DISTANT Ekos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
" Tnos Are Cool": a Survey of the Trans-Neptunian Region VI. Herschel
Astronomy & Astrophysics manuscript no. classicalTNOsManuscript c ESO 2012 April 4, 2012 “TNOs are Cool”: A survey of the trans-Neptunian region VI. Herschel⋆/PACS observations and thermal modeling of 19 classical Kuiper belt objects E. Vilenius1, C. Kiss2, M. Mommert3, T. M¨uller1, P. Santos-Sanz4, A. Pal2, J. Stansberry5, M. Mueller6,7, N. Peixinho8,9 S. Fornasier4,10, E. Lellouch4, A. Delsanti11, A. Thirouin12, J. L. Ortiz12, R. Duffard12, D. Perna13,14, N. Szalai2, S. Protopapa15, F. Henry4, D. Hestroffer16, M. Rengel17, E. Dotto13, and P. Hartogh17 1 Max-Planck-Institut f¨ur extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Konkoly Observatory of the Hungarian Academy of Sciences, 1525 Budapest, PO Box 67, Hungary 3 Deutsches Zentrum f¨ur Luft- und Raumfahrt e.V., Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany 4 LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 5 Stewart Observatory, The University of Arizona, Tucson AZ 85721, USA 6 SRON LEA / HIFI ICC, Postbus 800, 9700AV Groningen, Netherlands 7 UNS-CNRS-Observatoire de la Cˆote d’Azur, Laboratoire Cassiope´e, BP 4229, 06304 Nice Cedex 04, France 8 Center for Geophysics of the University of Coimbra, Av. Dr. Dias da Silva, 3000-134 Coimbra, Portugal 9 Astronomical Observatory of the University of Coimbra, Almas de Freire, 3040-04 Coimbra, Portugal 10 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris, France 11 Laboratoire d’Astrophysique de Marseille, CNRS & Universit´ede Provence, 38 rue Fr´ed´eric Joliot-Curie, 13388 Marseille Cedex 13, France 12 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Camino Bajo de Hu´etor 50, 18008 Granada, Spain 13 INAF – Osservatorio Astronomico di Roma, via di Frascati, 33, 00040 Monte Porzio Catone, Italy 14 INAF - Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy 15 University of Maryland, College Park, MD 20742, USA 16 IMCCE, Observatoire de Paris, 77 av. -
Determination of Binary Asteroid Orbits with a Genetic-Based Algorithm Frédéric Vachier, Jérôme Berthier, Franck Marchis
Determination of binary asteroid orbits with a genetic-based algorithm Frédéric Vachier, Jérôme Berthier, Franck Marchis To cite this version: Frédéric Vachier, Jérôme Berthier, Franck Marchis. Determination of binary asteroid orbits with a genetic-based algorithm. Astronomy and Astrophysics - A&A, EDP Sciences, 2012, 543, pp.A68. 10.1051/0004-6361/201118408. hal-00719660 HAL Id: hal-00719660 https://hal.sorbonne-universite.fr/hal-00719660 Submitted on 20 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 543, A68 (2012) Astronomy DOI: 10.1051/0004-6361/201118408 & c ESO 2012 Astrophysics Determination of binary asteroid orbits with a genetic-based algorithm F. Vachier1, J. Berthier1, and F. Marchis2,1 1 Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 2 Carl Sagan Center, SETI Institute, 189 Bernardo Avenue, Mountain View CA 94043, USA Received 5 November 2011 / Accepted 28 April 2012 ABSTRACT Aims. Over the past decade, discoveries of multiple and binary asteroid systems have played a significant role in our general under- standing of small solar system bodies. -
Arxiv:2102.05076V2 [Astro-Ph.EP] 17 Feb 2021 Et Al
