THE MUMMA SURNAME DNA PROJECT [Revised 20 Jan 2004]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crowd Sourced Genealogy and Direct-To-Consumer DNA Testing: Implications for the Jewish People* by Noah Slepkov
Crowd Sourced Genealogy and Direct-to-Consumer DNA Testing: Implications for the Jewish People* By Noah Slepkov Introduction According to Bennett Greenspan, President and CEO of Family Tree DNA, a leading company Interest in genealogical mapping has dramatically in the field, some people even convert to increased in recent years. New online tools are Judaism after discovering the possibility of available for individuals to research their family Jewish ancestry in their DNA.3 By 2005 the history and collaborate with distant relatives New York Times observed that due to DNA to build family trees. Concurrently, advances in tests, “embraces of Judaism are growing more genetic research and computing technology have common in parts of the (American) Southwest” enabled direct-to-consumer (DTC) genealogical among Hispanics who believe they are mapping through DNA analysis at affordable descendants of Marranos.4 prices. Furthermore, Jewish genealogy, especially The possible existence of Jewish ancestry is Ashkenazi genealogy, has been and continues to among the many discoveries sometimes made by be the focus of many scientific studies aimed at individuals taking advantage of these advances in determining the history and genealogical origins genealogical mapping. Companies that provide of Ashkenazi Jewry. DTC DNA testing even boast that their product Few non-scientists can grasp the biology, can “infer whether or not and to what degree algorithmic calculations, and probabilistic nature you may have Jewish ancestry”1 or “discover your at the foundation of published genetic studies and Jewish ancestry.”2 consumer DNA tests. Still, as they gain widespread DNA test results have led many consumers into public attention, DTC DNA testing has the exploring their newly discovered Jewish roots. -
The Y-DNA of the “Quincy Oakley” Males
Chapter 17 The Y-DNA of the “Quincy Oakley” Males [Updated 28 February 2019] Introduction Human cells normally have 23 pairs of chromosomes; 22 of these pairs are called autosomal chromosomes (autosomes) and are numbered 1-22, while the 23rd pair constitutes the sex chromosomes.1 One of the popular DNA testing companies is called 23andme.com; this company’s name emphasizes the fact that humans normally have 23 pairs of chromosomes. In other chapters, I have discussed many of my autosomal DNA matches with living descendants of our “Quincy Oakley” ancestors. For example, I share a segment of DNA on Chromosome 8 with several living descendants of our Case- Spencer family ancestors who lived in the mid-1600’s. However, since a person inherits half of her autosomal DNA from her father and half from her mother (or alternatively, half of his autosomal DNA from his father and half from his mother), the DNA is “diluted” over time, so that after a large number of generations, autosomal DNA matches between distant relatives are lost. The 23rd pair of chromosomes constitutes the sex chromosomes. These chromosomes are termed X and Y, and a person’s pair of sex chromosomes can be XX or XY. If a person has a Y-chromosome, then he develops as a male. Only males have a Y-chromosome, and the only way that a particular male could have gotten that Y-chromosome was from his father. Thus, the Y-chromosome is 1 Down syndrome occurs when an individual has a full or partial extra copy of chromosome 21. -
Jewish Genealogy and the Current State of DNA Research
November 2007 Bennett Greenspan Founder and CEO, Family Tree DNA Photos Courtesy of Jack Weinstein Jewish Genealogy and the Current State of DNA Research Our speaker introduced himself as 12 23 14 10 14 17 11 17 12 13 11 29, the twelve markers of his Y chromosome. Bennett Greenspan is an entrepreneur and a Genealogist since his teen years. This passion for genealogy and his entrepreneurial spirit led to the creation of Family Tree DNA in 1999. When the ancestral paper trail leads to a dead end, Family Tree DNA to the rescue. Although DNA testing cannot create a family tree or define familial relationships, this testing can verify that family relationships exist and provide probabilities of how many generations back where the two people tested had a common ancestor, but cannot tell you HOW you are related. Also, it is important to know that DNA testing can only determine relationships for your all male ancestral lineage (father’s father’s father … for men) and your all female ancestral lineage (mother’s mother’s mother … for both men and women). Or, put another way, the use of DNA testing can only verify relationships of 2 of 4 grandparents, 2 of 8 great grandparents, 2 of 16 great great grandparents, etc. Each of us inherits 46 chromosomes from our parents – 23 from our father and 23 from our mother. Twenty-two pairs are autosomal (non-sex chromosomes) and two – X and Y – determine sex (XY in men and XX in women). The Y chromosome passes from father to son with virtually no change. -
