Structure of the TELO2-TTI1-TTI2 Complex and Its Function in TOR Recruitment to the R2TP Chaperone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Genetic Screen Identifies the Triple T Complex Required for DNA Damage Signaling and ATM and ATR Stability
Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability Kristen E. Hurov, Cecilia Cotta-Ramusino, and Stephen J. Elledge1 Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA In response to DNA damage, cells activate a complex signal transduction network called the DNA damage response (DDR). To enhance our current understanding of the DDR network, we performed a genome-wide RNAi screen to identify genes required for resistance to ionizing radiation (IR). Along with a number of known DDR genes, we discovered a large set of novel genes whose depletion leads to cellular sensitivity to IR. Here we describe TTI1 (Tel two-interacting protein 1) and TTI2 as highly conserved regulators of the DDR in mammals. TTI1 and TTI2 protect cells from spontaneous DNA damage, and are required for the establishment of the intra-S and G2/M checkpoints. TTI1 and TTI2 exist in multiple complexes, including a 2-MDa complex with TEL2 (telomere maintenance 2), called the Triple T complex, and phosphoinositide-3-kinase-related protein kinases (PIKKs) such as ataxia telangiectasia-mutated (ATM). The components of the TTT complex are mutually dependent on each other, and act as critical regulators of PIKK abundance and checkpoint signaling. [Keywords: TTI1; TEL2; TTI2; PIKK; TTT complex; IR sensitivity] Supplemental material is available at http://www.genesdev.org. Received April 5, 2010; revised version accepted July 22, 2010. -
Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation. -
Modulating Mistranslation Potential of Trnaser in Saccharomyces Cerevisiae
HIGHLIGHTED ARTICLE | INVESTIGATION Modulating Mistranslation Potential of tRNASer in Saccharomyces cerevisiae Matthew D. Berg,*,1 Yanrui Zhu,* Julie Genereaux,* Bianca Y. Ruiz,† Ricard A. Rodriguez-Mias,† Tyler Allan,* Alexander Bahcheli,* Judit Villén,† and Christopher J. Brandl*,1 *Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada and †Department of Genome Sciences, University of Washington, Seattle, Washington 98195 ORCID IDs: 0000-0002-7924-9241 (M.D.B.); 0000-0002-1005-1739 (J.V.); 0000-0001-8015-9668 (C.J.B.) ABSTRACT Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substi- tutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson–Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. -
Genetic Analysis of Over One Million People Identifies 535 New Loci Associated with Blood 2 Pressure Traits
1 Genetic analysis of over one million people identifies 535 new loci associated with blood 2 pressure traits. 3 4 Table of Contents 5 SUPPLEMENTARY TABLES LEGENDS……………………………………………………………………………….…….3 6 SUPPLEMENTARY FIGURES LEGENDS ........................................................................................ 6 7 SUPPLEMENTARY METHODS ................................................................................................... 10 8 1. UK Biobank data .................................................................................................................................... 10 9 2. UKB Quality Control ............................................................................................................................... 10 10 3. Phenotypic data ..................................................................................................................................... 11 11 4. UKB analysis ........................................................................................................................................... 11 12 5. Genomic inflation and confounding ....................................................................................................... 12 13 6. International Consortium for Blood Pressure (ICBP) GWAS .................................................................... 12 14 7. Meta-analyses of discovery datasets ..................................................................................................... 13 15 8. Linkage Disequilibrium calculations ...................................................................................................... -
