Sepia Pharaonis) from Okinawa Island, Japan

Total Page:16

File Type:pdf, Size:1020Kb

Sepia Pharaonis) from Okinawa Island, Japan Mar Biodiv (2017) 47:735–753 DOI 10.1007/s12526-017-0649-8 RECENT ADVANCES IN KNOWLEDGE OF CEPHALOPOD BIODIVERSITY A catalog of the chromatic, postural, and locomotor behaviors of the pharaoh cuttlefish (Sepia pharaonis) from Okinawa Island, Japan Ryuta Nakajima1 & Yuzuru Ikeda2 Received: 25 March 2016 /Revised: 1 December 2016 /Accepted: 26 January 2017 /Published online: 6 February 2017 # Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017 Abstract Coleoid cephalopods such as cuttlefishes, squids, Keywords Body patterns . Cephalopods . Cuttlefish . and octopods are able to produce a diverse array of visual Catalog . Sepia pharaonis expressions that are used for mimesis and inter- and intraspe- cific communication. They achieve this by intricately combin- ing several neurally controlled behaviors, which include chro- Introduction matic, textural, postural, and locomotor components. To un- derstand this diverse range of body patterns, it is necessary to In many animal species, body color and/or texture play an develop an accurate and extensive catalog of them, which can important role in predator/prey interactions, such as crypsis then be used as a tool for future behavioral monitoring and (Endler 1978) and disruption (Cott 1940). Most animals have quantitative analyses, as well as for the identification of mor- fixed or slightly changeable appearances (Cott 1940). phologically identical sub-species. In this study, a catalog of However, coleoid cephalopods such as cuttlefishes, squids, the chromatic, postural, and locomotor behaviors was pro- and octopods are not only able to able to change their body duced for the pharaoh cuttlefish (Sepia pharaonis)fromcoast- color and texture rapidly, but also to exhibit a variety of visu- al waters of Okinawa Island, Japan. Data were collected from ally complex appearances. These appearances comprise a aquacultured animals using egg masses sampled from around combination of chromatic, textural, postural, and locomotor the island and hatched in aquaria during 2010, 2011, 2012, components for both camouflage and communication. The and 2014. In total, 53 chromatic, four supplementary chromat- total appearance of the animal is defined specifically as its ic conditions, three textural, 11 postural, and nine locomotor body pattern while components are the individual parts that components were identified and described in detail. Many of make up the body pattern (Packard 1972; Packard and the described components are similar to previously described Hochberg 1977; Moynihan 1985; Hanlon and Messenger body patterns of Sepia officinalis.However,therearenotable 1988, 1996). differences between the two species, which may indicate that The chromatic component of the body pattern is changed they use body patterns in different ways for cryptic behavior by neuromuscular control of the size of many pigment-filled and inter- and intraspecific communication. organs called chromatophores (Messenger 2001). A chro- matophore is connected to a set of radial muscles that contract and relax to change its effective surface area (Hanlon 1982). In Communicated by M. Vecchione addition, two types of light-reflective cells–iridophores and leucophores contribute to the overall color palette of the ani- * Ryuta Nakajima mal. Iridophores selectively reflect light producing iridescent [email protected] blue, green, and pink colors, and are also neurally controlled (Messenger 2001; Wardill et al. 2012). Leucophores also re- 1 Department of Art and Design, University of Minnesota Duluth, flect light, creating high-contrast white appearance 1201 Ordean Ct., Duluth, MN 55812, USA (Messenger 2001). Octopods and cuttlefishes are also able to 2 Department of Chemistry, Biology and Marine Sciences, University alter the physical texture of their skin from smooth to three- of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan dimensional by using dermal muscles to produce erectile 736 Mar Biodiv (2017) 47:735–753 papillae (Holmes 1940; Packard and Hochberg 1977). The has been used as a less subjective and repeatable cataloging postural component is changed by altering the positional ori- approach (Thomas and MacDonald 2016). entation of the flexible, muscular arms, tentacles, mantle, The pharaoh cuttlefish, Sepia pharaonis (Ehrenberg 1831), head, and fins (Packard and Sanders 1971). Finally, the loco- lives in tropical coastal waters in the Indo-Pacific region from motor component involves the movement of the entire body of 35°N to 30°S and 30°E to 140°E down to 100 m depth the individual (Roper and Hochberg 1988). Each of these (Norman and Reid 2000; Nabhitabhata and Nilaphat 1999). components can appear for seconds (acute) or for hours This species is divided into three sub-types