The Use and Protection of Genomic Information by Companies, Databases, and Law Enforcement
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Honors Theses, University of Nebraska-Lincoln Honors Program Spring 3-16-2020 Terms of Service: The Use and Protection of Genomic Information by Companies, Databases, and Law Enforcement Sophia Kallas University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/honorstheses Part of the Criminal Procedure Commons, Fourth Amendment Commons, Genetics Commons, Genomics Commons, and the Privacy Law Commons Kallas, Sophia, "Terms of Service: The Use and Protection of Genomic Information by Companies, Databases, and Law Enforcement" (2020). Honors Theses, University of Nebraska-Lincoln. 255. https://digitalcommons.unl.edu/honorstheses/255 This Thesis is brought to you for free and open access by the Honors Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Honors Theses, University of Nebraska-Lincoln by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TERMS OF SERVICE: THE USE AND PROTECTION OF GENOMIC INFORMATION BY COMPANIES, DATABASES, AND LAW ENFORCEMENT An Undergraduate Honors Thesis Submitted in partial fulfillment of University Honors Program Requirements University of Nebraska - Lincoln by Sophia Kallas, BS Forensic Science College of Agricultural Sciences and Natural Resources 16 March 2020 Faculty Mentors: Dr. Michael Adamowicz, PhD, Forensic Science Dr. Rebecca Roston, PhD, Biochemistry Dr. Brandi Sigmon, PhD, Plant Pathology Abstract Private genomic companies have become a popular trend in the last two decades by providing customers with information regarding their ancestry and health risks. However, the profiles received from these companies can also be uploaded to public databases for various purposes, including locating other family members. -
1 the Genochip: a New Tool for Genetic Anthropology Eran Elhaik
The GenoChip: A New Tool for Genetic Anthropology Eran Elhaik1, Elliott Greenspan2, Sean Staats2, Thomas Krahn2, Chris Tyler-Smith3, Yali Xue3, Sergio Tofanelli4, Paolo Francalacci5, Francesco Cucca6, Luca Pagani3,7, Li Jin8, Hui Li8, Theodore G. Schurr9, Bennett Greenspan2, R. Spencer Wells10,* and the Genographic Consortium 1 Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA 2 Family Tree DNA, Houston, TX 77008, USA 3 The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK 4 Department of Biology, University of Pisa, Italy 5 Department of Natural and Environmental Science, Evolutionary Genetics Lab, University of Sassari, Italy 6 National Research Council, Monserrato, Italy 7 Division of Biological Anthropology, University of Cambridge, UK 8 Fudan University, Shanghai, China 9 University of Pennsylvania, Philadelphia, PA 10 National Geographic Society, Washington DC, USA *Please address all correspondence to Spencer Wells at [email protected] 1 Abstract The Genographic Project is an international effort using genetic data to chart human migratory history. The project is non-profit and non-medical, and through its Legacy Fund supports locally led efforts to preserve indigenous and traditional cultures. While the first phase of the project was focused primarily on uniparentally-inherited markers on the Y-chromosome and mitochondrial DNA, the next is focusing on markers from across the entire genome to obtain a more complete understanding of human genetic variation. In this regard, genomic admixture is one of the most crucial tools that will help us to analyze the genetic makeup and shared history of human populations. -
Registration Brochure (PDF)
Pr esented by: Local Host Society: National Genealogical North C arolina Society® Genealogical Society, Inc. 3108 Columbia Pike, Suite 300 PO Box 30815 Arlington, VA 22204-4370 Raleigh, NC 27622-0815 703-525-0050 | 800-473-0060 | fax 703-525-0052 [email protected] | http://www.ncgenealogy.org http://www.ngsgenealogy.org Family History Lives Here Genealogists will gather in Raleigh, North Carolina, for the National Genealogical Society 2017 Family History Conference, Family History Lives Here. During the conference, set for 10–13 May 2017, participants may choose from more than 175 lectures and workshops. Lectures will cover a wide range of local, regional, and general genealogy topics, which will help you build a solid foundation for your family history, fine-tune your research skills, and refine your methodology. Conference registration opens on 1 December 2016 at http://conference.ngsgenealogy.org/event-registration/. Pre-Registration convention center. Conference rates are also By Train: Train routes stopping in Raleigh, Conference registration opens on 1 December available at the Sheraton Raleigh Hotel, Holiday N.C., and Cary include: the Carolinian, which 2016 at http://conference.ngsgenealogy.org/ Inn Raleigh Downtown Capital, and the travels from Charlotte to Cary to Raleigh to with discounted early-bird conference Hampton Inn & Suites Raleigh Downtown. All New York; the Piedmont, which travels from registration continuing through 27 March 2017. hotels and the Convention Center are located Charlotte to Cary to Raleigh; and the Silver Attendees may also pre-register for meals, along the free RLine Downtown circulator. Star, which travels from Florida to Raleigh to workshops, and special events until 27 April (See http://www.godowntownraleigh.com/ New York. -
