Exercises 1 CW-Complexes, Homotopy Extension Property

Total Page:16

File Type:pdf, Size:1020Kb

Exercises 1 CW-Complexes, Homotopy Extension Property Exercises 1 CW-complexes, homotopy extension property 1. (Rated G) Hatcher no. 23 of chapter 0 on contractible complexes. 2. (G) Suppose X is a CW-complex, A a subcomplex. Then X=A is a CW-complex with cells corresponding to the cells of X that are not in A, plus an additional 0-cell corresponding to A itself (collapsed to a point). 3. (PG-13) This long exercise would be best done by a team of people. It is an illustration of the use of direct limit topologies, plus some interesting applications. Let X be a CW-complex, given as the union of an ascending chain of subcomplexes X0 ⊂ X1 ⊂ :::. In fact the CW-structure per se is not relevant; the key point for the exercise is that X has the direct limit topology with respect to the Xi's, and X × I has the direct limit topology with respect to the Xi × I's (the latter statement following from Hatcher Theorem A6, since I is compact). I make it a CW-complex to avoid getting distracted by the general and very technical question of how direct limit and product topologies interact. a) Suppose that Xn−1 is a retract of Xn for all n. Show that X0 is a retract of X by making sense of “infinite composition" of the given retractions. b) Now suppose Xn−1 is a deformation retract of Xn for all n. Show that X0 is a deformation retract of X by making sense of “infinite stacking" of homotopies in this setting. Model your argument on the one used by Hatcher in Prop. 1A.1 on maximal trees in graphs. c) Understand the proof of the aforementioned Prop 1A1 (the trickiest step being already done in part (b) above) and explain it to the rest of us. d) Show that any CW-complex X is homotopy-equivalent to a CW-complex Y having only one 0-cell. In particular, if X is 1-dimensional then Y is a wedge of circles. e) Maybe look at some further applications, such as the topological proof that every subgroup of a free group is free (see Hatcher 1A.4) and tell us about them. 4. (PG) This problem, a brief introduction to Schubert cells, comes in real and complex flavors; to be definite let's stick to the complex case. Consider the natural linear action of n n−1 GLnC on C . It induces an evident transitive action on CP , which can be regarded as a topological group action on a space, or better as a smooth Lie group action on a smooth manifold. (For fans of algebraic geometry, it is even an algebraic group action on a projective variety.) If H ⊂ GLnC is any subgroup, we get an H-action by restriction. The relevant subgroup for this problem in Bn := BnC, the group of upper triangular invertible matrices. n−1 a) Show that the cells of the standard CW-structure (as in Hatcher) on CP are pre- cisely the Bn-orbits. (For fans of algebraic geometry: the cells are then locally Zariski-closed 1 subvarieties, isomorphic to affine spaces of the appropriate dimension.) Identify the closures of the cells, showing in particular that the boundary of each cell is a union of cells of lower dimension (recall that the definition of CW-complex only requires that the boundary is con- tained in a union of cells of lower dimension). Note the explicit description of the attaching maps given in Hatcher. n b) More generally consider the Grassmannian GkC . Interpret the standard column reduction/column echelon form (columns are more appropriate here than rows) for n × k matrices, which many of you will teach at some point in Math 308, as showing that the Bn- n orbits of the natural action on GkC are homeomorphic to complex vector spaces and hence to even-dimensional cells. These are the Schubert cells. (The above remark for algebraic geometers applies here too.) c) The cell decomposition in (b) is indeed a CW-decomposition, but more work is needed to exhibit characteristic maps. As an optional project, look at Milnor's \Characteristic Classes" to see how this is done. It's \elementary", but rather involved. The fact that the cells are all even-dimensional will make it easy to \compute" the homology groups later. d) Check that it all works in the real case as well (although the cells are no longer all even-dimensional). 