Medical Care of Divers in the Antarctic

Total Page:16

File Type:pdf, Size:1020Kb

Medical Care of Divers in the Antarctic Arctic Medical Research vol. 53: Suppl. 2,pp. 320-324, 1994 Medical Care of Divers in the Antarctic A. H. Milne and L. F. Thomson British Antaretic Survey Medical Unit, RGIT Survival Centre Ltd, Aberdeen, Scotland Abstract: 'The provision of medical care for divers in the Antarctic presents a number of spcciil occupational health problems. For example, diving safety practices must take into account the cxlltmC nature of the environment with sea temperatures of -1.7° C and ambient temperatures .o~ -25'C with die attendant risks of hypothermia. Affliction with any of the disorders associated with d1vmg. an: likely'° have serious consequences because of the remoteness of both the dive site and the base. Tius has led die British Antarctic Survey Medical Unit to focus on the specialist training of doctors and dive tezns to 1 prepare them for medical emergencies, the facility of twin lock recompression chambe~ and to ensure high level of medical fitness pre-dive. In spite of these precautions researc:~ has been earned out to:: that high standatds of safety are maintained. Previous research in Antarctlc waters has shown thal the core tcmperatun: was maintained during the dive a significant after drop was a~~t 40 mmutes ix: dive. These findings are now being re-examined in the light of increased diving activity throughout year and changes in protective suits. Diving is conducted throughout the year at the Brit­ There are 2 groups of dysbari~ illn.ess, namely the ish Antarctic Survey (BAS) station on Signy (60° barotraumata and Decompression Sickness (DCSl. 43'S, 45° 36' W), one of the South Orkney group of Barottauma results from tissue damage cOOSfllUClll islands. Signy is one of the 5 permanently manned on a change of volume of gas, aJn:adynormall~3 BAS stations, and is a centre for terrestrial, freshwa­ as gas (eg in lung, middle ear, smuses), as dcscett ter and marine biological research. change ofpressure. It is a phenomeno~ ofbolh aol . di . (" . pressure 00creasmgvolume) The diving facility is important in support of the m vmg mcreasmg • . · volulllCl. research programmes. In recent years, BAS diving ascent (decreasing press.ure, mcreasmg ofBoyle's Barotramna is the pathological consequence · · activity has extended to other locations. 15 The care of divers in the remote, inaccessible and Law which states that the volume of !he ~ ; potentially hostile environment of the Ant.arctic is versely proportional to its abs?lute pressure given its absolute temperature remams constant . IJ1IO' based on: 15 I. Safe diving practices. The most serious form of barotrauma pu 3lld 2. Pre-dive and peri.odk medical examinations to nary of a.scent with its resultant Iun~ ~and establish conclusion on medical fitness or unfit­ 'b th tmP.umo-med1astm possl le pneumo orax, r·- ond'1 tionS. ast:· ness to dive. the most serious of all dive-related c . tpjnCd 3. Training in diving me.dicine for dive site doctor rial gas embolism (AGE). In AG~. gas is en the left 1 and n~-medical members of the diving team. into the pulmonary vein, whence it tra~els. to ulafioO. 4. On-site treatment capability, in particular a side of the heart and into the systemic c~ to the recompression chamber. Usually, but not invariably, such ·~gasnav;~bolism 5. 24 hour UK-based emergency and less urgent brain, resulting in cerebral arten pidl fatal: cc;>ve~ for advice is facilitated by satellite commu­ (CAGE). Thiscondition~~st~be; uJ: mos' mcations. the most urgent treatment is mdica • ion ro. 6. Research progtamme& to iracase knowledge of important component of.. wbich is,;eco:=; of ps pocential haz.ards ancl to enable, ifindicated, addi­ following Boyle's Law, squeeze the . tional safety measures to be undertaken. into solution. group; ot 1. Alertness to maintain. husband and develop the DCS, the second of the 2. dysooi:,~ solutiOD w overall and specific~ to diver care. illnesses, is caused by gas conung out ssion fOI· Each of~ above is~ furtlicr later in this form gas phase on and/or ~- dec~oading cl communication under "C - The Cate of 1he Diver." lowing, as a result of the di_ve, tne~e with }!efl­ tissues with gas in solution tn acco unt of ga.i The Diving..._ ry's Law. Henry's Law sta~ that the ~s di1t1-1l~ ~re are 3 groups of disorder which may befall the dissolved in a given ~uanttty of fl~~at gas U{ll111 diver (many refm:nces., inchKting I, 2, 3): proportional to the partial pressure 0 non re511lt5 l. The dysbaric illnesses. which are those due to a the fluid. 