Response Diversity in Mediterranean Coralligenous Assemblages Facing Climate Change: Insights from a Multispecific Thermotolerance Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Response Diversity in Mediterranean Coralligenous Assemblages Facing Climate Change: Insights from a Multispecific Thermotolerance Experiment Received: 10 October 2018 | Revised: 25 January 2019 | Accepted: 15 February 2019 DOI: 10.1002/ece3.5045 ORIGINAL RESEARCH Response diversity in Mediterranean coralligenous assemblages facing climate change: Insights from a multispecific thermotolerance experiment Daniel Gómez‐Gras1 | Cristina Linares2 | Sonia de Caralt3,4 | Emma Cebrian3,4 | Maša Frleta‐Valić1 | Ignasi Montero‐Serra2 | Marta Pagès‐Escolà2 | Paula López‐Sendino1 | Joaquim Garrabou1 1Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Barcelona, Spain Abstract 2Departament de Biologia Evolutiva, Climate change threatens coastal benthic communities on a global scale. However, Ecologia i Ciències Ambientals, the potential effects of ongoing warming on mesophotic temperate reefs at the com‐ Institut de Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Barcelona, munity level remain poorly understood. Investigating how different members of Spain these communities will respond to the future expected environmental conditions is, 3Centre d' Estudis Avançats de Blanes (CSIC), Blanes, Spain therefore, key to anticipating their future trajectories and developing specific man‐ 4GR MAR, Institut d’Ecologia Aquàtica, agement and conservation strategies. Here, we examined the responses of some of Facultat de Ciències, Universitat de Girona, the main components of the highly diverse Mediterranean coralligenous assemblages Girona, Spain to thermal stress. We performed thermotolerance experiments with different tem‐ Correspondence perature treatments (from 26 to 29°C) with 10 species from different phyla (three Daniel Gómez‐Gras, Departament de Biologia Marina, Institut de Ciències del Mar anthozoans, six sponges and one ascidian) and different structural roles. Overall, we (CSIC), Barcelona, Spain. observed species‐specific contrasting responses to warming regardless of phyla or Email: [email protected] growth form. Moreover, the responses ranged from highly resistant species to sensi‐ Funding information tive species and were mostly in agreement with previous field observations from Organismo Autónomo Parques Nacionales, Grant/Award Number: CORCLIM mass mortality events (MMEs) linked to Mediterranean marine heat waves. Our re‐ 759S/2012 and CORCLIM 766S/2012; sults unravel the diversity of responses to warming in coralligenous outcrops and H2020 European Research Council, Grant/ Award Number: MERCES/689518; Prince suggest the presence of potential winners and losers in the face of climate change. Albert II de Monaco Foundation, Grant/ Finally, this study highlights the importance of accounting for species‐specific vulner‐ Award Number: MIMOSA/1983; European Regional Development Fund, Grant/Award abilities and response diversity when forecasting the future trajectories of temperate Number: Interreg MED programme and benthic communities in a warming ocean. MPA-ADAPT; Total Foundation, Grant/ Award Number: CLIMCARES . Ministerio de Educación, Cultura y Deporte, Grant/Award KEYWORDS Number: FPU15/05457 Benthic communities, corals, ocean warming, sponges, temperate reefs, thermotolerance 1 | INTRODUCTION organization (Doney et al., 2012; Poloczanska et al., 2016; Scheffers et al., 2016). Moreover, this anthropogenic pressure will continue to From polar oceans to tropical seas, climate change dramatically affects cause unprecedented impacts in the oceans during the next decades marine ecosystems by influencing processes at all levels of biological as global sea surface temperatures continue to rise and marine heat This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Ecology and Evolution. 