5. (PG) This problem assumes familiarity with tubular neighborhoods. Suppose M is a smooth manifold and N ⊂ M is a closed embedded submanifold. Then (M; N) has the homotopy extension property. In fact one can give (M; N) the structure of a CW-pair, or even a simplicial pair (to be defined later), but the proof is very complicated and technical. Your mission is to give a simpler and more direct proof of the HEP based on \mapping cylinder neighborhoods" (Hatcher Example 0.15). n 6. (PG-13) Show that every open subset of R can be given the structure of a CW- complex. 2 Homology I 1. x2.2 of Hatcher exercises 1-8 on the degree of a map Sn −! Sn are all good, but especially take a look at 2,3,8. Problem 7 is discussed further in (4) below. 2. Exercise 20 of Hatcher x2.1 is in fact one of the most important theorems of the subject (the suspension isomorphism). 3. Show that there is a long exact sequence for the reduced homology of a pair (X; A), agreeing with the one on ordinary homology in dimensions ≥ 1. Thus the only thing you ~ have to check is that @ : H1(X; A) −! H0A in fact has image in H0A, and that ~ ~ H1(X; A) −! H0A −! H0X −! H0(X; A) −! 0 2 is exact. This is elementary and might seem overly fussy to bother with, but it's worth paying attention to reduced homology. It simplifies both the statements and the proofs of various results, as we'll see. 4. Here are two important theorems that may or may not be familiar: Theorem 2.1 a) The orthogonal group O(n) has two path-components, distinguished by the determinant ±1. b) The general linear group GLnR has two path-components, distinguished by the sign of the determinant. + c) Multiplication O(n) × Bn R −! GLnR is a homeomorphism, and hence O(n) is a + deformation retract of GLnR. Here Bn R denotes the upper triangular matrices with positive diagonal entries, and is contractible. Note that thanks to part (c), parts (a) and (b) are equivalent. The second theorem is just the complex analogue. Theorem 2.2 a) The unitary group U(n) is path-connected. b) The general linear group GLnC is path-connected. + c) Multiplication U(n) × Bn C −! GLnC is a homeomorphism, and hence U(n) is a + deformation retract of GLnR. Here Bn C denotes the upper triangular matrices with positive real diagonal entries, and is contractible. It's highly recommended to prove these results yourself. There are several different ways to do it, but all of them boil down to linear algebra. First of all properties (c) are little more than reformulations of the Gram-Schmidt orthogonalization process. Then you have your choice of proving properties (a) or properties (b). The idea is to either use some canonical form or another for matrices (there are several choices that work), or some type of factorization (e.g. orthogonal matrices can be factored as a product of reflections) to find a path from your matrix to the identity matrix or (in the real case) to a reflection matrix. Using these theorems one can easily compute the degree of a linear map. By this we mean either (a) a map Sn −! Sn given by an orthogonal or unitary matrix, or (b) a general linear map in the situation of Hatcher x2.2 Exercise 7. The former case will be done in class; the latter is left as the exercise. 3 Homology II n 1. The complex conjugation map on CP is defined by σ([z0; :::; zn]) = [z0; :::zn]. Check that this is a well-defined continuous (indeed smooth) map, and show that it is not homotopic to the identity map. You would of course do this by showing the induced map on homology is not the identity. While you're at it, even though this is more than you need to answer the n original question, compute the induced map explicitly on every H2kCP . n m 2. A real truncated projective space is a space of the form RP =RP , where m < n. 3 Note: These spaces are more important than you might think. In class I'll outline how they come up in the vector field problem for Sn. The vector field application involves the concept of \reducibility" defined in part (b) below. a) Use the cellular chain complex to compute the homology of all such spaces (making n use of the case m = 0 that we've already done, i.e. RP itself, to make things easier). n m n n−1 ∼ n b) Let π : RP =RP −! RP =RP = S denote the evident quotient map. We say n m n n m that RP =RP is reducible if there is a map f : S −! RP =RP such that π ◦ f is a homotopy equivalence. An informal, more evocative terminology is to say that \the top cell splits off". n m Show that if RP =RP is reducible then n is odd. (The converse is false, but we don't yet have the means to show this.) 3.