Draft version August 30, 2021 Typeset using LATEX twocolumn style in AASTeX63 The Reflectance of Cold Classical Trans-Neptunian Objects in the Nearest Infrared Tom Seccull,1, 2 Wesley C. Fraser,3 and Thomas H. Puzia4 1Gemini Observatory/NSF's NOIRLab, 670 N. A'ohoku Place, Hilo, HI 96720, USA 2Astrophysics Research Centre, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK 3Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 4Institute of Astrophysics, Pontificia Universidad Cat´olica de Chile, Av. Vicu~naMacKenna 4860, 7820436, Santiago, Chile (Received 2020 Nov 8; Revised 2021 Jan 22; Accepted 2021 Feb 6) Submitted to PSJ ABSTRACT Recent photometric surveys of Trans-Neptunian Objects (TNOs) have revealed that the cold classical TNOs have distinct z-band color characteristics, and occupy their own distinct surface class. This suggested the presence of an absorption band in the reflectance spectra of cold classicals at λ > 0:8 µm. Here we present reflectance spectra spanning 0:55 − 1:0 µm for six TNOs occupying dynamically cold orbits at a ∼ 44 au. Five of our spectra show a clear and broadly consistent reduction in spectral gradient above 0:8 µm that diverges from their linear red optical continuum and agrees with their reported photometric colour data. Despite predictions, we find no evidence that the spectral flattening is caused by an absorption band centered near 1:0 µm. We predict that the overall consistent shape of these five spectra is related to the presence of similar refractory organics on each of their surfaces, and/or their similar physical surface properties such as porosity or grain size distribution. -
Download the PDF Preprint
Five New and Three Improved Mutual Orbits of Transneptunian Binaries W.M. Grundya, K.S. Nollb, F. Nimmoc, H.G. Roea, M.W. Buied, S.B. Portera, S.D. Benecchie,f, D.C. Stephensg, H.F. Levisond, and J.A. Stansberryh a. Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff AZ 86001. b. Space Telescope Science Institute, 3700 San Martin Dr., Baltimore MD 21218. c. Department of Earth and Planetary Sciences, University of California, Santa Cruz CA 95064. d. Southwest Research Institute, 1050 Walnut St. #300, Boulder CO 80302. e. Planetary Science Institute, 1700 E. Fort Lowell, Suite 106, Tucson AZ 85719. f. Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd. NW, Washington DC 20015. g. Dept. of Physics and Astronomy, Brigham Young University, N283 ESC Provo UT 84602. h. Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson AZ 85721. — Published in 2011: Icarus 213, 678-692. — doi:10.1016/j.icarus.2011.03.012 ABSTRACT We present three improved and five new mutual orbits of transneptunian binary systems (58534) Logos-Zoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK183, (149780) Altjira, 2001 QY297, 2003 QW111, and 2003 QY90 based on Hubble Space Tele- scope and Keck II laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1,600 to 37,000 km, ec- centricities ranging from 0 to 0.8, and system masses ranging from 2 × 1017 to 2 × 1022 kg. -
Thermal Measurements
Physical characterization of Kuiper belt objects from stellar occultations and thermal measurements Pablo Santos-Sanz & the SBNAF team [email protected] Stellar occultations Simple method to: -Obtain high precision sizes/shapes (unc. ~km) -Detect/characterize atmospheres/rings… -Obtain albedo, density… -Improve the orbit of the body …this looks like very nice but...the reality is harder (at least for TNOs and Centaurs) EPSC2017, Riga, Latvia, 20 Sep. 2017 Stellar occultations Titan 10 mas Quaoar 0.033 arsec Diameter of 1 Euro (33 mas) Pluto coin at 140 km Eris Charon Makemake Pablo Santos-Sanz EPSC2017, Riga, Latvia, 20 Sep. 2017 Stellar occultations ~25 occultations by 15 TNOs (+ Pluto/Charon + Chariklo + Chiron + 2002 GZ32) Namaka Dysnomia Ixion Hi’iaka Pluto Haumea Eris Chiron 2007 UK126 Chariklo Vanth 2014 MU69 2002 GZ32 2003 VS2 2002 KX14 2002 TX300 2003 AZ84 2005 TV189 Stellar occultations: Eris & Chariklo Eris: 6 November 2010 Chariklo: 3 June 2014 • Size ~ Plutón • It has rings! • Albedo= 96% 3 • Density= 2.5 g/cm Danish 1.54-m telescope (La Silla) • Atmosphere < 1nbar (10-4 x Pluto) Eris’ radius Pluto’s radius 1163±6 km 1188.3±1.6 km (Nimmo et al. 2016) Braga-Ribas et al. 2014 (Nature) Sicardy et al. 2011 (Nature) EPSC2017, Riga, Latvia, 20 Sep. 2017 Stellar occultations: Makemake 23 April 2011 Geometric Albedo = 77% (betwen Pluto and Eris) Possible local atmosphere! Ortiz et al. 2012 (Nature) EPSC2017, Riga, Latvia, 20 Sep. 2017 Stellar occultations: latest “catches” 2007 UK : 15 November 2014 2003 AZ84: 8 Jan. 2011 single, 3 Feb. 126 2012 multi, 2 Dec. -