depending on the (chronic) and can be displayed in a wide variety of combina- body pattern and geographical distribution: Type I in the tions to create the overall appearance of the animal (Packard Arabian Gulf, western Indian Ocean, and Red Sea; Type II and Hochberg 1977; Hanlon and Messenger 1996). Therefore, from Japan to the Gulf of Thailand, the Philippines, and north- each component of the body pattern of a species needs to be ern Australia; and Type III from the Andaman Sea to the cataloged and described to allow quantitative analysis of its Maldives. These three types differ in size, growth rate and in behaviors and for species identification. color patterns of mating animals. Type I and Type II males More than 100 species of cuttlefishes have been described have zebra stripes on their third arms, while Type III males to date (Jereb and Roper 2005), of which one species—the have spots on their third arms (Norman 2000). Previous stud- benthic, shallow-water common cuttlefish (Sepia ies on the body patterns of this species have particularly fo- officinalis)—is the most extensively studied for its body pat- cused on camouflage and its visual cues. These studies have tern. These studies have shown that S. officinalis can create a found that S. pharaonis’s disruptive coloration is affected wide range of body patterns allowing it to either blend into its largely by area rather than the shape or aspect ratio of a light visually rich and complex natural habitat or to stand out star- colored object on a substrate (Chiao and Hanlon 2001)and tlingly, with 87 components (42 chromatic, eight textural, 13 that visual orientation of substrate pattern has little effect on its postural, and 24 locomotor) identified and described to date body pattern selection (Shohet et al. 2006). However, aside (Holmes 1940;Boycott1958; Neill 1971;Hanlonand from 34 chromatic components assumed based on Messenger 1988). Although recent study suggests that S. officinalis (Shohet et al. 2007), there has been no extensive cuttlefishes are able to detect colors by chromatic aberration catalog of their body pattern diversity that includes chromatic, (Stubbs and Stubbs 2016), they possess one visual pigment textural, postural, and locomotor components. Hence, the aim and are color blind (Marshall and Messenger 1996;Mäthger of this study was to document the range of body pattern com- et al. 2006). Hence, their visual behavior has been directly ponents exhibited by S. pharaonis. We hope that these find- correlated with multiple visual cues, such as the scale of a ings will provide a useful foundation for the identification of light object, the edge detection, the relative tonal differences Sepia species and sub-species and for future quantitative be- between the foreground and background, and the two- and havioral analyses. three-dimensional visual depths. Visual information is gath- ered by highly developed eyes, processed by a hierarchically organized set of lobes in their brain, and then converted into an Materials and methods appropriate pattern as a motor output (Muntz and Johnson 1978;Messenger2001;Zylinskietal.2009). Egg cases of Type II S. pharaonis were collected from the In addition to S. officinalis, over 20 extensive body pattern Sunabe beach area (depth ranging from 10 to 12 m, water catalogs have been produced for other cephalopod species temperature ranging from 23 °C to 25 °C) in Okinawa including the flamboyant cuttlefish, Metasepia pfefferi Island on April of 2010, 2011, and 2012. Egg cases were (Thomas and MacDonald 2016; Roper and Hochberg 1988); immediately transported to the laboratory of the Department slender inshore squid, Doryteuthis plei (Postuma and Gasalla of Chemistry, Biology, and Marine Sciences at the University 2015); longfinned inshore squid, Doryteuthis pealeii (Hanlon of the Ryukyus, where they were reared and cultured in three et al. 1999); Large Pacific striped octopus (Caldwell et al. 20 L (300 mm diameter x 170 mm depth) cylindrical, acrylic, 2015); Humboldt squid, Dosidicus gigas (Trueblood et al. closed-system tanks (Multi-hydense®, Aqua Co., Ltd Japan). 2015); northern shortfin squid, Illex illecebrosus (Harrop All tanks were filled with artificial seawater (Tetra Marine Salt et al. 2014); deep sea squid, Octopoteuthis deletron (Bush Pro, Tetra Japan Inc., Japan), and 2 L of seawater was ex- et al. 2009); Cape Hope squid, Loligo reynaudii (Hanlon changed in each tank every few days. In addition, fresh water et al. 1994);andcommonoctopus,Octopus vulgaris was added to the tanks as required to compensate for evapo- (Packard and Sanders 1971) (reviewed by Borrelli et al. ration. The water quality (temperature, salinity, pH, and con- 2006; Hanlon and Messenger 1996). Many of these reports centration
Recommended publications
  • Fisheries Centre
    Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 80 Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulman, Adib Saad, Kyrstn Zylich, Daniel Pauly and Dirk Zeller Year: 2015 Email: [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulmana, Adib Saadb, Kyrstn Zylicha, Daniel Paulya, Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada b President of Syrian National Committee for Oceanography, Tishreen University, Faculty of Agriculture, P.O. BOX; 1408, Lattakia, Syria [email protected] (corresponding author); [email protected]; [email protected]; [email protected]; [email protected] ABSTRACT Syria’s total marine fisheries catches were estimated for the 1950-2010 time period using a reconstruction approach which accounted for all fisheries removals, including unreported commercial landings, discards, and recreational and subsistence catches. All unreported estimates were added to the official data, as reported by the Syrian Arab Republic to the United Nation’s Food and Agriculture Organization (FAO). Total reconstructed catch for 1950-2010 was around 170,000 t, which is 78% more than the amount reported by Syria to the FAO as their national catch. The unreported components added over 74,000 t of unreported catches, of which 38,600 t were artisanal landings, 16,000 t industrial landings, over 4,000 t recreational catches, 3,000 t subsistence catches and around 12,000 t were discards.
    [Show full text]
  • Diffractive Properties of Blue Morpho Butterfly Wings
    Diffractive Properties of Blue Morpho Butterfly Wings Mary Lalak and Paul Brackman Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Dated: October 24, 2014) Many species of butterflies are known to produce beautiful iridescent colors when exposed to light from different angles. These affects can be attributed to a few different optical phenomena combined, the most prominent being reflective diffraction. Using common household items and with a budget of 50 dollars, we attempt to confirm the theory that the collection of ridges on the individual scales on the wing act as transmission gratings, as well as reflective. These results are quantified by the calculation of the ridge separation and comparing this distance to those observed by a scanning electron microscope photo. I. INTRODUCTION In studying the optical property of iridescence, three distinct mechanisms must be discussed. Thin film inter- ference, structured coloring, and reflective diffraction all contribute to the iridescent qualities of a surface. Thin film interference occurs when light strikes a film, some of it enters the film, and the rest is reflected off. The light transmitted through reflects off the bottom of the film and exits the film to interfere with the light that FIG. 1: Up-Close View of Scales from an Optical Microscope originally reflected off the surface of the film. This inter- ference pattern causes a spectrum of color to be visible from white light. Examples of thin film interference in- clude oil slicks and soap bubbles. Structural coloring oc- curs when the structure of the object itself (with various reflective surfaces) produces an interference resulting in vibrant colors.
    [Show full text]
  • Signs of an Extended and Intermittent Terminal Spawning In
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Signs of an extended and intermittent terminal spawning in the squids Loligo vulgaris Lamarck and Loligo forbesi Steenstrup (Cephalopoda: Loliginidae) Francisco Rocha*, Angel Guerra Instituto de Investigaciones Marinas (CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain *Corresponding author. Tel.: + 34 86 231930; Fax: +34 86 292762 Abstract The reproductive pattern of Loligo vulgaris and Loligo forbesi was studied on the basis of gonad maturation, mating and spawning in males and females of both species which were present off the northwest coast of Spain (Galicia), between February 1991 and February 1993. The mature females of both species have several modes of egg sizes and developmental stages within the ovary. Several signs indicate that both female Loligo vulgaris and L. forbesi undergo partial ovulation at the time of spawning, the spawning period being relatively long, although in no case representing the greatest fraction of the animal’s life before death. Egg-laying occurring in separate batches and somatic growth between egg batchs has not been observed. This reproductive pattern is defined as intermittent terminal spawning. Some other terms describing different cephalopod reproductive strategies are also defined. Keywords: Loligo forbesi; Loligo vulgaris; NW Atlantic; Reproduction; Spawning patterns 1. Introduction Until recently, it was generally accepted that female cephalopods lay their eggs in one single spawning or in several consecutive ones, with no pause between each, after which they would die by exhaustion (McGowan, 1954; Mangold, 1987; Harman et al., 1989; Mangold et al., 1993).