'Ibe bubbling of gas out 0~ solu fai,.111fl· change of pressure. from tissue supersaroration ~ ...... rd WM & Thomson: Medical Care of Divers in the Antarctic 321 There are 2 inter-related events in DCS: 2. Pre-Dive and periodic medical examinations ,, The primary effects of the foreign body of the gas Robust physical and mental health is needed both for lllbble itself. If, for example, it presses on the the prolonged, isolated Antarctic tour and for diving. ;pinaJ cord, it may present as paraplegia, with The general, non-dive related, medical screening ~.urinary and bowel dysfunction. prior to departure for the South seeks to establish a b• A "secondary cascade" of effects as a result of view on medical fitness with a particular focus on: rubble/tissue interface cellular, biochemical and rheological events. (i) The health and safety of the individual and of lkpending primarily on the site of the "interro- his companions. pmg bubble", AGE and DCS may present clini­ (ii) Ability to perform the appointed tasks. (iii) The impact on individual and on operations were ~ in many ways -the "great mimicker" to borrow l!un !he description of syphilis. Features of either eg medical evacuation required for a foresee­ Mi ?" DCS include skin rash, joint pain, para­ able condition. t'lllleliae, numbness, breathlessness, unconscious­ (iv) The risk of adverse effects on the well-being and • paralysis, vestibular dysfunction, hypovola­ efficiency of the small, remote community. (v) Mininiising the difficulties for the Survey in * shock. and the more vague symptoms of fa­ llpc, gtneral malaise and change of affect. Urgent exercising its responsibility for the overall care ~ion is mandatory for AGE and DCS. of its employees. The medical examination for all scheduled Antarctic 2 ~re~ to diving, but not dysbaric per se. personnel comprises thorough: ~sbaric conditions caused by, or due to div­ (i) Current and past medical history, by discussion aig may be su~vided into those resulting from the with the examining doctor with reference to the P5CS that the di~er breathes (eg hypoxia, hyperoxia, exarninee's completed questionnaire. IBlrogelJ ~is. carbon monoxide contamination) (ii) Physical examination. ~llaneous ~up of disorders including (iii) Investigations: 3. ~ and ~e.anirnal injury. - Dipstix urinalysis. ldllll ~lated to di~g (conditions which may - Chest X-ray . the ~ver ~non-diver alike) which require - Blood grouping (with tests for Hepatitis Band ~ pnncipally in the context of differen- C, VDRL and HIV, conducted with the exami­ ""'6'~1S from a dive-related disorder. nee' s informed consent following modified counselling. All who journey south may be re­ 1't Carter the Diver quired to either donate or receive blood). I. 54/t diving practices - Resting ECG if aged 35 or over. - Further investigations at the discretion of the ~ Divin~ ?fficer is appointed to su- 1iiists W:, stte, all d1vmg ~vi~. He plans and examining doctor. L\s ~~ to, his SCIUor colleague in The system generally permits the time and~­ Tbccqu· 10 Cambridge. tunity for clarification over any doubt regarding -.· lplllent used and procedures followed are medical fitness, eg report from family doctor, spe­ ~~an~ -:ven tried and proven. cialist referral for assessment, correction of disorder. ~of ative divmg.is undertaken, in tenns prin- The pre-tour South and annual periodic examina­ ·~~ion requirement consequent tion of the BAS diver embraces all the above plus ~the BSA~~ and time at. depth. BAS additional aspects of history, examination and inves­ ~an: J>lanned decompression table (4). tigation reflecting the UK guidelines for the statu­ ~~to be ".OOlpleted wen within the tory examination of commercial divers (6). flrao individuaJ . ts of this Table. Repetitive diving Additional investigations are ECG (routinely all ~ 1rilb any diver is. restricted to two dives in 24 ages), sub-maximal exercise test (as an indicator of frit There· ~dive being shallower than the physical fitness), full blood count, packed cell vol­ , IS IVOldaJJce of ultiple 'tltalled~yo- .. ume and sickle-cell trait, spirometr}' by vitalograph, 0 m descents/ascents Urtis~ to divmg) during any single dive (5). and