2019;1–13. www.ecolevol.org | 1 2 | GÓMEZ‐GRAS ET AL. waves become more frequent and intense (Bellard, Bertelsmeier, exhibit slow population dynamics and long life spans (+100 years; Leadley, Thuiller, & Courchamp, 2012; Oliver et al., 2018). However, Garrabou & Harmelin, 2002; Linares, Doak, Coma, Diaz, & Zabala, climate change effects have contrasting impacts on biotas (McKinney 2007; Teixidó, Garrabou, & Harmelin, 2011); therefore, they are very & Lockwood, 1999). Therefore, understanding how different species, sensitive to disturbances, including climate change (Balata, Piazzi, populations and communities will respond to warming is key to de‐ & Benedetti-Cecchi, 2007; Ferrigno, Appolloni, Russo, & Sandulli, veloping specific conservation and management strategies aimed at 2018; Garrabou et al., 2009; Montero-Serra et al., 2015). In fact, enhancing the resilience of vulnerable marine ecosystems. more than 30 coralligenous species from different phyla and dif‐ Coastal benthic communities such as tropical and temperate ferent structural roles have been affected in various mass mortal‐ reefs are among the most biologically diverse and socioeconomi‐ ity events (hereafter MMEs) associated with Mediterranean heat cally valuable systems on the planet (Ballesteros, 2006; Bennett et waves, suffering extensive tissue necrosis (partial and total mortal‐ al., 2016; Spalding, Ravilious, & Green, 2001). Nonetheless, when ity) and long‐term population declines (Cerrano et al., 2000; Crisci, facing global warming, they are especially under threat. As migrat‐ Bensoussan, Romano, & Garrabou, 2011; Garrabou et al., 2009; ing toward more thermally suitable conditions is not an option for Garrabou, Perez, Sartoretto, & Harmelin, 2001; Linares et al., 2005). most sessile species, most organisms from these communities will Moreover, for some key habitat‐forming species, these population be compelled to rely on effective acclimatization (an adjustment of declines have been shown to potentially drive detrimental effects at physiology via phenotypic plasticity) or adaptation (an increased the community level, such as the reduction of structural complexity abundance of tolerant genotypes over generations) processes to and resilience (Linares et al., 2017; Ponti et al., 2014). However, while prevail. Although these two mechanisms that evolved for coping some species have been massively and recurrently affected during with environmental change will likely allow diverse species and/or these warming events, other taxonomically and morpho‐functionally populations to persist (Palumbi, Barshis, Traylor-Knowles, & Bay, related organisms seem to remain unaffected, triggering the ques‐ 2014), increasing evidence indicates that the unusually high rates tion of whether there could be different levels of thermal sensitiv‐ of warming and the increasing frequency of extreme events may ity within these communities in the context of climate change. This prevent many others from effectively doing so (Heron et al., 2017; could have further implications for the future composition of these Hoegh-Guldberg, Poloczanska, Skirving, & Dove, 2017; Hughes et habitats and the loss (or maintenance) of the many associated func‐ al., 2017, 2018). In this situation, it is likely that as temperatures con‐ tions and services they provide. tinue to rise species with lower thermal thresholds will more fre‐ In this study, we experimentally assessed the thermal response quently be exposed to temperatures beyond their tolerance limits of 10 abundant, representative and widely distributed species from (especially during marine heat waves), potentially hindering adap‐ these communities that belong to different phyla and encompass con‐ tion/acclimatization processes and favoring responses that range trasting growth forms. The main aim was to explore whether co‐oc‐ from sublethal effects to death and local extinction (Somero, 2010). curring species of these highly diverse habitats differ in their thermal The likely loss of such sensitive species would not only change the sensitivities, as field observations suggest, in view to discuss the impli‐ composition of benthic communities but also diminish the functions cations of climate change on the composition and functioning of these and services that they provide. However, if there is response diver‐ key Mediterranean habitats. Our results contribute to filling the gap of sity among functionally redundant