    [Show full text]
  • Caribbean Reef Squid)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Sepioteuthis sepioidea (Caribbean Reef Squid) Order: Teuthida (Squid) Class: Cephalopoda (Octopuses, Squid and Cuttlefish) Phylum: Mollusca (Molluscs) Fig. 1. Caribbean reef squid, Sepioteuthis sepioidea. [http://www.arkive.org/caribbean-reef-squid/sepioteuthis-sepioidea/image-G76785.html, downloaded 10 March 2016] TRAITS. The mantle (body mass) is wide and relatively flattened, with a length of 114mm in adult males and 120 mm in adult females (Moynihan and Rodaniche, 1982). A skeleton is absent but a cartilaginous layer is normally found beneath the surface of the mantle which enables movement (Mather et al., 2010).Two fins span the length of the lateral mantle margins (Fig. 1). The head is slightly pointed to its anterior end, with eight arms and two tentacles which encircle the mouth (Mather et al., 2010). Suckers are positioned along the inner region of arms and tentacle clubs. The mantle is fleshy when relaxed and the skin is very fragile (Moynihan and Rodaniche, 1982). The colour patterns of the skin can change periodically, due to the existence of light-reflective and iridescence-inducing cells (Mather, 2010). DISTRIBUTION. Distributed throughout the West Indian islands, including Trinidad and Tobago; widespread along the Central and South American coasts adjacent to the Caribbean Sea and also found in Bermuda and Florida (Moynihan and Rodaniche, 1982). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Found in highly saline, clear waters of marine habitats at varying depths and distances from shoreline (Wood et al., 2008). The depth and habitat they are observed at depends on their growth stage (Mather et al., 2010).
    [Show full text]
  • By Species Items
    1 Fish, crustaceans, molluscs, etc Capture production by species items Mediterranean and Black Sea C-37 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Méditerranée et mer Noire (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Mediterráneo y Mar Negro English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 1998 1999 2000 2001 2002 2003 2004 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 495 335 336 108 47 7 10 Common carp Cyprinus carpio 11 3 1 - 2 3 4 4 Roach Rutilus rutilus 11 1 1 2 7 11 12 5 Roaches nei Rutilus spp 11 13 78 73 114 72 83 47 Sichel Pelecus cultratus 11 105 228 276 185 147 52 39 Cyprinids nei Cyprinidae 11 - - 167 159 95 141 226 European perch Perca fluviatilis 13 - - - 1 1 - - Percarina Percarina demidoffi 13 - - - - 18 15 202 Pike-perch Stizostedion lucioperca 13 3 031 2 568 2 956 3 504 3 293 2 097 1 043 Freshwater fishes nei Osteichthyes 13 - - - 17 - 249 - Danube sturgeon(=Osetr) Acipenser gueldenstaedtii 21 114 36 20 8 10 3 3 Sterlet sturgeon Acipenser ruthenus 21 - - 0 - - - - Starry sturgeon Acipenser stellatus 21 13 11 5 3 5 1 1 Beluga Huso huso 21 12 10 1 0 4 1 3 Sturgeons nei Acipenseridae 21 290 185 59 22 23 14 8 European eel Anguilla anguilla 22 917 682 464 602 642 648 522 Salmonoids nei Salmonoidei 23 26 - - 0 - - 7 Pontic shad Alosa pontica 24 153 48 15 21 112 68 115 Shads nei Alosa spp 24 2 742 2 640 2 095 2 929 3 984 2 831 3 645 Azov sea sprat Clupeonella cultriventris 24 3 496 10 862 12 006 27 777 27 239 17 743 14 538 Three-spined stickleback Gasterosteus aculeatus 25 - - - 8 4 6 1 European plaice Pleuronectes platessa 31 - 0 6 7 7 5 5 European flounder Platichthys flesus 31 69 62 56 29 29 11 43 Common sole Solea solea 31 5 047 4 179 5 169 4 972 5 548 6 273 5 619 Wedge sole Dicologlossa cuneata 31 ..