Recommended publications
  • The Fundamental Group
    The Fundamental Group Tyrone Cutler July 9, 2020 Contents 1 Where do Homotopy Groups Come From? 1 2 The Fundamental Group 3 3 Methods of Computation 8 3.1 Covering Spaces . 8 3.2 The Seifert-van Kampen Theorem . 10 1 Where do Homotopy Groups Come From? 0 Working in the based category T op∗, a `point' of a space X is a map S ! X. Unfortunately, 0 the set T op∗(S ;X) of points of X determines no topological information about the space. The same is true in the homotopy category. The set of `points' of X in this case is the set 0 π0X = [S ;X] = [∗;X]0 (1.1) of its path components. As expected, this pointed set is a very coarse invariant of the pointed homotopy type of X. How might we squeeze out some more useful information from it? 0 One approach is to back up a step and return to the set T op∗(S ;X) before quotienting out the homotopy relation. As we saw in the first lecture, there is extra information in this set in the form of track homotopies which is discarded upon passage to [S0;X]. Recall our slogan: it matters not only that a map is null homotopic, but also the manner in which it becomes so. So, taking a cue from algebraic geometry, let us try to understand the automorphism group of the zero map S0 ! ∗ ! X with regards to this extra structure. If we vary the basepoint of X across all its points, maybe it could be possible to detect information not visible on the level of π0.
    [Show full text]
  • 1. CW Complex 1.1. Cellular Complex. Given a Space X, We Call N-Cell a Subspace That Is Home- Omorphic to the Interior of an N-Disk
    1. CW Complex 1.1. Cellular Complex. Given a space X, we call n-cell a subspace that is home- omorphic to the interior of an n-disk. Definition 1.1. Given a Hausdorff space X, we call cellular structure on X a n collection of disjoint cells of X, say ffeαgα2An gn2N (where the An are indexing sets), together with a collection of continuous maps called characteristic maps, say n n n k ffΦα : Dα ! Xgα2An gn2N, such that, if X := feαj0 ≤ k ≤ ng (for all n), then : S S n (1) X = ( eα), n2N α2An n n n (2)Φ α Int(Dn) is a homeomorphism of Int(D ) onto eα, n n F k (3) and Φα(@D ) ⊂ eα. k n−1 eα2X We shall call X together with a cellular structure a cellular complex. n n n Remark 1.2. We call X ⊂ feαg the n-skeleton of X. Also, we shall identify X S k n n with eα and vice versa for simplicity of notations. So (3) becomes Φα(@Dα) ⊂ k n eα⊂X S Xn−1. k k n Since X is a Hausdorff space (in the definition above), we have that eα = Φα(D ) k n k (where the closure is taken in X). Indeed, we easily have that Φα(D ) ⊂ eα by n n continuity of Φα. Moreover, since D is compact, we have that its image under k k n k Φα also is, and since X is Hausdorff, Φα(D ) is a closed subset containing eα. Hence we have the other inclusion (Remember that the closure of a subset is the k intersection of all closed subset containing it).
    [Show full text]
  • Homotopy Theory of Diagrams and Cw-Complexes Over a Category
    Can. J. Math.Vol. 43 (4), 1991 pp. 814-824 HOMOTOPY THEORY OF DIAGRAMS AND CW-COMPLEXES OVER A CATEGORY ROBERT J. PIACENZA Introduction. The purpose of this paper is to introduce the notion of a CW com­ plex over a topological category. The main theorem of this paper gives an equivalence between the homotopy theory of diagrams of spaces based on a topological category and the homotopy theory of CW complexes over the same base category. A brief description of the paper goes as follows: in Section 1 we introduce the homo­ topy category of diagrams of spaces based on a fixed topological category. In Section 2 homotopy groups for diagrams are defined. These are used to define the concept of weak equivalence and J-n equivalence that generalize the classical definition. In Section 3 we adapt the classical theory of CW complexes to develop a cellular theory for diagrams. In Section 4 we use sheaf theory to define a reasonable cohomology theory of diagrams and compare it to previously defined theories. In Section 5 we define a closed model category structure for the homotopy theory of diagrams. We show this Quillen type ho­ motopy theory is equivalent to the homotopy theory of J-CW complexes. In Section 6 we apply our constructions and results to prove a useful result in equivariant homotopy theory originally proved by Elmendorf by a different method. 1. Homotopy theory of diagrams. Throughout this paper we let Top be the carte­ sian closed category of compactly generated spaces in the sense of Vogt [10].
