Mnemonics for Frog and Toad Calls of Tennessee (A Trigger to Aid Memory)

Total Page:16

File Type:pdf, Size:1020Kb

Mnemonics for Frog and Toad Calls of Tennessee (A Trigger to Aid Memory) Mnemonics for Frog and Toad Calls of Tennessee (A Trigger To Aid Memory) Frogs and toads are most often monitored via the use of call count surveys. The following list was developed to assist students in memorizing frog and toad calls before conducting fieldwork. Some of the scientific names have been changed and are no longer valid! Species Voice or Mnemonic E. Spadefoot (Scaphiopus holbrookii) A low pitched, calf-like sound, short in duration and repeated Am. Toad (Bufo americanus) Long, loud musical trill (pleasant sound of spring) Fowler's Toad (Bufo woodhousii) A nasal w-a-a-a-h (sounds “fowl”) Gopher Frog (Rana capito) Deep, lazy snore – lower than river frog American Bullfrog (Rana catesbeiana) Vibrant, bass notes – “jug-o-rum” Green Frog (Rana clamitans) Like a loose banjo string - abrupt Pickerel Frog (Rana palustris) Steady, low-pitched nasally snore Wood Frog (Rana sylvatica) Hoarse clacking, similar to ducks feeding or quacking S. Leopard Frog (Rana utricularia) Short, chuckle (guttural in sound) N. Cricket Frog (Acris crepitans) Like two pebbles being clicked together S. Cricket Frog (Acris gryllus) Like a metal clicker in rapid succession Gray Treefrog chrysoscelis = dry, fast trill versicolor = musical, slower trill Green Treefrog (Hyla cinerea) Nasal queenk-queenk-queenk Barking Treefrog (Hyla gratiosa) Sounds like a pack of dogs, hence its name “barking” Spring Peeper (Pseudacris crucifer) High, piping whistle (up and down) – pip-PIP-pip-PIP Upland Chorus Frog (Pseudacris Fingernail being raked over the teeth of a comb (short and triseriata) abrupt, longer than Brimley’s) E. Narrowmouth Toad Lamb bleat (Gastrophryne carolinensis) .
Recommended publications
  • Blanchard's Cricket Frog
    NOTES 129 BLANCHARD’S CRICKET FROG IN NEBRASKA AND SOUTH DAKOTA -- Blanchard’s cricket frog (Acris crepitans blanchardi) is a small warty anuran known for its exceptional leaping ability and is common along stream banks and ponds throughout much of the eastern two-thirds of North America. Its color pattern is highly variable being comprised of greens, reds, browns, and grays, culminating frequently in a stripe or series of splotches arranged along the cranial- caudal dorsal midline. The Blanchard’s cricket frog can often be identified by a small triangle pointing caudally, whose base extends between each eye (Harper 1947). Other stripes and lines are not uncommon. In South Dakota the range of Blanchard’s cricket frog is limited to the extreme south-central and southeastern counties; in Nebraska, the species is known statewide. Despite the lack of natural history information on Blanchard’s cricket frog in Nebraska and South Dakota, several studies from other states have provided a substantial amount of life history data for this species (Johnson and Christiansen 1976; Gray 1983, 1984; Burkett 1984). Harper (1947) described Blanchard’s cricket frog with mean snout-vent lengths (SVL) of 24.1 mm for adult males and 29.2 for adult females. Average body mass was determined to be 1.3 g for adult males and 2.2 g for adult females. In Iowa, Blanchard’s cricket frog attains its maximum body size between June and July (Johnson and Christiansen 1976), whereas maximum body size is attained as early as May in Kansas (Burkett 1984). These frogs appear to be active from April through October in Iowa (Johnson and Christiansen 1976) and from March through December in Kansas (Burkett 1984).
    [Show full text]
  • TERRITORY SIZE - What Is the Territory Size for the Species?