    [Show full text]
  • Aberystwyth University Spermatophore Dimorphism in the Chokka Squid Loligo Reynaudii Associated with Alternative Mating Tactics
    Aberystwyth University Spermatophore dimorphism in the chokka squid Loligo reynaudii associated with alternative mating tactics Iwata, Yoko; Sauer, Warwick H. H.; Sato, Noriyosi; Shaw, Paul Published in: Journal of Molluscan Studies DOI: 10.1093/mollus/eyy002 Publication date: 2018 Citation for published version (APA): Iwata, Y., Sauer, W. H. H., Sato, N., & Shaw, P. (2018). Spermatophore dimorphism in the chokka squid Loligo reynaudii associated with alternative mating tactics. Journal of Molluscan Studies, 84(2), 152-162. https://doi.org/10.1093/mollus/eyy002 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 25. Sep. 2021 Spermatophore dimorphism in the chokka squid Loligo reynaudii associated with alternative mating tactics Yoko Iwata1*, Warwick H. H. Sauer2, Noriyosi Sato3, Paul W. Shaw4 1 Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan.
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Automation of Discrimination Training for Cuttlefish (Mollusca: Cephalopoda)
    Keystone Journal of Undergraduate Research 2(1): 15-21. 2014 Automation of Discrimination Training for Cuttlefish (Mollusca: Cephalopoda) Alexander Ryan Hough Faculty Mentor: 1Dr. Jean Geary Boal Department of Biology Millersville University ABSTRACT Cephalopods are common subjects of learning experiments, yet discrimination stimuli are commonly presented by hand, which is both laborious and rife with opportunity for cuing. The following experiment tested the possibility that cuttlefish training could be automated using stimuli presented via computer monitor and food rewards presented in a food hopper. A single adult female common cuttlefish (Sepia officinalis) was trained first to attack a black rectangle (S+) for a live crab prey item and ignore a white right-angle (S-). Stimuli were then presented behind a clear Plexiglas partition and the cuttlefish was rewarded for attacking the Plexiglas in front of the S+. A food hopper was introduced to improve the delivery of the food reward. Finally, stimuli were presented on a computer monitor (CRT) located outside the tank and the cuttlefish was rewarded for attacking the Plexiglas in front of the S+ image. The cuttlefish was successful in learning the discrimination and in transferring learning from the physical objects to the computer images. Results indicate that automation of training using computer presentations of stimuli and automated food rewards is possible for cuttlefish. Keywords: behavior; comparative cognition; flicker fusion; vision The Coleoid cephalopods (octopuses, focused on spatial learning using mazes (e.g. cuttlefishes, and squids) possess the most Cartron et al. 2012). The objective of this advanced nervous system within the phylum study was to assess the feasibility of using Mollusca and the largest brain of any computer-run stimulus presentation and invertebrate (Hanlon and Messenger 1996; automated rewards to study discrimination Hickman et al.
    [Show full text]
  • 7. Index of Scientific and Vernacular Names
    Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54
    [Show full text]
  • The Diet of Sepia Officinalis (Linnaeus, 1758) and Sepia Elegans (D'orhigny, 1835) (Cephalopoda, Sepioidea) from the Ria De Vigo (NW Spain)*
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283605363 The diet of Sepia officinalis (Linnaeus, 1758) and Sepia elegans (D'Orbigny, 1835) (Cephalopoda, Sepioidea) from the Ria de Vigo (NW Spain) Article in Scientia Marina · January 1990 CITATIONS READS 92 453 2 authors, including: Angel Guerra Spanish National Research Council 391 PUBLICATIONS 7,005 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: CEFAPARQUES View project CAIBEX View project All content following this page was uploaded by Angel Guerra on 18 January 2016. The user has requested enhancement of the downloaded file. sn MAR .. 54(-ll 115.31;.<i 1990 The diet of Sepia officinalis (Linnaeus, 1758) and Sepia elegans (D'Orhigny, 1835) (Cephalopoda, Sepioidea) from the Ria de Vigo (NW Spain)* BERNA RDJNO G. CASTR O & ANGEL G U ERRA lnMituto de lnvc~ 1igacionc~ Marinas (CSIC) . Eduardo Cabello. 6. 36208 Vigo. Spnin. SUMMA RY: The :.tomaeh content\ of 1345 Sep/(/ nffirinalis and 717 Sepia elegm1t caught in the Rfa de Vigo have bcen examined. The reeding analysi~ of both pccics ha~ been made employing an index of occurrence, a~ other indices gave similar results. The diet of both specie:. i\ described and compared. C'u1tlefish feed mostly on cru,tacca and fo,h. S. nfjici11ali.1 show, -10 different item~ of prey bclonging t<> 4 group~ (polyehacta , ccphalopods, cru,wcca. bony ri,h) and S. elegm1s 18 different item, of prey belonging to 3 groups (polychaeta. crustacea. bony ri,11) . A significant ch:111gc occurs in diet wi th growth in S.