Sexual Dimorphism in Brain Transcriptomes of Amami Spiny Rats (Tokudaia Osimensis): a Rodent Species Where Males Lack the Y Chromosome Madison T
Ortega et al. BMC Genomics (2019) 20:87 https://doi.org/10.1186/s12864-019-5426-6 RESEARCHARTICLE Open Access Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome Madison T. Ortega1,2, Nathan J. Bivens3, Takamichi Jogahara4, Asato Kuroiwa5, Scott A. Givan1,6,7,8 and Cheryl S. Rosenfeld1,2,8,9* Abstract Background: Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex- determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results: RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g. -
Saccharomyces Cerevisiae Tti2 Regulates PIKK Proteins and Stress Response
INVESTIGATION Saccharomyces cerevisiae Tti2 Regulates PIKK Proteins and Stress Response Kyle S. Hoffman,* Martin L. Duennwald,† Jim Karagiannis,‡ Julie Genereaux,* Alexander S. McCarton,* and Christopher J. Brandl*,1 *Department of Biochemistry and †Department of Pathology, Schulich School of Medicine and Dentistry, and ‡Department of Biology, The University of Western Ontario, London, Ontario, N6A5C1 Canada ABSTRACT The TTT complex is composed of the three essential proteins Tel2, Tti1, and Tti2. The complex KEYWORDS is required to maintain steady state levels of phosphatidylinositol 3-kinase-related kinase (PIKK) proteins, TTT complex including mTOR, ATM/Tel1, ATR/Mec1, and TRRAP/Tra1, all of which serve as regulators of critical cell PIKK proteins signaling pathways. Due to their association with heat shock proteins, and with newly synthesized PIKK heat shock peptides, components of the TTT complex may act as cochaperones. Here, we analyze the consequences of response depleting the cellular level of Tti2 in Saccharomyces cerevisiae. We show that yeast expressing low levels of chaperone Tti2 are viable under optimal growth conditions, but the cells are sensitive to a number of stress conditions protein that involve PIKK pathways. In agreement with this, depleting Tti2 levels decreased expression of Tra1, expression Mec1, and Tor1, affected their localization and inhibited the stress responses in which these molecules are involved. Tti2 expression was not increased during heat shock, implying that it does not play a general role in the heat shock response. However, steady state levels of Hsp42 increase when Tti2 is depleted, and tti2L187P has a synthetic interaction with exon 1 of the human Huntingtin gene containing a 103 residue polyQ sequence, suggesting a general role in protein quality control. -
Current State of Mtor Targeting in Human Breast Cancer UMAR WAZIR 1,2 , ALI WAZIR 3, ZUBAIR S
CANCER GENOMICS & PROTEOMICS 11 : 167-174 (2014) Review Current State of mTOR Targeting in Human Breast Cancer UMAR WAZIR 1,2 , ALI WAZIR 3, ZUBAIR S. KHANZADA 4, WEN G. JIANG 4, ANUP K. SHARMA 2 and KEFAH MOKBEL 1,2 1The London Breast Institute, Princess Grace Hospital, London, U.K.; 2Department of Breast Surgery, St. George’s Hospital and Medical School, University of London, London, U.K.; 3Aga Khan University, Karachi, Pakistan; 4Cardiff University-Peking University Cancer Institute (CUPUCI), University Department of Surgery, Cardiff University School of Medicine, Cardiff University, Cardiff, Wales, U.K. Abstract. Background/Aim: The mammalian, or Subsequently, it was found to have immunosuppressive mechanistic, target of rapamycin (mTOR) pathway has been properties, and is currently used therapeutically in renal implicated in several models of human oncogenesis. transplant patients. Like tacrolimus and cyclosporine, it Research in the role of mTOR in human oncogenesis affects the actions of interlekin-2 (IL-2). Unlike tacrolimus, remains a field of intense activity. In this mini-review, we which reduces IL-2 transcription by T-cells, sirolimus intend to recount our current understanding of the mTOR inhibits the proliferative effects of IL-2 on T-cells (3). In pathway, its interactions, and its role in human mammalian models, rapamycin was known to form a carcinogenesis in general, and breast cancer in particular. complex with FK506 binding protein 1A, 12 kDa Materials and Methods: We herein outline the discrete (FKBP12), which interacts with the mammalian, or components of the two complexes of mTOR, and attempt to mechanistic, target of rapamycin (mTOR) subunit of define their distinct roles and interactions. -