    ANURA TERRITORY SIZE - What is the territory size for the species? Species Common Name Territory Size Bufonidae True Frogs Bufo a. americanus Eastern American Toad Unk (Oldham 1966) Bufo fowleri Fowler's Toad Unk (Stille 1952, Clarke 1974a, Breden 1988) Bufo quercicus Oak Toad Unk Bufo terrestris Southern Toad Unk Hylidae Treefrogs Acris c. crepitans Eastern Cricket Frog Unk Acris c. blanchardi Blanchard's Cricket Frog none (Pyburn 1958); 30 cm radius (Perrill & Shepherd 1989) Acris g. gryllus Coastal Plain Cricket Frog Unk Hyla andersonii Pine Barrens Treefrog Unk Hyla chrysoscelis Cope’s Gray Treefrog Unk Hyla cinerea Green Treefrog Unk Hyla femoralis Pine Woods Treefrog Unk Hyla gratiosa Barking Treefrog N Hyla squirella Squirrel Treefrog Unk Hyla versicolor Gray Treefrog Unk Pseudacris brachyphona Mountain Chorus Frog Unk Pseudacris brimleyi Brimley’s Chorus Frog Unk Pseudacris c. crucifer Northern Spring Peeper 1.2 - 5.4 m (Delzell 1958) Pseudacris feriarum Upland Chorus Frog Unk Pseudacris feriarum kalmi New Jersey Chorus Frog Unk Pseudacris ocularis Little Grass Frog Unk Pseudacris triseriata Western Chorus Frog 7.5 cm (Roble 1985) Pelobatidae Spadefoot Toads Scaphiopus holbrookii Eastern Spadefoot 10 sq m (Pearson 1955) Ranidae True Frogs Rana catesbeiana American Bullfrog 2.5m2 (8.6 ft diam.in pond) (Currie and Bellis 1969) Rana clamitans melanota Northern Green Frog 61 sq m (Martof 1956b) Rana palustris Pickerel Frog Unk Rana pipiens Northern Leopard Frog 5 - 10 m (Dole 1965) Rana septentrionalis Mink Frog Unk Rana sphenocephala Southern Leopard Frog Unk Rana sylvatica Wood Frog 64.5 sq m (Bellis 1965) Rana virgatipes Carpenter Frog 0.5 - 6.5 m Microhylidae Narrow-mouthed Frogs Gastrophryne carolinensis Eastern Narrow-mouthed Toad Unk Territory Size Codes: State in m2 or km2, Unk = unknown.
    [Show full text]
  • Overwintering Physiology and Hibernacula Microclimates of Blanchard’S Cricket Frogs at Their Northwestern Range Boundary
    Copeia 2010, No. 2, 247–253 Overwintering Physiology and Hibernacula Microclimates of Blanchard’s Cricket Frogs at Their Northwestern Range Boundary David L. Swanson1 and Seth L. Burdick1 Blanchard’s Cricket Frogs (Acris crepitans blanchardi) in the central portion of their range show minimal capacities for freezing tolerance and survive overwinter by using terrestrial hibernacula where they avoid freezing. However, frogs may exhibit greater freeze-tolerance capacity at high latitude range limits, where winter climate is more severe. We studied freezing tolerance, glucose mobilization during freezing, and hibernacula microclimates of cricket frogs in southeastern South Dakota, at the northwestern limit of their range. Cricket frogs from South Dakota generally survived freezing exposure at 21.5 to 22.5uC for 6-h periods (80% survival), but uniformly died when exposed to these same temperatures for 24-h freezing bouts. Hepatic glucose levels and phosphorylase a activities increased significantly during freezing, but hepatic glucose levels during freezing remained low, only reaching levels approximating those prior to freezing in freeze-tolerant species. Moreover, muscle glucose and hepatic glycogen levels did not vary with freezing, suggesting little mobilization of glucose from hepatic glycogen stores during freezing, contrasting with patterns in freeze-tolerant frogs. Temperatures in soil cracks and burrows potentially used for hibernacula were variable, with some sites remaining above the freezing point of the body fluids throughout the winter, some sites dropping below the freezing point for only short periods, and some sites dropping below the freezing point for extended periods. These data suggest that cricket frogs in South Dakota, as in other portions of their range, survive overwinter by locating hibernacula that prevent freezing, although their toleration of short freezing bouts may expand the range of suitable hibernacula.