organisms, the insurance hypoth‐ thermotolerance data for coralligenous assemblages and suggest the esis of biodiversity suggests that the overall ecosystem functionality presence of potential winners and losers in the face of ocean warming. may be stabilized through compensatory dynamics among species (Gonzalez & Loreau, 2009; Mori, Furukawa, & Sasaki, 2013; Yachi 2 | MATERIALS AND METHODS & Loreau, 1999). Exploring species-specific thermal sensitivities among different components of benthic communities is, therefore, 2.1 | Model species a key step toward forecasting the future composition and function‐ ality of these communities in the face of climate change. However, We used a total of 10 abundant and representative species from while important efforts in this direction have been taken in shallow three different phyla (cnidaria, porifera, and tunicata) and four differ‐ tropical reefs, thermotolerance analyses in temperate benthic com‐ ent growth forms (including encrusting, massive, cup and/or tree‐like munities largely lag behind (Kersting et al., 2015; Linares, Cebrian, forms) that are commonly and ubiquitously found in Mediterranean Kipson, & Garrabou, 2013; Savva, Bennett, Roca, Jordà, & Marbà, coralligenous assemblages over the whole Mediterranean
Recommended publications
  • Octocoral Diversity of Balıkçı Island, the Marmara Sea
    J. Black Sea/Mediterranean Environment Vol. 19, No. 1: 46-57 (2013) RESEARCH ARTICLE Octocoral diversity of Balıkçı Island, the Marmara Sea Eda Nur Topçu1,2*, Bayram Öztürk1,2 1Faculty of Fisheries, Istanbul University, Ordu St., No. 200, 34470, Laleli, Istanbul, TURKEY 2Turkish Marine Research Foundation (TUDAV), P.O. Box: 10, Beykoz, Istanbul, TURKEY *Corresponding author: [email protected] Abstract We investigated the octocoral diversity of Balıkçı Island in the Marmara Sea. Three sites were sampled by diving, from 20 to 45 m deep. Nine species were found, two of which are first records for Turkish fauna: Alcyonium coralloides and Paralcyonium spinulosum. Scientific identification of Alcyonium acaule in the Turkish seas was also done for the first time in this study. Key words: Octocoral, soft coral, gorgonian, diversity, Marmara Sea. Introduction The Marmara Sea is a semi-enclosed sea connecting the Black Sea to the Aegean Sea via the Turkish Straits System, with peculiar oceanographic, ecological and geomorphologic characteristics (Öztürk and Öztürk 1996). The benthic fauna consists of Black Sea species until approximately 20 meters around the Prince Islands area, where Mediterranean species take over due to the two layer stratification in the Marmara Sea. The Sea of Marmara, together with the straits of Istanbul and Çanakkale, serves as an ecological barrier, a biological corridor and an acclimatization zone for the biota of Mediterranean and Black Seas (Öztürk and Öztürk 1996). The Islands in the Sea of Marmara constitute habitats particularly for hard bottom communities of Mediterranean origin. Ten Octocoral species were reported by Demir (1954) from the Marmara Sea but amongst them, Gorgonia flabellum was probably reported by mistake and 46 should not be considered as a valid record from the Sea of Marmara.
    [Show full text]
  • Active and Passive Suspension Feeders in a Coralligenous Community
    ! Chapter_0_Martina 05/06/15 07:23 Página 1 The importance of benthic suspension feeders in the biogeochemical cycles: active and passive suspension feeders in a coralligenous community PhD THESIS Martina Coppari Barcelona, 2015 Chapter_0_Martina 05/06/15 07:23 Página 2 Photos by: Federico Betti, Georgios Tsounis Design: Antonio Secilla Chapter_0_Martina 05/06/15 07:23 Página 3 The importance of benthic suspension feeders in the biogeochemical cycles: active and passive suspension feeders in a coralligenous community PhD THESIS MARTINA COPPARI Universitat Autònoma de Barcelona Institut de Ciència i Tecnologia Ambientals PhD Programme in Environmental Science and Technology June 2015 Director de la Tesi Director de la Tesi Dr. Sergio Rossi Dr. Andrea Gori Investigador Investigador Universitat Autònoma de Barcelona Universitat de Barcelona Institut de Ciència i Tecnologia Ambientals Departament d’Ecologia • 3 • Chapter_0_Martina 05/06/15 07:23 Página 4 . Chapter_0_Martina 05/06/15 07:23 Página 5 Para los que me han acompañado en este viaje • 5 • Chapter_0_Martina 05/06/15 07:23 Página 6 . Chapter_0_Martina 05/06/15 07:23 Página 7 Resumen 11 Abstract 13 Introduction 15 Chapter 1 Size, spatial and bathymetrical distribution of the ascidian Halocynthia papillosa in Mediterranean coastal bottoms: benthic-pelagic implications 29 1. Introduction ......................................................................................................................................................30 2. Materials
