Mini-Workshop: 1-Motives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Invitation to Abstract Mathematics Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics
Undergraduate Texts in Mathematics Béla Bajnok An Invitation to Abstract Mathematics Undergraduate Texts in Mathematics Undergraduate Texts in Mathematics Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Kenneth Ribet University of California, Berkeley, CA, USA Advisory Board: Colin Adams, Williams College, Williamstown, MA, USA Alejandro Adem, University of British Columbia, Vancouver, BC, Canada Ruth Charney, Brandeis University, Waltham, MA, USA Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA Roger E. Howe, Yale University, New Haven, CT, USA David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA Jill Pipher, Brown University, Providence, RI, USA Fadil Santosa, University of Minnesota, Minneapolis, MN, USA Amie Wilkinson, University of Chicago, Chicago, IL, USA Undergraduate Texts in Mathematics are generally aimed at third- and fourth- year undergraduate mathematics students at North American universities. These texts strive to provide students and teachers with new perspectives and novel approaches. The books include motivation that guides the reader to an appreciation of interrelations among different aspects of the subject. They feature examples that illustrate key concepts as well as exercises that strengthen understanding. For further volumes: http://www.springer.com/series/666 Bela´ Bajnok An Invitation to Abstract Mathematics 123 Bela´ Bajnok Department of Mathematics Gettysburg College Gettysburg, PA, USA ISSN 0172-6056 ISBN 978-1-4614-6635-2 ISBN 978-1-4614-6636-9 (eBook) DOI 10.1007/978-1-4614-6636-9 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2013935711 Mathematics Subject Classification: 00-01, 01-01, 03-01 ©Bela´ Bajnok 2013 This work is subject to copyright. -
Prime Numbers in 2D
Article Jacob’s Ladder: Prime numbers in 2d Alberto Fraile 1,*, Roberto Martínez 2 and Daniel Fernández 3 1 Czech Technical University Prague. Department of Control Engineering, Advanced Materials Group Praha 2, Karlovo námˇestí13, E-s136, Czech Republic; [email protected] 2 Universidad del País Vasco - Euskal Herriko Unibertsitatea, Barrio Sarriena s/n 48940 Leioa. Bizkaia, Spain; [email protected] 3 University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavík, Iceland; [email protected] * Correspondence: [email protected] Version February 4, 2020 submitted to Math. Comput. Appl. Abstract: Prime numbers are one of the most intriguing figures in mathematics. Despite centuries of research, many questions remain still unsolved. In recent years, computer simulations are playing a fundamental role in the study of an immense variety of problems. In this work, we present a simple representation of prime numbers in two dimensions that allows us to formulate a number of conjectures that may lead to important avenues in the field of research on prime numbers. In particular, although the zeroes in our representation grow in a somewhat erratic, hardly predictable way, the gaps between them present a remarkable and intriguing property: a clear exponential decay in the frequency of gaps vs gap size. The smaller the gaps, the more frequently they appear. Additionally, the sequence of zeroes, despite being non-consecutive numbers, contains a number of primes approximately equal to n/ log n , being n the number of terms in the sequence. Keywords: Prime numbers, Number theory, Number sequences 1. Introduction Prime numbers have fascinated mathematicians since the beginnings of Mathematics (Ingham, Littlewood, Anglin, Apostol). -
Innovative Approaches to Undergraduate Mathematics
Innovative Approaches to Undergraduate Mathematics Courses Beyond Calculus c 2005 by The Mathematical Association of America (Incorporated) Library of Congress Control Number 2005930707 Print ISBN 978-0-88385-177-7 Electronic ISBN 978-1-61444-304-9 Printed in the United States of America Current Printing (last digit): 10 9 8 7 6 5 4 3 2 1 Innovative Approaches to Undergraduate Mathematics Courses Beyond Calculus Richard J. Maher, Editor Loyola University Chicago Published and Distributed by The Mathematical Association of America The MAA Notes Series, started in 1982, addresses a broad range of topics and themes of interest to all who are involved with undergraduate mathematics. The volumes in this series are readable, informative, and useful, and help the mathematical community keep up with developments of importance to mathematics. Council on Publications Roger Nelsen, Chair Notes Editorial Board Sr. Barbara E. Reynolds, Editor Paul E. Fishback, Associate Editor Jack Bookman Annalisa Crannell Rosalie Dance William E. Fenton Mark Parker Sharon C. Ross David Sprows MAA Notes 11. Keys to Improved Instruction by Teaching Assistants and Part-Time Instructors, Committee on Teaching Assistants and Part-Time Instructors, Bettye Anne Case, Editor. 13. Reshaping College Mathematics, Committee on the Undergraduate Program in Mathematics, Lynn A. Steen,Editor. 14. Mathematical Writing, by Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts. 16. Using Writing to Teach Mathematics, Andrew Sterrett, Editor. 17. Priming the Calculus Pump: Innovations and Resources, Committee on Calculus Reform and the First Two Years, a sub- comittee of the Committee on the Undergraduate Program in Mathematics, Thomas W. Tucker, Editor. -