    [Show full text]
  • 1 CW Complex, Cellular Homology/Cohomology
    Our goal is to develop a method to compute cohomology algebra and rational homotopy group of fiber bundles. 1 CW complex, cellular homology/cohomology Definition 1. (Attaching space with maps) Given topological spaces X; Y , closed subset A ⊂ X, and continuous map f : A ! y. We define X [f Y , X t Y / ∼ n n n−1 n where x ∼ y if x 2 A and f(x) = y. In the case X = D , A = @D = S , D [f X is said to be obtained by attaching to X the cell (Dn; f). n−1 n n Proposition 1. If f; g : S ! X are homotopic, then D [f X and D [g X are homotopic. Proof. Let F : Sn−1 × I ! X be the homotopy between f; g. Then in fact n n n D [f X ∼ (D × I) [F X ∼ D [g X Definition 2. (Cell space, cell complex, cellular map) 1. A cell space is a topological space obtained from a finite set of points by iterating the procedure of attaching cells of arbitrary dimension, with the condition that only finitely many cells of each dimension are attached. 2. If each cell is attached to cells of lower dimension, then the cell space X is called a cell complex. Define the n−skeleton of X to be the subcomplex consisting of cells of dimension less than n, denoted by Xn. 3. A continuous map f between cell complexes X; Y is called cellular if it sends Xk to Yk for all k. Proposition 2. 1. Every cell space is homotopic to a cell complex.
    [Show full text]
  • INTRODUCTION to ALGEBRAIC TOPOLOGY 1 Category And
    INTRODUCTION TO ALGEBRAIC TOPOLOGY (UPDATED June 2, 2020) SI LI AND YU QIU CONTENTS 1 Category and Functor 2 Fundamental Groupoid 3 Covering and fibration 4 Classification of covering 5 Limit and colimit 6 Seifert-van Kampen Theorem 7 A Convenient category of spaces 8 Group object and Loop space 9 Fiber homotopy and homotopy fiber 10 Exact Puppe sequence 11 Cofibration 12 CW complex 13 Whitehead Theorem and CW Approximation 14 Eilenberg-MacLane Space 15 Singular Homology 16 Exact homology sequence 17 Barycentric Subdivision and Excision 18 Cellular homology 19 Cohomology and Universal Coefficient Theorem 20 Hurewicz Theorem 21 Spectral sequence 22 Eilenberg-Zilber Theorem and Kunneth¨ formula 23 Cup and Cap product 24 Poincare´ duality 25 Lefschetz Fixed Point Theorem 1 1 CATEGORY AND FUNCTOR 1 CATEGORY AND FUNCTOR Category In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a diagram is a collection of ‘objects’ denoted by A, B, C, X, Y, ··· , and ‘arrows‘ between them denoted by f , g, ··· , as in the examples f f1 A / B X / Y g g1 f2 h g2 C Z / W We will always have an operation ◦ to compose arrows. The diagram is called commutative if all the composite paths between two objects ultimately compose to give the same arrow. For the above examples, they are commutative if h = g ◦ f f2 ◦ f1 = g2 ◦ g1. Definition 1.1. A category C consists of 1◦. A class of objects: Obj(C) (a category is called small if its objects form a set). We will write both A 2 Obj(C) and A 2 C for an object A in C.