    [Show full text]
  • Iridescence in Cooked Venison – an Optical Phenomenon
    Journal of Nutritional Health & Food Engineering Research Article Open Access Iridescence in cooked venison – an optical phenomenon Abstract Volume 8 Issue 2 - 2018 Iridescence in single myofibers from roast venison resembled multilayer interference in having multiple spectral peaks that were easily visible under water. The relationship HJ Swatland of iridescence to light scattering in roast venison was explored using the weighted- University of Guelph, Canada ordinate method of colorimetry. In iridescent myofibers, a reflectance ratio (400/700 nm) showing wavelength-dependent light scattering was correlated with HJ Swatland, Designation Professor CIE (Commission International de l’Éclairage) Y%, a measure of overall paleness Correspondence: Emeritus, University of Guelph, 33 Robinson Ave, Guelph, (r=0.48, P< 0.01). Hence, meat iridescence is an optical phenomenon. The underlying Ontario N1H 2Y8, Canada, Tel 519-821-7513, mechanism, subsurface multilayer interference, may be important for meat colorimetry. Email [email protected] venison, iridescence, interference, reflectance, meat color Keywords: Received: August 23, 2017 | Published: March 14, 2018 Introduction balanced pixel hues that have tricked your eyes to appear white; and when we perceive interference colors, complex interference spectra Iridescence is an enigmatic aspect of meat color with some practical trick our eyes again. As the order of interference increases, the colors 1–4 importance for consumers concerned about green colors in meat. appear to change from metallic
    [Show full text]
  • Pharaoh Cuttlefish, Sepia Pharaonis, Genome Reveals Unique Reflectin
    fmars-08-639670 February 9, 2021 Time: 18:18 # 1 ORIGINAL RESEARCH published: 15 February 2021 doi: 10.3389/fmars.2021.639670 Pharaoh Cuttlefish, Sepia pharaonis, Genome Reveals Unique Reflectin Camouflage Gene Set Weiwei Song1,2, Ronghua Li1,2,3, Yun Zhao1,2, Herve Migaud1,2,3, Chunlin Wang1,2* and Michaël Bekaert3* 1 Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China, 2 Collaborative Innovation Centre for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China, 3 Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom Sepia pharaonis, the pharaoh cuttlefish, is a commercially valuable cuttlefish species across the southeast coast of China and an important marine resource for the world fisheries. Research efforts to develop linkage mapping, or marker-assisted selection have been hampered by the absence of a high-quality reference genome. To address this need, we produced a hybrid reference genome of S. pharaonis using a long-read Edited by: platform (Oxford Nanopore Technologies PromethION) to assemble the genome and Andrew Stanley Mount, short-read, high quality technology (Illumina HiSeq X Ten) to correct for sequencing Clemson University, United States errors. The genome was assembled into 5,642 scaffolds with a total length of 4.79 Gb Reviewed by: and a scaffold N of 1.93 Mb. Annotation of the S. pharaonis genome assembly Simo Njabulo Maduna, 50 Norwegian Institute of Bioeconomy identified a total of 51,541 genes, including 12 copies of the reflectin gene, that enable Research (NIBIO), Norway cuttlefish to control their body coloration.
    [Show full text]