    [Show full text]
  • Ica Nature Park (Adriatic Sea, Croatia)
    NAT. CROAT. VOL. 16 No 4 233¿266 ZAGREB December 31, 2007 original scientific paper / izvorni znanstveni rad ANTHOZOAN FAUNA OF TELA[]ICA NATURE PARK (ADRIATIC SEA, CROATIA) PETAR KRU@I] Faculty of Science, Department of Zoology, Rooseveltov trg 6, 10000 Zagreb, Croatia ([email protected]) Kru`i}, P.: Anthozoan fauna of Tela{}ica Nature Park (Adriatic Sea, Croatia). Nat. Croat., Vol. 16, No. 4., 233–266, 2007, Zagreb. Sixty-five anthozoan species were recorded and collected in the area of Tela{}ica Nature Park during surveys from 1999 to 2006. General and ecological data are presented for each species, as well as distribution and local abundance. The recorded species account for about 56% of the antho- zoans known in the Adriatic Sea, and for about 38% of the anthozoans known in the Mediterra- nean Sea. From Tela{}ica Nature Park, 16 species are considered to be Mediterranean endemics. The heterogeneity of the substrates and benthic communities in the bay and cliffs is considerable in Tela{}ica Nature Park; anthozoans are present on most of the different kinds of substrates and in a wide range of benthic communities. Key words: marine fauna, Anthozoa, Tela{}ica Nature Park, Adriatic Sea. Kru`i}, P.: Fauna koralja Parka prirode Tela{}ica (Jadransko more, Hrvatska). Nat. Croat., Vol. 16, No. 4., 233–266, 2007, Zagreb. Prilikom istra`ivanja podmorskog dijela Parka prirode Tela{}ica u razdoblju od 1999. do 2006. godine zabilje`eno je i sakupljeno 65 vrsta koralja. Za svaku vrstu izneseni su op}i i ekolo{ki podaci, te su zabilje`eni nalazi i lokalna brojnost.
    [Show full text]
  • Metabolomic Profiling Reveals Deep Chemical Divergence Between Two
    OPEN Metabolomic profiling reveals deep SUBJECT AREAS: chemical divergence between two METABOLOMICS CHEMICAL ECOLOGY morphotypes of the zoanthid BIODIVERSITY MASS SPECTROMETRY Parazoanthus axinellae Nadja Cachet1, Gre´gory Genta-Jouve1,2, Julijana Ivanisevic1,3, Pierre Chevaldonne´3, Fre´de´ric Sinniger4,5, Received Ge´rald Culioli1,6, Thierry Pe´rez3 & Olivier P. Thomas1,3 10 October 2014 Accepted 1Institut de Chimie de Nice - EEIC, UMR 7272 CNRS, Universite´ de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France, 8 January 2015 2Laboratoire de Pharmacognosie et de Chimie des Substances Naturelles, UMR CNRS 8638 COMETE, Universite´ Paris Descartes, 4 Avenue de l’Observatoire 75006 Paris, France, 3Institut Me´diterrane´en de Biodiversite´ et d’Ecologie Marine et Continentale, UMR Published 7263 CNRS, IRD, Aix Marseille Universite´, Avignon Universite´, Station Marine d’Endoume, Rue Batterie des Lions, 13007 6 February 2015 Marseille, France, 4Japan Agency for Marine-Earth Science and Technology, 224-3 Aza-Toyohara, Nago City, Okinawa 905- 2172, Japan, 5Tropical Biosphere Reseach Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan, 6MAPIEM, EA 4323 Universite´ de Toulon, 83957 La Garde, France. Correspondence and requests for materials Metabolomics has recently proven its usefulness as complementary tool to traditional morphological and should be addressed to genetic analyses for the classification of marine invertebrates. Among the metabolite-rich cnidarian order T.P. (thierry.perez@ Zoantharia, Parazoanthus is a polyphyletic genus whose systematics and phylogeny remain controversial. imbe.fr) or O.P.T. Within this genus, one of the most studied species, Parazoanthus axinellae is prominent in rocky shallow (olivier.thomas@unice. waters of the Mediterranean Sea and the NE Atlantic Ocean.