Molecular Evolution in Immune Genes Across the Avian Tree of Life Cambridge.Org/Pao
Parasitology Open Molecular evolution in immune genes across the avian tree of life cambridge.org/pao Diana C. Outlaw1, V. Woody Walstrom1, Haley N. Bodden1, Chuan-yu Hsu2, Mark Arick II2 and Daniel G. Peterson2 Research Article 1Department of Biological Sciences, Mississippi State University, PO Box GY, Mississippi State, MS 39762, USA and Cite this article: Outlaw DC, Walstrom VW, 2Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, 2 Research Boulevard, Box Bodden HN, Hsu Chuan-yu, Arick II M, Peterson 9627, Starkville, MS 39759, USA DG (2019). Molecular evolution in immune genes across the avian tree of life. Parasitology Open 5, e3, 1–9. https://doi.org/10.1017/ Abstract pao.2019.3 All organisms encounter pathogens, and birds are especially susceptible to infection by mal- Received: 11 July 2018 aria parasites and other haemosporidians. It is important to understand how immune genes, Revised: 22 February 2019 primarily innate immune genes which are the first line of host defense, have evolved across Accepted: 22 February 2019 birds, a highly diverse group of tetrapods. Here, we find that innate immune genes are highly Key words: conserved across the avian tree of life and that although most show evidence of positive or Malaria parasites; haemosporidians; birds; diversifying selection within specific lineages or clades, the number of sites is often propor- molecular evolution; immune genes; innate tionally low in this broader context of putative constraint. Rather, evidence shows a much immunity; bird transcriptome higher level of negative or purifying selection in these innate immune genes – rather than – ’ Author for correspondence: adaptive immune genes which is consistent with birds long coevolutionary history with Diana C. -
2014-Platform-Abstracts.Pdf
American Society of Human Genetics 64th Annual Meeting October 18–22, 2014 San Diego, CA PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Saturday 41 Statistical Methods for Population 5:30pm–6:50pm: Session 2: Plenary Abstracts Based Studies Room 20A #198–#205 Featured Presentation I (4 abstracts) Hall B1 #1–#4 42 Genome Variation and its Impact on Autism and Brain Development Room 20BC #206–#213 Sunday 43 ELSI Issues in Genetics Room 20D #214–#221 1:30pm–3:30pm: Concurrent Platform Session A (12–21): 44 Prenatal, Perinatal, and Reproductive 12 Patterns and Determinants of Genetic Genetics Room 28 #222–#229 Variation: Recombination, Mutation, 45 Advances in Defining the Molecular and Selection Hall B1 Mechanisms of Mendelian Disorders Room 29 #230–#237 #5-#12 13 Genomic Studies of Autism Room 6AB #13–#20 46 Epigenomics of Normal Populations 14 Statistical Methods for Pedigree- and Disease States Room 30 #238–#245 Based Studies Room 6CF #21–#28 15 Prostate Cancer: Expression Tuesday Informing Risk Room 6DE #29–#36 8:00pm–8:25am: 16 Variant Calling: What Makes the 47 Plenary Abstracts Featured Difference? Room 20A #37–#44 Presentation III Hall BI #246 17 New Genes, Incidental Findings and 10:30am–12:30pm:Concurrent Platform Session D (49 – 58): Unexpected Observations Revealed 49 Detailing the Parts List Using by Exome Sequencing Room 20BC #45–#52 Genomic Studies Hall B1 #247–#254 18 Type 2 Diabetes Genetics Room 20D #53–#60 50 Statistical Methods for Multigene, 19 Genomic Methods in Clinical Practice Room 28 #61–#68 Gene Interaction -
Download Special Issue
BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data BioMed Research International Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data Guest Editors: Julia Tzu-Ya Weng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “BioMed Research International.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Novel Bioinformatics Approaches for Analysis of High-Throughput Biological Data,JuliaTzu-YaWeng, Li-Ching Wu, Wen-Chi Chang, Tzu-Hao Chang, Tatsuya Akutsu, and Tzong-Yi Lee Volume2014,ArticleID814092,3pages Evolution of Network Biomarkers from Early to Late Stage Bladder Cancer Samples,Yung-HaoWong, Cheng-Wei Li, and Bor-Sen Chen Volume 2014, Article ID 159078, 23 pages MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure,Kuei-FangLee, Yi-Cheng Chen, Paul Wei-Che Hsu, Ingrid Y. Liu, and Lawrence Shih-Hsin Wu Volume2014,ArticleID456323,10pages EXIA2: Web Server of Accurate and Rapid Protein Catalytic Residue Prediction, Chih-Hao Lu, Chin-Sheng -