audiometry. ~ llllvel to~~ diver~tcold, this ~-. the austral the dive site (by boat 3. Training in diving medicine for d~v~ site doctor and non-medical members the diving team ~die sea ice du:::· ~ ski-doo and sledge of ' '"llglle, illness ~ . wmter). Doctors attend a 5 day course in Diving Medicine as Thcic is no d. ~ IDJury precludes diving. part of their pre-tour South preparation programme. -..ill'Ciiic~mg ~hen environmental condi­ The principal course objective is to ~ the ~­ lit\ ill'C lllaintained ~and treatment facili­ tor for a confident and effective role m the recogm­ ty. tion and management of the diving illnesses. Fol­ lowing review of the relevant physics and physiol- ~--~~~~~~~~~~~~~~~~~~- ···------ Cin:umpolar H~olth 1993 b 322 Chapter 5: Cold: Reaction and Prottc!UJI ogy, the pathogenesis, clinical features and manage­ to prevent oxygen build-up in the chamber frfll! ment of diving illnesses are considered - with exten­ exhalation. sive reference to case history discussion. The re­ (iv) Good verbal communications between ms.t quirements of routine examination (and assessment and outside the chamber.
Recommended publications
  • 2019-20 Media Guide
    www.NAVYSPORTS.com NAVY SWIMMING & DIVING 2019-20 MEDIA GUIDE 2018 PATRIOT LEAGUE CHAMPIONS 2019-20 NAVY SWIMMING & DIVING Table of Contents Women’s Team Facts Men’s Team Facts Program Information 1 Coaching Staff Coaching Staff Coaching / Support Staff 2-7 Head Swimming Coach John Morrison Head Swimming Coach Bill Roberts 2019-20 Schedule / NCAA Meet Standards 8 Alma Mater North Carolina ‘93 Alma Mater Springfield ‘92 Year at Navy as Head Coach 16th Year at Navy as Head Coach 17th 2019-20 Women’s Team 9 Year at Navy 20th Year at Navy 20th Roster 9 Navy Record 138-36 (15 Seasons) Navy Record 169-56 (16 Seasons) Women’s Bios 10-19 Career Record 169-63 (18 Seasons) Career Record 208-93 (19 Seasons) Phone (410) 293-3081 Phone (410) 293-3012 E-Mail [email protected] E-Mail [email protected] 2019-20 Men Team 20 Head Diving Coach Rich MacDonald Head Diving Coach Rich MacDonald Roster 20 Alma Mater Rhode Island ‘97 Alma Mater Rhode Island ‘97 Men’s Bios 21-30 Year at Navy Seventh Year at Navy Seventh Phone (410) 293-2970 Phone (410) 293-2970 2018-19 Season in Review 31 E-Mail [email protected] E-Mail [email protected] Season Results / Event Victories 31 Assoc. Head Swimming Coach Rob Lias Jr. Assistant Swimming Coach Mark Liscinsky Championship Meet Results 32-37 Alma Mater Mount Union ‘00 Alma Mater American ‘04 Top Times 37 Year at Navy 14th Year at Navy Seventh Honors and Award Winners 38 Phone (410) 293-3013 Phone (410) 293-5834 E-Mail [email protected] E-Mail [email protected] History & Records 39 Women’s W-L Records / Captains / Coaches 39
    [Show full text]
  • Diving Safety Manual Revision 3.2
    Diving Safety Manual Revision 3.2 Original Document: June 22, 1983 Revision 1: January 1, 1991 Revision 2: May 15, 2002 Revision 3: September 1, 2010 Revision 3.1: September 15, 2014 Revision 3.2: February 8, 2018 WOODS HOLE OCEANOGRAPHIC INSTITUTION i WHOI Diving Safety Manual DIVING SAFETY MANUAL, REVISION 3.2 Revision 3.2 of the Woods Hole Oceanographic Institution Diving Safety Manual has been reviewed and is approved for implementation. It replaces and supersedes all previous versions and diving-related Institution Memoranda. Dr. George P. Lohmann Edward F. O’Brien Chair, Diving Control Board Diving Safety Officer MS#23 MS#28 [email protected] [email protected] Ronald Reif David Fisichella Institution Safety Officer Diving Control Board MS#48 MS#17 [email protected] [email protected] Dr. Laurence P. Madin John D. Sisson Diving Control Board Diving Control Board MS#39 MS#18 [email protected] [email protected] Christopher Land Dr. Steve Elgar Diving Control Board Diving Control Board MS# 33 MS #11 [email protected] [email protected] Martin McCafferty EMT-P, DMT, EMD-A Diving Control Board DAN Medical Information Specialist [email protected] ii WHOI Diving Safety Manual WOODS HOLE OCEANOGRAPHIC INSTITUTION DIVING SAFETY MANUAL REVISION 3.2, September 5, 2017 INTRODUCTION Scuba diving was first used at the Institution in the summer of 1952. At first, formal instruction and proper information was unavailable, but in early 1953 training was obtained at the Naval Submarine Escape Training Tank in New London, Connecticut and also with the Navy Underwater Demolition Team in St.