    [Show full text]
  • Western Chorus Frog (Pseudacris Triseriata), Great Lakes/ St
    PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the Western Chorus Frog (Pseudacris triseriata), Great Lakes/ St. Lawrence – Canadian Shield Population, in Canada Western Chorus Frog 2014 1 Recommended citation: Environment Canada. 2014. Recovery Strategy for the Western Chorus Frog (Pseudacris triseriata), Great Lakes / St. Lawrence – Canadian Shield Population, in Canada [Proposed], Species at Risk Act Recovery Strategy Series, Environment Canada, Ottawa, v + 46 pp For copies of the recovery strategy, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans and other related recovery documents, please visit the Species at Risk (SAR) Public Registry (www.sararegistry.gc.ca). Cover illustration: © Raymond Belhumeur Également disponible en français sous le titre « Programme de rétablissement de la rainette faux-grillon de l’Ouest (Pseudacris triseriata), population des Grands Lacs et Saint-Laurent et du Bouclier canadien, au Canada [Proposition] » © Her Majesty the Queen in Right of Canada represented by the Minister of the Environment, 2014. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Recovery Strategy for the Western Chorus Frog 2014 (Great Lakes / St. Lawrence – Canadian Shield Population) PREFACE The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of recovery strategies for listed Extirpated, Endangered, and Threatened species and are required to report on progress within five years of the publication of the final document on the Species at Risk Public Registry.
    [Show full text]
  • The Natural History and Morphology of the Eastern Cricket Frog, Acris Crepitans Crepitans, in West Virginia
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2004 The aN tural History and Morphology of the Eastern Cricket Frog, Acris crepitans crepitans, in West Virginia Kimberly Ann Bayne Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, and the Behavior and Ethology Commons Recommended Citation Bayne, Kimberly Ann, "The aN tural History and Morphology of the Eastern Cricket Frog, Acris crepitans crepitans, in West Virginia" (2004). Theses, Dissertations and Capstones. Paper 462. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. The Natural History and Morphology of the Eastern Cricket Frog, Acris crepitans crepitans, in West Virginia. Thesis submitted to The Graduate School of Marshall University In partial fulfillment of the Requirements for the Degree of Master of Science Biological Sciences By Kimberly Ann Bayne Marshall University Huntington, West Virginia April 2, 2004 Table of Contents Acknowledgements ........................................................................................................................................ ii List of Tables................................................................................................................................................. iii List of Figures
    [Show full text]
  • 2009 Amphibian Surveys
    Amphibians in the City Presence, Influential Factors, and Recommendations in Portland, OR Katie Holzer City of Portland Bureau of Parks and Recreation Bureau of Environmental Services August 2009 Introduction Background We are currently in the midst of the largest extinction of species on Earth in 65 million years (Myers & Knoll 2001, Baillie et al. 2004). Although this crisis is affecting nearly all taxa, amphibians are being hit particularly strongly, as one in three amphibian species are threatened with extinction (Pounds et al. 2006). Amphibians comprise frogs, salamanders, and caecilians, but in the Pacific Northwest of the United States we have only frogs and salamanders. There are some unique amphibian characteristics that are likely contributing to their rapid decline: 1) Amphibians have moist, permeable skin that makes them sensitive to pollution and prone to drying out (Smith & Moran 1930). 2) Many amphibians require multiple specific habitats such as ponds for egg laying and forests for the summer dry months. These habitats must be individually suitable for amphibians as well as connected to each other for populations to be successful (Bowne & Bowers 2004). 3) Many amphibians exhibit strong site fidelity where they will attempt to return to the same area again and again, even if the area is degraded and/or new areas are constructed (Stumpel & Voet 1998). 4) Chytridiomycota is a fungus that is transmitted by water and is rapidly sweeping across the globe taking a large toll on amphibians (Retallick et al., 2004). The fungus infects the skin of amphibians and has recently arrived in the Pacific Northwest. All of these factors are contributing to the sharp decline of amphibian populations around the world.