Journal Pre-Proof
Journal Pre-proof A statistical review of light curves and the prevalence of contact binaries in the Kuiper Belt Mark R. Showalter, Susan D. Benecchi, Marc W. Buie, William M. Grundy, James T. Keane, Carey M. Lisse, Cathy B. Olkin, Simon B. Porter, Stuart J. Robbins, Kelsi N. Singer, Anne J. Verbiscer, Harold A. Weaver, Amanda M. Zangari, Douglas P. Hamilton, David E. Kaufmann, Tod R. Lauer, D.S. Mehoke, T.S. Mehoke, J.R. Spencer, H.B. Throop, J.W. Parker, S. Alan Stern, the New Horizons Geology, Geophysics, and Imaging Team PII: S0019-1035(20)30444-9 DOI: https://doi.org/10.1016/j.icarus.2020.114098 Reference: YICAR 114098 To appear in: Icarus Received date: 25 November 2019 Revised date: 30 August 2020 Accepted date: 1 September 2020 Please cite this article as: M.R. Showalter, S.D. Benecchi, M.W. Buie, et al., A statistical review of light curves and the prevalence of contact binaries in the Kuiper Belt, Icarus (2020), https://doi.org/10.1016/j.icarus.2020.114098 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. -
Precision Astrometry for Fundamental Physics – Gaia
Gravitation astrometric tests in the external Solar System: the QVADIS collaboration goals M. Gai, A. Vecchiato Istituto Nazionale di Astrofisica [INAF] Osservatorio Astrofisico di Torino [OATo] WAG 2015 M. Gai - INAF-OATo - QVADIS 1 High precision astrometry as a tool for Fundamental Physics Micro-arcsec astrometry: Current precision goals of astrometric infrastructures: a few 10 µas, down to a few µas 1 arcsec (1) 5 µrad 1 micro-arcsec (1 µas) 5 prad Reference cases: • Gaia – space – visible range • VLTI – ground – near infrared range • VLBI – ground – radio range WAG 2015 M. Gai - INAF-OATo - QVADIS 2 ESA mission – launched Dec. 19th, 2013 Expected precision on individual bright stars: 1030 µas WAG 2015 M. Gai - INAF-OATo - QVADIS 3 Spacetime curvature around massive objects 1.5 G: Newton’s 1".74 at Solar limb 8.4 rad gravitational constant GM 1 cos d: distance Sun- 1 1 observer c2d 1 cos M: solar mass 0.5 c: speed of light Deflection [arcsec] angle : angular distance of the source to the Sun 0 0 1 2 3 4 5 6 Distance from Sun centre [degs] Light deflection Apparent variation of star position, related to the gravitational field of the Sun ASTROMETRY WAG 2015 M. Gai - INAF-OATo - QVADIS 4 Precision astrometry for Fundamental Physics – Gaia WAG 2015 M. Gai - INAF-OATo - QVADIS 5 Precision astrometry for Fundamental Physics – AGP Talk A = Apparent star position measurement AGP: G = Testing gravitation in the solar system Astrometric 1) Light deflection close to the Sun Gravitation 2) High precision dynamics in Solar System Probe P = Medium size space mission - ESA M4 (2014) Design driver: light bending around the Sun @ μas fraction WAG 2015 M. -
1 Rotation Periods of Binary Asteroids with Large Separations
Rotation Periods of Binary Asteroids with Large Separations – Confronting the Escaping Ejecta Binaries Model with Observations a,b,* b a D. Polishook , N. Brosch , D. Prialnik a Department of Geophysics and Planetary Sciences, Tel-Aviv University, Israel. b The Wise Observatory and the School of Physics and Astronomy, Tel-Aviv University, Israel. * Corresponding author: David Polishook, [email protected] Abstract Durda et al. (2004), using numerical models, suggested that binary asteroids with large separation, called Escaping Ejecta Binaries (EEBs), can be created by fragments ejected from a disruptive impact event. It is thought that six binary asteroids recently discovered might be EEBs because of the high separation between their components (~100 > a/Rp > ~20). However, the rotation periods of four out