    [Show full text]
  • Diving Standards (I.E., Code of Federal Regulations, 29.1910 Subpart T)
    STANDARDS FOR THE CONDUCT OF SCIENTIFIC DIVING June 3, 2004 OFFICE OF POLAR PROGRAMS NATIONAL SCIENCE FOUNDATION 1 FOREWORD The Office of Polar Programs (OPP) of the National Science Foundation (NSF) provides support for underwater diving associated with the research activities it funds in Antarctica. The NSF/OPP’s Standards for the Conduct of Scientific Diving have been developed to ensure that all scientific diving conducted under the aegis of the Office of Polar Programs is conducted in a manner that will maximize protection of scientific divers from accidental injury or illness associated with underwater diving while optimizing the researchers’ ability to conduct research. The OPP Standards have been patterned after the American Academy of Underwater Sciences (AAUS) Standards for Scientific Diving, a document that has provided a template for scientific diving at most academic and research institutions in the United States over the last fifty years. The approach described in the AAUS Standards for Scientific Diving has been recognized by the Occupational Safety and Health Administration (OSHA) as providing an alternate means of protecting divers than their commercial diving standards (i.e., Code of Federal Regulations, 29.1910 Subpart T). There are inherent risks in underwater diving and doing so in polar regions involves additional risks because of the environmental conditions and remoteness. The OPP Standards for the Conduct of Scientific Diving provides a framework within which to manage those risks and allow underwater diving in support of the scientific enterprise in Antarctica to proceed safely. Each scientific diver should acknowledge those risks and commit to conducting their underwater diving activities in accordance with the OPP Standards.
    [Show full text]
  • Surface-Supplied Diver Training Manual
    Surface-supplied Diver Training Manual Tennessee Aquarium Chattanooga, TN Published by the Diving Control Board Tennessee Aquarium Chattanooga, TN 1st Edition 2007 Purpose Surface-supplied diving is defined in the Tennessee Aquarium Diving Safety Manual (TADSM) as a diving mode in which the diver in the water is supplied from the dive location with compressed gas for breathing and is in voice communication with the tender on the surface. This definition is based upon the requirements outlined in the Occupational Safety and Health Administration’s Code of Federal Regulations. (29 CFR 1910 Subpart T) This federal law outlines the criteria for all commercial diving. The surface-supplied diving mode requires gear and techniques that are not introduced in recreational diver training. This text was designed by the Tennessee Aquarium Diving Control Board to introduce Aquarium divers to the fundamental principles associated with surface-supplied diving. This text should be accompanied by proper practical training, as outlined in Appendix A, to promote safe surface-supplied diving under the auspice of the Tennessee Aquarium. Figure 1 – Secret Reef Dive Show- A primary use of surface-supplied diving at the Tennessee Aquarium. i Introduction There are numerous advantages to surface-supplied diving that make it an excellent choice for many diving operations. First, the diver has the benefit of an unlimited air supply. With a surface-supplied diving system, a diver can theoretically stay underwater forever. Of course, in reality, there are comfort, thermal, and decompression limits. For deep technical diving, a surface-supplied rig relieves the diver of the need to carry numerous stage bottles.