    [Show full text]
  • Generalized Cohomology Theories
    Lecture 4: Generalized cohomology theories 1/12/14 We've now defined spectra and the stable homotopy category. They arise naturally when considering cohomology. Proposition 1.1. For X a finite CW-complex, there is a natural isomorphism 1 ∼ r [Σ X; HZ]−r = H (X; Z). The assumption that X is a finite CW-complex is not necessary, but here is a proof in this case. We use the following Lemma. Lemma 1.2. ([A, III Prop 2.8]) Let F be any spectrum. For X a finite CW- 1 n+r complex there is a natural identification [Σ X; F ]r = colimn!1[Σ X; Fn] n+r On the right hand side the colimit is taken over maps [Σ X; Fn] ! n+r+1 n+r [Σ X; Fn+1] which are the composition of the suspension [Σ X; Fn] ! n+r+1 n+r+1 n+r+1 [Σ X; ΣFn] with the map [Σ X; ΣFn] ! [Σ X; Fn+1] induced by the structure map of F ΣFn ! Fn+1. n+r Proof. For a map fn+r :Σ X ! Fn, there is a pmap of degree r of spectra Σ1X ! F defined on the cofinal subspectrum whose mth space is ΣmX for m−n−r m ≥ n+r and ∗ for m < n+r. This pmap is given by Σ fn+r for m ≥ n+r 0 n+r and is the unique map from ∗ for m < n+r. Moreover, if fn+r; fn+r :Σ X ! 1 Fn are homotopic, we may likewise construct a pmap Cyl(Σ X) ! F of degree n+r 1 r.
    [Show full text]
  • Homology of Cell Complexes
    Geometry and Topology of Manifolds 2015{2016 Homology of Cell Complexes Cell Complexes Let us denote by En the closed n-ball, whose boundary is the sphere Sn−1.A cell complex (or CW-complex) is a topological space X equipped with a filtration by subspaces X(0) ⊆ X(1) ⊆ X(2) ⊆ · · · ⊆ X(n) ⊆ · · · (1) (0) 1 (n) where X is discrete (i.e., has the discrete topology), such that X = [n=0X as a topological space, and, for all n, the space X(n) is obtained from X(n−1) by attaching n−1 (n−1) a set of n-cells by means of a family of maps f'j : S ! X gj2Jn . Here Jn is any set of indices and X(n) is therefore a quotient of the disjoint union X(n−1) ` En j2Jn n−1 (n−1) where we identify, for each point x 2 S , the image 'j(x) 2 X with the point x in the j-th copy of En. It is customary to denote (n) (n−1) n X = X [f'j g fej g n (n) and view each ej as an \open n-cell". The space X is called the n-skeleton of X, and the filtration (1) together with the attaching maps f'jgj2Jn for all n is called a cell decomposition or CW-decomposition of X. Thus a topological space may admit many distinct cell decompositions (or none). Cellular Chain Complexes (n) Let X be a cell complex with n-skeleton X and attaching maps f'jgj2Jn for all n.
    [Show full text]
  • Math 6280 - Class 16
    MATH 6280 - CLASS 16 Contents 1. CW Complexes 1 2. n{equivalences 3 These notes are based on • Algebraic Topology from a Homotopical Viewpoint, M. Aguilar, S. Gitler, C. Prieto • A Concise Course in Algebraic Topology, J. Peter May • More Concise Algebraic Topology, J. Peter May and Kate Ponto • Algebraic Topology, A. Hatcher 1. CW Complexes n−1 Definition 1.1 (CW-complex). (a) Let X0 be a discrete set of points. Assume that X has n n n−1 been constructed. Let fDi gi2In be a set of n-disks Di with boundary Si . Let n n−1 n−1 fφi : Si ! X gi2In be corresponding continuous maps which we call the attaching maps or characteristic maps. Then Xn is defined as the pushout: [φn n−1 i n−1 [i2In Si / X n n [i2In Di / X n−1 n 1 n • X ⊂ X is a closed subspace and X = [n=0X with the union topology. • Xn is called the n{skeleton. We call X a CW{complex. (b) More generally, we take X0 = A [ P for any topological space A and discrete set of points P and build X by attaching n{disks to A inductively. Then (X; A) is a relative CW{complex. (c) A continuous map f : X ! Y between CW{complexes X and Y is called cellular if f(Xn) ⊂ Y n. (d) X has dimension ≤ n if X = Xn. 1 2 MATH 6280 - CLASS 16 n n Example 1.2. • S = D [Sn−1 ∗ is a CW-complex: Sn−1 / ∗ Dn / Sn n • RP is a CW{complex with on cell in each dimension 0 ≤ 1 ≤ n.