    [Show full text]
  • Vulnerable Forests of the Pink Sea Fan Eunicella Verrucosa in the Mediterranean Sea
    diversity Article Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea Giovanni Chimienti 1,2 1 Dipartimento di Biologia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy; [email protected]; Tel.: +39-080-544-3344 2 CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 0.2 colonies m 2. By combining ± − new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary. Keywords: Anthozoa; Alcyonacea; gorgonian; coral habitat; coral forest; VME; biodiversity; mesophotic; citizen science; distribution 1. Introduction Arborescent corals such as antipatharians and alcyonaceans can form mono- or multispecific animal forests that represent vulnerable marine ecosystems of great ecological importance [1–4].
    [Show full text]
  • Stefano Goffredo · Zvy Dubinsky Editors Its History and Present
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Almae Matris Studiorum Campus Stefano Go redo · Zvy Dubinsky Editors The Mediterranean Sea Its history and present challenges Bioconstructions in the Mediterranean: 2 5 Present and Future Petar Kružić Abstract In the Mediterranean Sea, most important habitat formers are bioconstructors. Bioconstructors provide habitats for a large variety of organisms and these organisms rely on bioconstructors as a source of food and shelter. Marine bioconstructors in temperate seas have been recognized to have a structural and functional role of marine biodiversity (as a habitat formers and ecosystem engineers), the same as coral reefs in tropical regions. Bioconstructors are ranging from coralligenous formations (formed usually by coralline algae, sponges, cnidarians, and bryozoans) to vermetid reefs, deep-sea white corals and oyster banks. Some habitats like coral banks formed by shallow-water coral Cladocora caespitosa od deep-water coral Lophelia pertusa , together with coralligenous buildups and maerl beds are of special interest for scientists and people involving with nature protection. Habitat degradation, destruction, fragmentation and loss are the most dramatic conse- quences of anthropogenic pressures on natural ecosystems and marine bioconstructors as a part of that. Under the present climate warming trend, together with marine acidifi cation, new mass mortality events may occur in the near future, possibly driving a major biodiver- sity crisis in the Mediterranean Sea,
    [Show full text]
  • Strong Linkages Between Depth, Longevity and Demographic Stability Across Marine Sessile Species
    Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Doctorat en Ecologia, Ciències Ambientals i Fisiologia Vegetal Resilience of Long-lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology Memòria presentada per Ignasi Montero Serra per optar al Grau de Doctor per la Universitat de Barcelona Ignasi Montero Serra Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Universitat de Barcelona Maig de 2018 Adivsor: Adivsor: Dra. Cristina Linares Prats Dr. Joaquim Garrabou Universitat de Barcelona Institut de Ciències del Mar (ICM -CSIC) A todas las que sueñan con un mundo mejor. A Latinoamérica. A Asun y Carlos. AGRADECIMIENTOS Echando la vista a atrás reconozco que, pese al estrés del día a día, este ha sido un largo camino de aprendizaje plagado de momentos buenos y alegrías. También ha habido momentos más difíciles, en los cuáles te enfrentas de cara a tus propias limitaciones, pero que te empujan a desarrollar nuevas capacidades y crecer. Cierro esta etapa agradeciendo a toda la gente que la ha hecho posible, a las oportunidades recibidas, a las enseñanzas de l@s grandes científic@s que me han hecho vibrar en este mundo, al apoyo en los momentos más complicados, a las que me alegraron el día a día, a las que hacen que crea más en mí mismo y, sobre todo, a la gente buena que lucha para hacer de este mundo un lugar mejor y más justo. A tod@s os digo gracias! GRACIAS! GRÀCIES! THANKS! Advisors’ report Dra. Cristina Linares, professor at Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (Universitat de Barcelona), and Dr.