    [Show full text]
  • Diving Disorders Retuiring Recompression Therapy
    CHAPTER 20 'LYLQJ'LVRUGHUV5HTXLULQJ 5HFRPSUHVVLRQ7KHUDS\ 20-1 INTRODUCTION 20-1.1 Purpose. This chapter describes the diagnosis of diving disorders that either require recompression therapy or that may complicate recompression therapy. While you should adhere to the procedures as closely as possible, any mistakes or discrepancies shall be brought to the attention of NAVSEA immediately. There are instances where clear direction cannot be given; in these cases, contact the Diving Medical Officers at NEDU or NDSTC for clarification. Telephone numbers are listed in Volume 1, Appendix C. 20-1.2 Scope. This chapter is a reference for individuals trained in diving procedures. It is also directed to users with a wide range in medical expertise, from the fleet diver to the Diving Medical Officer. Certain treatment procedures require consultation with a Diving Medical Officer for safe and effective use. In preparing for any diving operation, it is mandatory that the dive team have a medical evacuation plan and know the location of the nearest or most accessible Diving Medical Officer and recompression chamber. The Diving Medical Personnel should be involved in predive planning and in training to deal with medical emergencies. Even if operators feel they know how to handle medical emergencies, a Diving Medical officer should always be consulted whenever possible. 20-2 ARTERIAL GAS EMBOLISM Arterial gas embolism, sometimes simply called gas embolism, is caused by entry of gas bubbles into the arterial circulation which then act as blood vessel obstruc- tions called emboli. These emboli are frequently the result of pulmonary barotrauma caused by the expansion of gas taken into the lungs while breathing under pressure and held in the lungs during ascent.
    [Show full text]
  • SCUBA Diving Operations
    SCUBA Diving Operations North Carolina Zoological Park Jeff Owen Animal Management Supervisor What we will Cover: • Why we dive/tasks performed • Policies and • Where we dive Guidelines • Staff training • Safety and Best • Equipment overview Practices Diving Locations • Polar Bear Exhibit Pool • Pinniped Exhibit Pool • Seabird Exhibit Pool • Gamefish Tank • Other Polar Bear Pinniped: Harbor Seals and California Sea Lions Seabirds Gamefish Tank Benefits of Diving Exhibit Pools • Important for animal health by helping to maintain good water quality for animal health. • Ensures that pools look as good as possible for visitor viewing. • Address various maintenance issues. • Animal Enrichment Diving Tasks: Vacuuming • Removing Animal Waste - Improves the pool’s appearance. - Reduces the growth rate of algae. - Helps keep coliform levels at a safe and healthy level. Diving Tasks: Scrubbing Algae • Improves the pool’s appearance. • Is more of a challenge during the hot season. • Very time consuming Diving Tasks: Enrichment • Attaching and removing enrichment items to the bottom • Removing non floating enrichment Policies and Procedures • OSHA • DENR and Zoo Policy • Area/pool Specific Procedures OSHA • 1910.401 • Commercial Diving Operations • Standards not written specifically in regards to zoo animal exhibit pools, but followed as closely as possible. • Examples • Current standards can be found at www.osha.gov DENR and Zoo SCUBA Policy • Written to follow OSHA regulations as well as follow DENR and North Carolina Zoo’s employee safety program. • More information specific to North Carolina can found at: www.nclabor.com Area Specific Procedures • The 4 primary diving locations at NCZP have differences in their setup, thus some area specific procedures.
    [Show full text]
  • Best Diving Practice Guidelines*
    Appendix 1. Best Diving Practice Guidelines* A1.1 Divers should terminate the dive while there is still sufficient cylinder pressure to permit them to safely reach the surface and return to shore or boat, including allowing for any decompression time or planned safety stops. A1.2 The dive team should not include a diver who for any reason is not physically or psychologically fit at the time of the dive; or whose dive equipment is not in a safe operating condition in the opinion of the nominated dive leader. A1.3 All dives, including repetitive dives, should preferably be calculated using DCIEM tables (Canadian Defence and Civil Institute for Environmental Medicine), but the use of well-maintained dive computers is acceptable. A1.4 Divers should do a safety stop at 5 m depth for at least 3 minutes immediately before surfacing at the end of each dive where the average depth exceeded 7 metres or the maximum depth exceeded 10 metres. A1.5 If a dive does extend beyond the no-decompression limits, divers should remain awake for at least 1 hour after diving and remain in the company of another person prepared to assist with medical intervention if required. A1.6 Divers should adhere to the buddy system as taught in their dive training. This buddy system is based upon mutual assistance, especially in an emergency. A1.7 If a volunteer diver becomes separated from their buddy: a) the diver shall do a 360-degree search for a maximum of 1 minute looking for bubbles or visual sign of the other diver b) if the lost diver is not located, the searching diver shall return to the surface at the correct ascent rate, still performing the 360-degree search on ascent c) the searching diver will deploy a safety surface marker buoy, use a whistle (or ask where the lost diver is) and wait on surface for 4 minutes d) if the lost diver is still missing, divers are to return to their boat or shore and initiate emergency procedures by contacting emergency services.