Tracing Ancestral Lines in the 1700S Using DNA, Part One
Tracing Ancestral Lines in the 1700s using DNA, Part One Tim Janzen, MD E-mail: [email protected] The science of genetics has changed dramatically in the past 60 years since James Watson and Francis Crick first discovered and described DNA in 1953. Genetics is increasingly being used to help people trace their family histories. The first major application of genetics to a family history puzzle was in 1998 when researchers established that a male Jefferson, either Thomas Jefferson or a close male relative, fathered at least one of Sally Hemings’ children. The first major company to utilize DNA for family history purposes was Family Tree DNA, which was founded by Bennett Greenspan in 2000. Initially the only types of testing that were done were Y chromosome and mitochondrial DNA testing. Over the past 10 years, autosomal DNA testing has moved into a prominent role in genetic genealogy. 23andMe was the first company to offer autosomal DNA testing for genealogical purposes. Their Relative Finder feature (now renamed as DNA Relatives) was quite popular when it was introduced in 2009. This feature allows people to discover genetic cousins they likely had never been in contact with previously. In 2010 Family Tree DNA introduced an autosomal DNA test called Family Finder which is a competing product to 23andMe’s test. In 2012 a third major autosomal DNA test called AncestryDNA was introduced by Ancestry.com. It has been quite popular due its low price and the availability of extensive pedigree charts for many of the people who have been tested by Ancestry.com. -
Regulating Direct-To-Consumer Genetic and Genomic Information, 92 Neb
Nebraska Law Review Volume 92 | Issue 4 Article 2 2014 Consuming Genomics: Regulating Direct-to- Consumer Genetic and Genomic Information Kayte Spector-Bagdady Presidential Commission for the Study of Bioethical Issues, [email protected] Elizabeth R. Pike Presidential Commission for the Study of Bioethical Issues, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/nlr Recommended Citation Kayte Spector-Bagdady and Elizabeth R. Pike, Consuming Genomics: Regulating Direct-to-Consumer Genetic and Genomic Information, 92 Neb. L. Rev. (2014) Available at: https://digitalcommons.unl.edu/nlr/vol92/iss4/2 This Article is brought to you for free and open access by the Law, College of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Law Review by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Kayte Spector-Bagdady, J.D., M. Bioethics and Elizabeth Pike, J.D., LL.M.* Consuming Genomics: Regulating Direct-to-Consumer Genetic and Genomic Information TABLE OF CONTENTS I. Introduction .......................................... 678 II. Access to One’s Own Genetic Information .............. 684 A. The Human Genome .............................. 684 B. Origins and Evolution of Genetic Testing .......... 686 1. From Discrete Genetic Tests to Large-Scale Testing and Genomic Sequencing .............. 687 2. From Clinician-Provided Testing to Direct-to- Consumer Access .............................. 689 C. Concerns Raised by Direct-to-Consumer Genetic Testing ........................................... 690 1. Investigation by the Government Accountability Office in 2006 ................................. 692 2. Reports of the Secretary’s Advisory Committee on Genetics, Health, and Society ............... 693 3. Investigation by the Government Accountability Office in 2010 ................................. 696 III. Regulating Direct-to-Consumer Genetic Testing ....... -
Y-DNA and Genealogy
Y-DNA and Genealogy Peter Biggins, BY3164 Darien Library, Darien, CT October 6, 2018 Housekeeping ● Slides available on MGS website: mgs.darien.org/meetings.htm ● Contact Peter with any questions at: [email protected] Y-DNA: for Men Only? ● Yes – Only men can be tested – Handed down from father to son ● But – Many Y tests are bought by women – Y-DNA from a brother, father, uncle, nephew, male cousin Y Orientation ● Don't sweat the science ● Not cheap: think $449 per person ● Your place on the human tree ● Connect with ancient people and places ● Maybe help with genealogy – Now – In the future DNA 101: Types of DNA ● In the cell's nucleus – Autosomal DNA is in the 44 non-sex chromosomes – Y-chromosome DNA is in the one male chromosome ● In the cell's mitochondria – Mitochondrial DNA is found outside the cell's nucleus DNA 101: Mutations ● Billions of cells die everyday ● Cells constantly replicate by dividing ● Mutations occur, rarely, in replication ● These mutations are inherited ● A tree can be constructed from “Adam” to the present using these mutations, Y Topics ● Projects – Surname (last name) – Haplogroup (major SNP) ● Testing results – STR matches – SNP tree ● Testing strategy Surname Projects 2008 Email from Daniela I have visited your great website PetersPioneers and see that you have a lot of information on the Biggins surname. I am researching my Biggins family from Middlesex, England, and have formed a DNA project to help with this research. 2008 Email from FTDNA Thank you for ordering the Y-DNA67 test. Your sample kit number is 127469. -
