field equivalent in effect to the acon exerted by the maer outside ∂Ω to tha t whic h is iidinside ∂Ω and contiguous to it. This field is given by the traction vector t. 30th September 1822 t n ∂Ω Ω Augustin Louis Cauchy (1789‐1857) Elementary examples (i) Bar under tension A: area of the c.s. s1= F/A s2= F/A√2 (ii) Hydrostatic pressure Styrofoam cups after experiencing deep‐sea hydrostatic pressure http://www.expeditions.udel.edu/ Contact action Fc(Ω,B\ Ω) = ∫∂Ωt dA net force through contact action Fd(Ω) = ∫Ωρb dV net force through distant action Total force acting on Ω F(Ω) = Fc(Ω,B\ Ω) + Fd(Ω) Ω Mc(Ω,B\ Ω, c) = ∫∂Ω(X –c) x t dA moment due to contact action B Md(Ω, c) = ∫Ω(X – c) x ρb dV moment due to distant action Total moment acting on Ω M(Ω) = Mc(Ω,B\ Ω) + Md(Ω) Linear momentum of Ω L(Ω) = ∫Ωρv dV Moment of momentum of Ω G(Ω, c) = ∫Ω (X –c) x ρv dV Euler’s laws F = dL /dt M = dG /dt Euler, 1752, 1776 Or eqqyuivalently ∫∂Ωt dA + ∫Ωρb dV = d/dt(∫Ωρv dV) ∫∂Ω(X –c) x t dA + ∫Ω(X –c) x ρb dV = d/dt(∫Ω(X –c) x ρv dV) Leonhard Euler (1707‐1783) Kirchhoff, 1876 portrait by Emanuel Handmann Upon using mass balance these can be rewritten as ∫∂Ωt dA + ∫Ωρb dV = ∫Ωρa dV ∫∂Ω(X –c) x t dA + ∫Ω(X –c) x ρb dV = ∫Ω(X –c) x ρa dV Emergence of stress (A) Cauchy’s hypothesis At a fixed point, traction depends on the surface of interaction only through the normal, i.e.
    [Show full text]
  • Hydrostatic Stress Effect on the Yield Behavior of Inconel 100
    5q H HYDROSTATIC STRESS EFFECT ON THE YIELD BEHAVIOR OF INCONEL 100 Phillip A. AHen and Christopher D. Wilson Departmem of Mechanical Engineering Tennessee Technological University P.O. Box 5014 Cookeville, TN 38505-0001 931-372-3102 voice 931-372-6340 fax paa5443 @tmectLedu ABSTRACT Classical metal plasticity theory assumes that hydrostatic stress has no effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of notched geometries. New experiments and nonlinear finite element analyses (FEA) of Inconel 100 (IN 100) equal-arm bend and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions was performed. In all test cases, the yon Mises constitutive model, which is independent of hydrostatic pressure, overestimated the load for a given displacement or strain. Considering the failure displacements or strains, the Drucker-Prager FEM's predicted loads that were 3% to 5% lower than the von Mises values. For the failure loads, the Drucker Prager FEM's predicted strains that were 20% to 35% greater than the yon Mises values. The Drucker-Prager yield function seems to more accurately predict the overall specimen response of geometries with significant internal hydrostatic stress influence. Phillip A. Allen 1 INTRODUCTION Since the 1940's, many have considered Bridgman's experiments on the effects of hydrostatic pressure on rr_tals the definitive study.
    [Show full text]