    [Show full text]
  • Adriatic Sea: Ecology (Draft Report)
    UNITED NATIONS UNEP(DEPI)/MED WG.408/Inf.14 UNITED NATIONS ENVIRONMENT PROGRAMME MEDITERRANEAN ACTION PLAN May 2015 Original: English Twelfth Meeting of Focal Points for Specially Protected Areas Athens, Greece, 25-29 May 2015 Agenda item 10: Marine and Coastal Protected Areas, including in the open seas and deep seas 10.2. Regional Working Programme for the Coastal and Marine Protected Areas in the Mediterranean Sea including the High Seas 10.2.1. Activities for the identification and creation of SPAMIs in the open seas, including the deep seas Adriatic Sea: Ecology (draft report) For environmental and economy reasons, this document is printed in a limited number and will not be distributed at the meeting. Delegates are kindly requested to bring their copies to meetings and not to request additional copies. UNEP/MAP RAC/SPA - Tunis, 2015 Note: The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of RAC/SPA and UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2015 United Nations Environment Programme / Mediterranean Action Plan (UNEP/MAP) Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du Leader Yasser Arafat B.P. 337 - 1080 Tunis Cedex - Tunisia E-mail: [email protected] The original version of this document was prepared for the Regional Activity Centre for Specially Protected Areas (RAC/SPA) by: Carlo CERRANO, RAC/SPA Consultant. Table of contents 1. INTRODUCTION ......................................................................................................................................
    [Show full text]
  • Resilience of Long-Lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology
    Resilience of Long-lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology Ignasi Montero Serra Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License. Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Doctorat en Ecologia, Ciències Ambientals i Fisiologia Vegetal Resilience of Long-lived Mediterranean Gorgonians in a Changing World: Insights from Life History Theory and Quantitative Ecology Memòria presentada per Ignasi Montero Serra per optar al Grau de Doctor per la Universitat de Barcelona Ignasi Montero Serra Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Universitat de Barcelona Maig de 2018 Adivsor: Adivsor: Dra. Cristina Linares Prats Dr. Joaquim Garrabou Universitat de Barcelona Institut de Ciències del Mar (ICM-CSIC) A todas las que sueñan con un mundo mejor. A Latinoamérica. A Asun y Carlos. AGRADECIMIENTOS Echando la vista a atrás reconozco que, pese al estrés del día a día, este ha sido un largo camino de aprendizaje plagado de momentos buenos y alegrías. También ha habido momentos más difíciles, en los cuáles te enfrentas de cara a tus propias limitaciones, pero que te empujan a desarrollar nuevas capacidades y crecer. Cierro esta etapa agradeciendo a toda la gente que la ha hecho posible, a las oportunidades recibidas, a las enseñanzas de l@s grandes científic@s que me han hecho vibrar en este mundo, al apoyo en los momentos más complicados, a las que me alegraron el día a día, a las que hacen que crea más en mí mismo y, sobre todo, a la gente buena que lucha para hacer de este mundo un lugar mejor y más justo.
    [Show full text]
  • A Mediterranean Mesophotic Coral Reef Built by Non-Symbiotic
    www.nature.com/scientificreports OPEN A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians Received: 30 July 2018 Giuseppe Corriero1,2, Cataldo Pierri1,3, Maria Mercurio1,2, Carlotta Nonnis Marzano1,2, Accepted: 8 February 2019 Senem Onen Tarantini1, Maria Flavia Gravina4,2, Stefania Lisco5,2, Massimo Moretti5,2, Published: xx xx xxxx Francesco De Giosa6, Eliana Valenzano5, Adriana Giangrande2,7, Maria Mastrodonato1, Caterina Longo 1,2 & Frine Cardone 1,2 This is the frst description of a Mediterranean mesophotic coral reef. The bioconstruction extended for 2.5 km along the Italian Adriatic coast in the bathymetric range −30/−55 m. It appeared as a framework of coral blocks mostly built by two scleractinians, Phyllangia americana mouchezii (Lacaze- Duthiers, 1897) and Polycyathus muellerae (Abel, 1959), which were able to edify a secondary substrate with high structural complexity. Scleractinian corallites were cemented by calcifed polychaete tubes and organized into an interlocking meshwork that provided the reef stifness. Aggregates of several individuals of the bivalve Neopycnodonte cochlear (Poli, 1795) contributed to the compactness of the structure. The species composition of the benthic community showed a marked similarity with those described for Mediterranean coralligenous communities and it appeared to be dominated by invertebrates, while calcareous algae, which are usually considered the main coralligenous reef- builders, were poorly represented. Overall, the studied reef can be considered a unique environment, to be included in the wide and diversifed category of Mediterranean bioconstructions. The main reef- building scleractinians lacked algal symbionts, suggesting that heterotrophy had a major role in the metabolic processes that supported the production of calcium carbonate.