Handouts in Landscape.Pub
Editor’s note: Here is a landscape version of the handouts by Jim Rader. This version puts all links on one line, which makes the live links work without copying and pasting after converting to .pdf format. What Can a Genealogist Use from DNA Test Results? By Jim Rader, [email protected] www.rader.org For an overview of the role of the Y-chromosome, and not necessarily limited to human kind, view this Wikipedia page: http://en.wikipedia.org/wiki/Y_chromosome 1. Now have a glance at another Wikipedia page, this time one which explains the basics of genealogical DNA testing — including Y-chromosome tests: http://en.wikipedia.org/wiki/Genealogical_DNA_test 2. Family Tree DNA run a tool to estimate this genetic distance within the project space of a Y-chromosome project. You can find out about the TMRCA calculation on the FTDNA website where it is part of the timeframe estimating help offered within the TiP programme. Read about the FTDNA-TiP tool at: www.familytreedna.com/faq-tip.aspx . 3. Y-Utility: Y-DNA Comparison Utility, FTDNA Mode which is found at: www.mymcgee.com/tools/yutility.html?mode=ftdna_mode 4. Review the information on haplogroups at http://en.wikipedia.org/wiki/Human_Y-chromosome_DNA_haplogroups ). 5. For a list of marker values look at: http://en.wikipedia.org/wiki/List_of_DYS_markers and www.genebase.com/in/dnaMarkerDetail.php 6. Online databases of results You may find these resources useful when checking your own results: YHRD at www.yhrd.org Ysearch at www.ysearch.org 7. The Y-Chromosome Phylogenetic Tree 8. -
A New Tool for Genetic Anthropology
University of Pennsylvania ScholarlyCommons Department of Anthropology Papers Department of Anthropology 5-9-2013 The GenoChip: A New Tool for Genetic Anthropology Eran Elhaik Elliott Greenspan Sean Staats Thomas Krahn Chris Tyler-Smith See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/anthro_papers Part of the Biological and Physical Anthropology Commons, and the Genetic Structures Commons Recommended Citation Elhaik, E., Greenspan, E., Staats, S., Krahn, T., Tyler-Smith, C., Xue, Y., Tofanelli, S., Cucca, F., Pagani, L., Jin, L., Li, H., Schurr, T. G., Greenspan, B., Wells, R., & Genographic Consortium (2013). The GenoChip: A New Tool for Genetic Anthropology. Genome Biology and Evolution, 5 (5), 1021-1031. https://doi.org/10.1093/ gbe/evt066 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/anthro_papers/27 For more information, please contact [email protected]. The GenoChip: A New Tool for Genetic Anthropology Abstract The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and non-medical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. -
Operationalising Forensic Genetic Genealogy in an Australian Context
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2020 Operationalising forensic genetic genealogy in an Australian context Nathan Scudder a, d, e, Runa Daniel b, e, Jennifer Raymond c, Alison Sears c a Australian Federal Police, GPO Box 401, Canberra, Australia b Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, Victoria 3085, Australia c Forensic Evidence and Technical Services, NSW Police Force, NSW 2010, Australia d Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Australia e National Centre for Forensic Studies, Faculty of Science and Technology, University of Canberra, Australia I.ABSTRACT Scientific, ethical, privacy, security and legal considerations arise as the application of forensic Forensic genetic genealogy, a technique leveraging genetic genealogy (FGG) continues to advance. new DNA capabilities and public genetic databases This article will explore those considerations in an to identify suspects, raises specific considerations in Australian legal and scientific context. In addition, a law enforcement context. Use of this technique the article will explore how these new capabilities requires consideration of its scientific and technical may sit within existing forensic and investigative limitations, including the composition of current processes. In Section XII a checklist is provided online datasets, and consideration of its scientific outlining items for consideration by any agency validity. Additionally, forensic genetic genealogy seeking to implement this technique within needs to be considered in the relevant legal context casework. to determine the best way in which to make use of Direct-to-consumer (DTC) DNA testing has been its potential to generate investigative leads while offered to consumers for several decades, but high minimising its impact on individual privacy.