Visual Gene Network Analysis of Aging-Specific Gene Co-Expression
4open 2018, 1,4 © B.P. Parida et al., Published by EDP Sciences 2018 https://doi.org/10.1051/fopen/2018004 Available online at: www.4open-sciences.org RESEARCH ARTICLE Visual gene network analysis of aging-specific gene co-expression in human indicates overlaps with immuno-pathological regulations Bibhu Prasad Parida1,*, Biswapriya Biswavas Misra2, Amarendra Narayan Misra3,4 1 Post-Graduate Department of Biosciences and Biotechnology, School of Biotechnology, Fakir Mohan University, Balasore 756020, Odisha, India 2 Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem 27157, NC, USA 3 Central University of Jharkhand, Brambe, Ratu-Lohardaga Road, Ranchi 835205, Jharkhand, India 4 Khallikote University, Berhampur 760001, Odisha, India Received 19 September 2017, Accepted 4 July 2018 Abstract- - Introduction: Aging is a complex biological process that brings about a gradual decline of physiological and metabolic machineries as a result of maturity. Also, aging is irreversible and leads ultimately to death in biological organisms. Methods: We intend to characterize aging at the gene expression level using publicly available human gene expression arrays obtained from gene expression omnibus (GEO) and ArrayExpress. Candidate genes were identified by rigorous screening using filtered data sets, i.e., GSE11882, GSE47881, and GSE32719. Using Aroma and Limma packages, we selected the top 200 genes showing up and down regulation (p < 0.05 and fold change >2.5) out of which 185 were chosen for further comparative analysis. Results: This investigation enabled identification of candidate genes involved in aging that are associated with several signaling cascades demonstrating strong correlation with ATP binding and protease functions. -
Bioinformatic Pipeline for Whole Exome Sequence (WES) Analysis
SUPPLEMENT Supplement contents: Supplementary Methods Supplementary Figure 1: Bioinformatic pipeline for whole exome sequence (WES) analysis. Supplementary Figure 2: Pedigrees and HomozygosityMapper output for families with single variants identified, in addition to those shown in Figure 2. Supplementary Figure 3: Spatiotemporal expression of ID genes in human development using RNA sequencing data. Supplementary Figure 4: Developmental expression pattern of ID genes in the human prefrontal cortex. Supplementary Table 1: Family statistics Supplementary Table 2: Homozygosity-by-descent/autozygosity shared regions, as defined using HomozygosityMapper, cross-referenced with FSuite. Supplementary Table 3: Mutations identified per family. A. Single homozygous variant identified. B. Two to four variants identified. C. Dominant/de novo mutation identified. Supplementary Table 4: Pathogenic CNVs and variants of unknown significance identified by microarray analysis. Supplementary Table 5: BioGRID protein interaction and gene ontology analysis. (separate Excel file) Supplementary Table 6: Gene Ontology Pathway analysis. Supplementary Table 7: Gene List for anatomic/temporal transcription analyses. Supplementary Table 8: Top anatomical regions for ID gene expression. Supplementary Methods HBD/Autozygosity mapping Both of the below methods and the hg19 version of the genome were used to ensure a consistent and uniform genotyping. Genotyping data was uploaded to the HomozygosityMapper server to determine putative homozygous-by- descent (HBD) regions based on the allele frequencies of the markers uploaded to the server from previous studies. HBD regions were identified by manual curation and only HBD regions larger than 1 Mb shared between all affected members (and not unaffected members) of the family were chosen. These regions were extracted based on SNP RS numbers and these dbSNP identifiers were converted to a genomic position for used to represent genomic regions with NGS data.