    [Show full text]
  • Algebraic Topology I Fall 2016
    38 CHAPTER 2. COMPUTATIONAL METHODS 15 CW-complexes II We have a few more general things to say about CW complexes. Suppose X is a CW complex, with skeleton filtration ? = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X and cell structure f ` Sn−1 n X : α2An α / n−1 _ gn ` Dn X α2An α / n In each case, the boundary of a cell gets identified with part of the previous skeleton, but the “interior” IntDn = fx 2 Dn : jxj < 1g does not. (Note that IntD0 = D0.) Thus as sets – ignoring the topology – a a n X = Int(Dα) : n≥0 α2An n The subsets IntD are called “open n-cells,” despite the fact that they not generally open in the α topology on X, and (except when n = 0) they are not homeomorphic to compact disks. n Definition 15.1. Let X be a CW-complex with a cell structure fgα : Dα ! Xn : α 2 An; n ≥ 0g. A subcomplex is a subspace Y ⊆ X such that for all n, there is a subset Bn of An such that Yn = Y \ Xn provides Y with a CW-structure with characteristic maps fgβ : β 2 Bn; n ≥ 0g. Example 15.2. SknX ⊆ X is a subcomplex. Proposition 15.3. Let X be a CW-complex with a chosen cell structure. Any compact subspace of X lies in some finite subcomplex. Proof. See [2], p. 196. Remark 15.4. For fixed cell structures, unions and intersections of subcomplexes are subcomplexes. n n n The n-sphere S (for n > 0) admits a very simple CW structure: Let ∗ = Sk0(S ) = Sk1(S ) = n n−1 · · · = Skn−1(S ), and attach an n-cell using the unique map S ! ∗.
    [Show full text]
  • A Künneth Formula for Complex K Theory
    A K¨unnethFormula for Complex K Theory James Bailie June 6, 2017 1 Introduction A K¨unnethformula relates the (co)homology of two objects to the (co)homology of their product. For example, there is a split short exact sequence M M 0 ! (Hi(X; R) ⊗R Hn−i(Y ; R)) ! Hn(X × Y ; R) ! TorR (Hi(X; R);Hn−i−1(Y ; R)) ! 0 i i for CW complexes X and Y and prinicipal ideal domains R [AT, theorem 3B.6]. A similar result for cohomology (with added assumptions) can be found in [Sp, theorem 5.11]. In this report we will prove a K¨unnethformula for complex K theory: Theorem 1. There is a natural exact sequence M µ β M 0 ! Ki(X) ⊗ Kj(Y ) −! Kk(X × Y ) −! Tor Ki(X);Kj(Y ) ! 0 i+j=k i+j=k+1 for finite CW complexes X and Y , where all indices are in Z2 and µ is the external product. This theorem was first proven by Atiyah in 1962 [VBKF]. Sections 2 to 4 provide some necessary background to the proof of theorem 1. Section 5 contains the proof. There is a brief discussion on the impossibility of a K¨unnethformula for real K theory in seciton 6. In section 7 we provide a stronger K¨unnethformula, given by Atiya in [KT]. Finially we will briefly discuss Kunneth formulae for other general cohomology theories in section 8. 2 Review of the Tor Functor Recall the definition of Tor given by Hatcher in [AT, section 3.A]: from an abelian group H and a free resolution F : f2 f1 f0 ::: ! F2 −! F1 −! F0 −! H ! 0 we can form a chain complex by removing H and tensoring with a fixed abelian group G: f2⊗id f1⊗id ::: ! F2 ⊗ G −−−! F1 ⊗ G −−−! F0 ⊗ G ! 0: The homology groups Hn(F ⊗ G) of this chain complex do not depend on the free resolution F [AT, lemma 3.A2].