    [Show full text]
  • Pathophysiological and Diagnostic Implications of Cardiac Biomarkers
    Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness Article Published Version Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 Open access Louge, P., Coulange, M., Beneton, F., Gempp, E., Le Pennetier, O., Algoud, M., Dubourg, L., Naibo, P., Marlinge, M., Michelet, P., Vairo, D., Kipson, N., Kerbaul, F., Jammes, Y., Jones, I. M., Steinberg, J.-G., Ruf, J., Guieu, R., Boussuges, A. and Fenouillet, E. (2016) Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness. Medicine, 95 (26). e4060. ISSN 0025-7974 doi: https://doi.org/10.1097/MD.0000000000004060 Available at http://centaur.reading.ac.uk/66136/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1097/MD.0000000000004060 Publisher: Lippincott, Williams & Wilkins All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online ® Observational Study Medicine OPEN Pathophysiological and diagnostic implications of cardiac biomarkers and antidiuretic hormone release in distinguishing immersion pulmonary edema from decompression sickness Pierre Louge (MD)a, Mathieu Coulange (MD)b,c, Frederic Beneton (MD)b, Emmanuel Gempp (MD)a, Olivier Le Pennetier (MSc)c, Maxime Algoud (MSc)d, Lorene Dubourg (MSc)d, Pierre Naibo (MSc)d, Marion Marlinge (MSc)d, Pierre Michelet (MD)c, Donato Vairo (MSc)c, Nathalie Kipson (MSc)c, François Kerbaul (MD)c, Yves Jammes (MD)c, Ian M.
    [Show full text]
  • Underwater Medicine
    TEMPLE UNIVERSITY COURSE REGISTRATION FORM UNDERWATER MEDICINE 2016 UNDERWATER MEDICINE 2016 A training program in diving medicine designed with special emphasis on diagnosis and treatment of diving disorders, REGISTRATION FEE: $650.00** fitness for diving and hyperbaric oxygen therapy. This $750 after Dec 30, 2015 program is certified for 25 AMA PRA category 1 credits $850 for registrants not in the UMA package through Temple University School of Medicine. The program Fee includes: Lectures and Course Materials. is offered in collaboration with the Undersea and Hyperbaric Medical Society. Enclosed is my check in the amount of $650.00 for registration. Make checks payable to Underwater Medicine Associates. presents the COURSE DESCRIPTION Return to: Medical evaluation of a diver or diving candidate demands that the physician have a knowledge of the unique physical Underwater Medicine Associates 42 nd Annual qualifications needed for this sport. In this year’s program, P.O. BOX 481 we will pay special attention to diagnosing diving disorders, Bryn Mawr, PA 19010 and will provide a combination of didactic lectures and case examples with interactive discussions to enhance learning **Course Registration Fee and Hotel Registration Deposit can related to diagnosis of diving disorders, assessment for fitness be combined on one check, or paid by credit card UNDERWATER to dive, marine injuries and toxicity and hyperbaric oxygen therapy. Upon completion of the course, participants should have a general knowledge of diving medicine and medical NAME_______________________________DEGREE______
    [Show full text]
  • Surface Supplied Diving Operations Using Nitrox
    Guidance on Surface Supplied Diving Operations using Nitrox IMCA D 048 January 2017 The International Marine Contractors Association (IMCA) is the international trade association representing offshore, marine and underwater engineering companies. IMCA promotes improvements in quality, health, safety, environmental and technical standards through the publication of information notes, codes of practice and by other appropriate means. Members are self-regulating through the adoption of IMCA guidelines as appropriate. They commit to act as responsible members by following relevant guidelines and being willing to be audited against compliance with them by their clients. There are five core committees that relate to all members: © Competence & Training © Contracts & Insurance © Health, Safety, Security & Environment © Lifting & Rigging © Marine Policy & Regulatory Affairs The Association is organised through four distinct divisions, each covering a specific area of members’ interests: Diving, Marine, Offshore Survey and Remote Systems & ROV. There are also five regions which facilitate work on issues affecting members in their local geographic area – Asia-Pacific, Europe & Africa, Middle East & India, North America and South America. IMCA D 048 www.imca-int.com/diving If you have any comments on this document, please click the feedback button below: [email protected] Date Reason Revision March 2012 Initial publication January 2017 Change to advice on the selection of gas mixes for emergency breathing cylinders carried in a wet bell or basket (section 4.2). Other minor updates made during review. The information contained herein is given for guidance only and endeavours to reflect best industry practice. For the avoidance of doubt no legal liability shall attach to any guidance and/or recommendation and/or statement herein contained.