THE CLASSICAL THEORY of MINIMAL SURFACES Contents 1
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 48, Number 3, July 2011, Pages 325–407 S 0273-0979(2011)01334-9 Article electronically published on March 25, 2011 THE CLASSICAL THEORY OF MINIMAL SURFACES WILLIAM H. MEEKS III AND JOAQU´IN PEREZ´ Abstract. We present here a survey of recent spectacular successes in classi- cal minimal surface theory. We highlight this article with the theorem that the plane, the helicoid, the catenoid and the one-parameter family {Rt}t∈(0,1) of Riemann minimal examples are the only complete, properly embedded, mini- mal planar domains in R3; the proof of this result depends primarily on work of Colding and Minicozzi, Collin, L´opez and Ros, Meeks, P´erez and Ros, and Meeks and Rosenberg. Rather than culminating and ending the theory with this classification result, significant advances continue to be made as we enter a new golden age for classical minimal surface theory. Through our telling of the story of the classification of minimal planar domains, we hope to pass on to the general mathematical public a glimpse of the intrinsic beauty of classical minimal surface theory and our own perspective of what is happening at this historical moment in a very classical subject. Contents 1. Introduction 326 2. Basic results in classical minimal surface theory 331 3. Minimal surfaces with finite topology and more than one end 355 4. Sequences of embedded minimal surfaces without uniform local area bounds 360 5. The structure of minimal laminations of R3 368 6. The ordering theorem for the space of ends 370 7. -
Edinburgh Lectures on Geometry, Analysis and Physics
Edinburgh Lectures on Geometry, Analysis and Physics Sir Michael Atiyah Notes by Thomas K¨oppe Contents Preface iii 1 From Euclidean 3-space to complex matrices1 1.1 Introduction.............................1 1.2 Euclidean geometry and projective space.............2 1.3 From points to polynomials....................2 1.4 Some physics: hyperbolic geometry................4 1.5 The hyperbolic conjecture......................5 1.6 The Minkowski space conjecture.................6 1.7 The normalised determinant....................8 1.8 Relation to analysis and physics.................. 10 1.9 Mysterious links with physics................... 12 List of conjectures............................ 13 Bibliography............................... 13 2 Vector bundles over algebraic curves and counting rational points 14 2.1 Introduction............................. 14 2.2 Review of classical theory..................... 14 2.3 Analogy with number theory................... 17 2.4 Relation between homology and counting rational points.... 17 2.5 The approach via Morse theory.................. 20 2.6 Counting rational points...................... 26 2.7 Comparison of equivariant Morse theory and counting rational points................................ 31 2.8 Relation to physics......................... 32 2.9 Finite-dimensional approximations................ 33 2.10 Relation of 휁-functions for finite fields and Riemann's 휁-function 34 2.11 Arithmetic algebraic geometry (Arakelov theory)........ 35 2.12 Other question........................... 36 Bibliography............................... 36 ii Preface These lecture notes are based on a set of six lectures that I gave in Edinburgh in 2008/2009 and they cover some topics in the interface between Geometry and Physics. They involve some unsolved problems and conjectures and I hope they may stimulate readers to investigate them. I am very grateful to Thomas K¨oppe for writing up and polishing the lectures, turning them into intelligible text, while keeping their informal nature. -
The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants
The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants Gal Raayoniy1, Shahar Gottlieby1, George Pisha1, Yoav Harris1, Yahel Manor1, Uri Mendlovic2, Doron Haviv1, Yaron Hadad1, and Ido Kaminer1 1Technion - Israel Institute of Technology, Haifa 3200003, Israel 2Google Inc., Tel Aviv 6789141, Israel yEqual contribution May 1, 2020 Abstract Fundamental mathematical constants like e and π are ubiquitous in diverse fields of science, from abstract mathematics and geometry to physics, biology and chemistry. Nevertheless, for centuries new mathematical formulas relating fundamental constants have been scarce and usually discovered sporadically. In this paper we propose a novel and systematic approach that leverages algorithms for deriving mathematical formulas for fundamental constants and help reveal their underlying structure. Our algorithms find dozens of well-known as well as previously unknown continued fraction representations of π, e, Catalan’s constant, and values of the Riemann zeta function. Two example conjectures found by our algorithm and in retrospect simple to prove are: e 1 4 1 · 1 = 4 − ; = 3 − e − 2 5 − 2 3π − 8 6 − 2·3 6− 3 9− 3·5 7− 4 12− 4·7 8−::: 15−::: Two example conjectures found by our algorithm and so far unproven are: 24 8 · 14 8 16 = 2 + 7 · 0 · 1 + ; = 1 · 1 − π2 8·24 7ζ (3) 26 2 + 7 · 1 · 2 + 8·34 3 · 7 − 36 2+7·2·3+ 4 5·19− 6 2+7·3·4+ 8·4 7·37− 4 :: :: We present two algorithms that proved useful in finding conjectures: a variant of the Meet-In-The- Middle (MITM) algorithm and a Gradient Descent (GD) tailored to the recurrent structure of continued fractions. -
Uniqueness of the Helicoid and the Classical Theory of Minimal Surfaces
Uniqueness of the helicoid and the classical theory of minimal surfaces William H. Meeks III∗ Joaqu´ın P´erez ,† September 4, 2006 Abstract We present here a survey of recent spectacular successes in classical minimal surface theory. We highlight this article with the theorem that the plane and the helicoid are the unique simply-connected, complete, embedded minimal surfaces in R3; the proof of this result depends primarily on work of Meeks and Rosenberg and of Colding and Minicozzi. Rather than culminating and ending the theory with this uniqueness result, significant advances continue to be made as we enter a new golden age for classical minimal surface theory. Through our telling of the story of the uniqueness of the helicoid, we hope to pass on to the general mathematical public a glimpse of the intrinsic beauty of classical minimal surface theory, and our own excitement and perspective of what is happening at this historical moment in a very classical subject. Mathematics Subject Classification: Primary 53A10, Secondary 49Q05, 53C42. Key words and phrases: Minimal surface, minimal lamination, locally simply-connected, finite total curvature, conformal structure, harmonic function, recurrence, transience, parabolic Riemann surface, harmonic measure, universal superharmonic function, Ja- cobi function, stability, index of stability, curvature estimates, maximum principle at infinity, limit tangent cone at infinity, limit tangent plane at infinity, parking garage, blow-up on the scale of topology, minimal planar domain, isotopy class. ∗This material is based upon work for the NSF under Award No. DMS - 0405836. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the NSF. -
Automatically Generated Conjectures on Fundamental Constants
The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants Anonymous Author(s) Abstract Fundamental mathematical constants like e and π are ubiquitous in diverse fields of science, from abstract mathematics and geometry to physics, biology and chemistry. Nevertheless, for centuries new mathematical formulas relating fundamental constants have been scarce and usually discovered sporadically. In this paper we propose a novel and systematic approach that leverages algorithms for deriving mathematical formulas for fundamental constants and help reveal their underlying structure. Our algorithms find dozens of well-known as well as previously unknown continued fraction representations of π, e, and the Riemann zeta function values. Two conjectures produced by our algorithm, along with many others, are: e 1 4 1 · 1 = 4 − ; = 3 − e − 2 5 − 2 3π − 8 6 − 2·3 6− 3 9− 3·5 7− 4 12− 4·7 8−::: 15−::: We present two algorithms that proved useful in finding conjectures: a variant of the Meet-In-The- Middle (MITM) algorithm and a Gradient Descent (GD) tailored to the recurrent structure of continued fractions. Both algorithms are based on matching numerical values and thus they conjecture formulas without providing proofs and without requiring any prior knowledge on any underlaying mathematical structure. This approach is especially attractive for fundamental constants for which no mathematical structure is known, as it reverses the conventional approach of sequential logic in formal proofs. Instead, our work supports a different conceptual approach for research: computer algorithms utilizing numerical data to unveil mathematical structures, thus trying to play the role of intuition of great mathematicians of the past, providing leads to new mathematical research.