    [Show full text]
  • Impact of Invasive Tubastraea Spp. (Cnidaria: Anthozoa)
    Aquatic Invasions (2020) Volume 15, Issue 1: 98–113 Special Issue: Proceedings of the 10th International Conference on Marine Bioinvasions Guest editors: Amy Fowler, April Blakeslee, Carolyn Tepolt, Alejandro Bortolus, Evangelina Schwindt and Joana Dias CORRECTED PROOF Research Article Impact of invasive Tubastraea spp. (Cnidaria: Anthozoa) on the growth of the space dominating tropical rocky-shore zoantharian Palythoa caribaeorum (Duchassaing and Michelotti, 1860) Isabella F. Guilhem1, Bruno P. Masi1,2 and Joel C. Creed1,2,* 1Laboratório de Ecologia Marinha Bêntica, Department of Ecology, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, PHLC Sala 220, Rio De Janeiro, RJ CEP 20550-900, Brazil 2Sun Coral Research, Technological Development and Innovation Network, Instituto Brasileiro de Biodiversidade - BrBio, CEP 20031-203, Centro, Rio de Janeiro, RJ, Brazil *Corresponding author E-mail: [email protected] Co-Editors’ Note: This study was first presented at the 10th International Conference Abstract on Marine Bioinvasions held in Puerto Madryn, Argentina, October 16–18, 2018 Competition for space directly affects the structure of the sessile benthic communities (http://www.marinebioinvasions.info). Since on hard substrates. On the Brazilian coast Palythoa caribaeorum is an abundant their inception in 1999, the ICMB meetings shallow water mat-forming zoantharian and has fast growth rates. The objective of have provided a venue for the exchange of the present study was to assess the zoantharian’s biotic resistance by investigating information on various aspects of biological invasions in marine ecosystems, including changes in growth rates when interacting with the invasive sun corals Tubastraea ecological research, education, management tagusensis and T.
    [Show full text]
  • Composition and Abundance of Octocorals in the Sea of Marmara, Where the Mediterranean Meets the Black Sea
    SCIENTIA MARINA 79(1) March 2015, S1-S8, Barcelona (Spain) ISSN: 0214-8358 Composition and abundance of octocorals in the Sea of Marmara, where the Mediterranean meets the Black Sea Eda N. Topçu, Bayram Öztürk Supplementary material S2 • E.N. Topçu and B. Öztürk Table S1. – Taxonomic list of collected species with data of the material examined and notes on its ecology. 14 octocoral species were collected in the study This sea pen was observed at the limit of observa- area at various stations (stations N1 to N17 in the tion (41 m) of this study on muddy bottom. Funiculina Northern group of Islands and stations S1 to S14 in the quadrangularis is a deep sea species that can be found Southern group of Islands). Biological samples were until 2000 m (Williams 1995, Williams 2011) but deposited at the Octocoral Collection of the University rarely above 30 m. The species has a cosmopolitan of Istanbul (IUOK). distribution along the Atlantic, Indo-Pacific and in the Mediterranean Sea (Williams 1995, Vafidis in Coll et Phylum CNIDARIA al. 2010: Table S13). Class ANTHOZOA Ehrenberg, 1834 Subclass OCTOCORALLIA Order ALCYONACEA Lamouroux, 1816 Order PENNATULACEA Verrill, 1865 Suborder STOLONIFERA Hickson, 1883 Suborder SESSILLIFLORAE Kükenthal, 1915 Family CLAVULARIIDAE Hickson, 1894 Family VERETILLIDAE Herklots, 1858 Genus Sarcodictyon Forbes (in Johnston), 1847 Genus Veretillum Cuvier, 1798 Sarcodictyon catenatum Forbes, 1847 Veretillum cynomorium (Pallas, 1766) Material examined: IUOK19 (N1), IUOK92 (N2), IUOK55 (N3), Material examined: IUOK25 (N1), IUOK54 (N3), IUOK24 (N4), IUOK28 (N6), (N8), IUOK09 (N9), IUOK40 (N12), IUOK123 IUOK68 (N5), IUOK18 (N6), IUOK31 (N7), IUOK82 (N9), (S2), IUOK101 (S3), IUOK108 (S4) and IUOK98 (S6).
    [Show full text]