    [Show full text]
  • A Topological Manifold Is Homotopy Equivalent to Some CW-Complex
    A topological manifold is homotopy equivalent to some CW-complex Aasa Feragen Supervisor: Erik Elfving December 17, 2004 Contents 1 Introduction 3 1.1 Thanks............................... 3 1.2 Theproblem............................ 3 1.3 Notationandterminology . 3 1.4 Continuity of combined maps . 4 1.5 Paracompactspaces........................ 5 1.6 Properties of normal and fully normal spaces . 13 2 Retracts 16 2.1 ExtensorsandRetracts. 16 2.2 Polytopes ............................. 18 2.3 Dugundji’s extension theorem . 28 2.4 The Eilenberg-Wojdyslawski theorem . 37 2.5 ANE versus ANR . 39 2.6 Dominatingspaces ........................ 41 2.7 ManifoldsandlocalANRs . 48 3 Homotopy theory 55 3.1 Higherhomotopygroups . 55 3.2 The exact homotopy sequence of a pair of spaces . 58 3.3 Adjunction spaces and the method of adjoining cells . 62 3.4 CW-complexes .......................... 69 3.5 Weak homotopy equivalence . 79 3.6 A metrizable ANR is homotopy equivalent to a CW complex . 85 2 Chapter 1 Introduction 1.1 Thanks First of all, I would like to thank my supervisor Erik Elfving for suggesting the topic and for giving valuable feedback while I was writing the thesis. 1.2 The problem The goal of this Pro Gradu thesis is to show that a topological manifold has the same homotopy type as some CW complex. This will be shown in several ”parts”: A) A metrizable ANR has the same homotopy type as some CW complex. i) For any ANR Y there exists a dominating space X of Y which is a CW complex. ii) A space which is dominated by a CW complex is homotopy equiv- alent to a CW complex.
    [Show full text]
  • On Spaces Having the Homotopy Type of a Cw-Complex
    ON SPACES HAVING THE HOMOTOPY TYPE OF A CW-COMPLEX BY JOHN MILNORO) Let "W denote the class of all spaces which have the homotopy type of a CW-complex. The following is intended as propaganda for this class W. Function space constructions such as (A; B, o,)«o.i];»].»]) have become important in homotopy theory, and our basic objective is to show that such constructions do not lead outside the class V? (Theorem 3). The first section is concerned with the smaller class "Wo, consisting of all spaces which have the homotopy type of a countable CW-complex. §§1 and 2 are independent of each other. The basic reference for this paper is J. H. C. Whitehead [15]. 1. The class %v0. Theorem 1. The following restrictions on the space A are equivalent: (a) A belongs to the class V?0; (h) A is dominated by a countable CW-complex; (c) A has the homotopy type of a countable locally finite simplicial complex. (d) A has the homotopy type of an absolute neighborhood retract(2). Proof. The assertions (a)«=>(b)$=»(c) are due to J. H. C. Whitehead. In fact the implications (c)=>(a)=>(b) are trivial; and the implication (b)=>(c), for a path-connected space, is Theorem 24 of Whitehead [16]. But if the space A is dominated by a countable CW-complex, then each path-component of A is an open set; and the collection of path-components is countable. Therefore it is sufficient to consider the path-connected case. The assertions (c)=>(d)=>(b) are due to O.
    [Show full text]