of the six objects measured by our group and others and presented here show that these suspected EEBs have fast rotation rates of 2.5 to 4 hours. Because of the small size of the components of these binary asteroids, linked with this fast spinning, we conclude that the rotational-fission mechanism, which is a result of the thermal YORP effect, is the most likely formation scenario. Moreover, scaling the YORP effect for these objects shows that its timescale is shorter than the estimated ages of the three relevant Hirayama families hosting these binary asteroids. Therefore, only the largest (D~19 km) suspected asteroid, (317) Roxane , could be, in fact, the only known EEB. In addition, our results confirm the triple nature of (3749) Balam by measuring mutual events on its lightcurve that match the orbital period of a nearby satellite in addition to its distant companion. -
Asteroid Pairs: a Complex Picture
Asteroid pairs: a complex picture P. Pravec a, P. Fatka a,b, D. Vokrouhlick´y b, P. Scheirich a, J. Durechˇ b, D. J. Scheeres c, P. Kuˇsnir´ak a, K. Hornoch a, A. Gal´ad d, D. P. Pray e, Yu. N. Krugly f, O. Burkhonov g, Sh. A. Ehgamberdiev g, J. Pollock h, N. Moskovitz i, J. L. Ortiz j, N. Morales j, M. Hus´arik k, R. Ya. Inasaridze ℓ,m, J. Oey n, D. Polishook o, J. Hanuˇs b, H. Kuˇc´akov´a a,b, J. Vraˇstil b, J. Vil´agi d, S.ˇ Gajdoˇs d, L. Kornoˇs d, P. Vereˇs d,p, N. M. Gaftonyuk q, T. Hromakina f, A. V. Sergeyev f, I. G. Slyusarev f, V. R. Ayvazian ℓ,m, W. R. Cooney r, J. Gross r, D. Terrell r,s, F. Colas t, F. Vachier t, S. Slivan u, B. Skiff i, F. Marchis af,w, K. E. Ergashev g, D.-H. Kim x,y A. Aznar z, M. Serra-Ricart aa,ab, R. Behrend ac, R. Roy ad, F. Manzini ae, I. E. Molotov af aAstronomical Institute, Academy of Sciences of the Czech Republic, Friˇcova 1, CZ-25165 Ondˇrejov, Czech Republic bInstitute of Astronomy, Charles University, Prague, V Holeˇsoviˇck´ach 2, CZ-18000 Prague 8, Czech Republic cDepartment of Aerospace Engineering Sciences, The University of Colorado at Boulder, Boulder, CO, USA dModra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMPI UK, Bratislava SK-84248, Slovakia eSugarloaf Mountain Observatory, South Deerfield, MA, USA f Institute of Astronomy of Kharkiv National University, Sumska Str. -
Download This Article in PDF Format
A&A 564, A35 (2014) Astronomy DOI: 10.1051/0004-6361/201322416 & c ESO 2014 Astrophysics “TNOs are Cool”: A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations E. Vilenius1,C.Kiss2, T. Müller1, M. Mommert3,4, P. Santos-Sanz5,6,A.Pál2, J. Stansberry7, M. Mueller8,9, N. Peixinho10,11,E.Lellouch6, S. Fornasier6,12, A. Delsanti6,13, A. Thirouin5, J. L. Ortiz5,R.Duffard5, D. Perna6, and F. Henry6 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege 15-17, 1121 Budapest, Hungary 3 Deutsches Zentrum für Luft- und Raumfahrt e.V., Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany 4 Northern Arizona University, Department of Physics and Astronomy, PO Box 6010, Flagstaff AZ 86011, USA 5 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008-Granada, Spain 6 LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 7 Stewart Observatory, The University of Arizona, Tucson AZ 85721, USA 8 SRON Netherlands Institute for Space Research, Postbus 800, 9700 AV Groningen, The Netherlands 9 UNS-CNRS-Observatoire de la Côte d’Azur, Laboratoire Cassiopée, BP 4229, 06304 Nice Cedex 04, France 10 Center for Geophysics of the University of Coimbra, Geophysical and Astronomical Observatory of the University of Coimbra, Almas de Freire, 3040-004 Coimbra, Portugal 11 Unidad de Astronomía, Facultad de Ciencias Básicas, Universidad de Antofagasta, 601 avenida Angamos, Antofagasta, Chile 12 Univ. -
Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests. -
Appendix 1 1311 Discoverers in Alphabetical Order
Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.