    [Show full text]
  • Recompression Therapy
    CHAPTER 21 5HFRPSUHVVLRQ7KHUDS\ 21-1 INTRODUCTION 21-1.1 Purpose. This chapter covers recompression therapy. Recompression therapy is indicated for treating omitted decompression, decompression sickness, and arterial gas embolism. 21-1.2 Scope. The procedures outlined in this chapter are to be performed only by personnel properly trained to use them. Because these procedures cover symptoms ranging from pain to life-threatening disorders, the degree of medical expertise necessary to carry out treatment properly will vary. Certain procedures, such as starting IV fluid lines and inserting chest tubes, require special training and should not be attempted by untrained individuals. Treatment tables can be executed without consulting a Diving Medical Officer (DMO), although a DMO should always be contacted at the earliest possible opportunity. Four treatment tables require special consideration: Treatment Table 4 is a long, arduous table that requires constant evaluation of the stricken diver. Treatment Table 7 and Treatment Table 8 allow prolonged treatments for severely ill patients based on the patient’s condition throughout the treatment. Treatment Table 9 can only be prescribed by a Diving Medical Officer. 21-1.3 Diving Supervisor’s Responsibilities. Experience has shown that symptoms of severe decompression sickness or arterial gas embolism may occur following seemingly normal dives. This fact, combined with the many operational scenarios under which diving is conducted, means that treatment of severely ill individuals will be required occasionally when qualified medical help is not immediately on scene. Therefore, it is the Diving Supervisor’s responsibility to ensure that every member of the diving team: 1. Is thoroughly familiar with all recompression procedures.
    [Show full text]
  • 2018 September;48(3):132−140
    Diving and Hyperbaric Medicine The Journal of the South Pacific Underwater Medicine Society and the European Underwater and Baromedical Society Volume 48 No. 3 September 2018 Subclavian Doppler bubble monitoring Australian snorkelling and diving fatalities 2012 Inner ear barotrauma – a tool for diagnosis Which tooth restoration for divers? HBOT for large bowel anastomosis problems ISSN 2209-1491 (online); ISSN 1833-3516 (print) ABN 29 299 823 713 CONTENTS Diving and Hyperbaric Medicine Volume 48 No.3 September 2018 Editorials 198 Baltic Symposium on Diving and Hyperbaric Medicine 2018 129 The Editor’s offering Fiona Sharp 130 Decompression sickness, fatness and active hydrophobic spots Pieter Jan AM van Ooij Book review 199 Gas bubble dynamics in the human body Original articles John Fitz-Clarke 132 Reliability of venous gas embolism detection in the subclavian area for decompression stress assessment following scuba diving Julien Hugon, Asya Metelkina, Axel Barbaud, Ron Nishi, Fethi Bouak, SPUMS notices and news Jean-Eric Blatteau, Emmanuel Gempp 141 Provisional report on diving-related fatalities in Australian 201 ANZ Hyperbaric Medicine Group waters in 2011 Introductory Course in Diving John Lippmann, Chris Lawrence, Andrew Fock, Scott Jamieson and Hyperbaric Medicine 2019 168 Impact of various pressures on fracture resistance and 201 Australian and New Zealand microleakage of amalgam and composite restorations College of Anaesthetists Diving Elnaz Shafigh, Reza Fekrazad, Amir Reza Beglou and Hyperbaric Medicine Special 173 Meta-analysis
    [Show full text]