    [Show full text]
  • Complex Associations of Environmental Factors May Explain Blanchard’S Cricket Frog, Acris Blanchardi Declines and Drive Population Recovery
    bioRxiv preprint doi: https://doi.org/10.1101/272161; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. BIORXIV/2018/272161 Complex associations of environmental factors may explain Blanchard’s Cricket Frog, Acris blanchardi declines and drive population recovery. Malcolm L. McCallum1,2 and Stanley E. Trauth3 1P.O. Box 150, Langston, Oklahoma 64040. 2Current Address: Aquatic Resources Center, School of Agriculture & Applied Sciences, E.L. Holloway Agriculture Research, Education, & Extension, Langston University, P.O. Box 1730, Langston, Oklahoma 73050, USA, e-mail: [email protected] 3P.O. Box 599, Department of Biological Sciences, Arkansas State University, State University, Arkansas 72467. Abstract.−Blanchard’s Cricket Frog, Acris blanchardi, is a small hylid frog that was once among the most common amphibians in any part of its range. Today, it remains abundant in much of the southern portion of its range, but is now disappearing elsewhere. Our analysis of habitat characters observed across several states revealed interesting relationships of these factors with the abundance or presence of Blanchard’s Cricket Frog. Further, we later established two ½ acre ponds based on these relationships that led to immediate colonization of the ponds by cricket frogs followed by explosive production of juveniles less than a year later. Our findings suggest that habitat management for this species should specifically manage the shoreline grade and especially the aquatic floating vegetation to maximize population growth and sustenance. Introduction Conservation strategies are impaired when we lack a broad understanding of target’s natural history (Bury 2006; McCallum and McCallum 2006; Gilpin 1986).
    [Show full text]
  • NYSDEC Recovery Plan for NYS Populations of Northern Cricket Frog (Acris Crepitans)
    Recovery Plan for New York State Populations of the Northern Cricket Frog (Acris crepitans) Division of Fish, Wildlife & Marine Resources i TABLE OF CONTENTS Acknowledgments iv Executive summary v Introduction 1 Natural history --------------------------------------------------------------------------------------------- Taxonomic status 1 Physical description 2 Range 2 Breeding biology 2 Developmental biology 3 Non-breeding biology 4 Status Assessment ------------------------------------------------------------------------------------------ Population status and distribution 5 Threats to the species 6 Habitat loss and degradation 6 Upland habitat loss and degradation 7 Aquatic habitat loss and degradation 8 Other chemical pollutants 9 Climate change 10 Parasites and pathogens 11 Ultraviolet radiation 12 Non-native species 12 Assessment of current conservation efforts 13 Research and monitoring 13 Regulatory protection 14 Recovery Strategy ---------------------------------------------------------------------------------------- Goal 15 Strategy components 15 Recovery units 16 Recovery objectives 18 Recovery tasks 18 Monitoring tasks 19 Management tasks 19 Research tasks 20 Outreach tasks 21 Literature cited 22 Appendix I. Northern cricket frog Project screening process 42 Appendix II. Northern cricket frog Calling survey protocols 44 Appendix III. Population viability analysis 46 Appendix IV. Public comments and responses 66 iii Acknowledgments Thanks to Kelly McKean, Jason Martin and Kristen Marcell who provided significant review and
    [Show full text]
  • Amphibian Identifier 20
    21 MOLE SALAMANDERS Family Ambystomatidae Amphibian Identifier 20 Long-toed Salamander Tiger Salamander 19 Ambystoma macrodactylum Ambystoma mavortium • Yellow or olive-green stripe from head to tip HIND FOOT 18 • Dark spots and stripes often creating a net-like pattern; of tail; may be broken into a series of blotches may become relatively uniform in colour and spotted with age 1 • Fine white or bluish flecks on sides and legs • Broad and flat head, with small eyes 2 17 • Long fourth toe on each hind foot • Background colour: yellow-brown, grey, olive-green to black • Background colour: brownish-grey to black 3 • Total length: up to 25 cm 5 16 • Total length: up to 15 cm 4 Long-toed salamander 15 14 13 Tiger salamander 12 photo: John P. Clare photo: ACA, Kris Kendell 11 TRUE FROGS Family Ranidae 10 9 Northern Leopard Frog Wood Frog Columbia Spotted Frog Lithobates pipiens 8 Lithobates sylvaticus Rana luteiventris • White or cream-coloured ridges of skin (dorsolateral folds) • Dark eye mask extends from snout through eye, ending • Small irregular dark spots with light centers 7 along sides of back behind eardrum; contrasts sharply with whitish jaw stripe • Underside of hind legs and lower belly becomes • Large round or oval dark spots with light borders • Ridges of skin (dorsolateral folds) along sides of back orange-red or pinkish with age • Background colour: green to brown 6 • May have light stripe down middle of back • Ridges of skin (dorsolateral folds) or tan; rarely golden • Background colour: brown, pink-tan, olive-green, grey along sides of back • Body length: up to 13 cm 5 to almost black • Eyes positioned towards top of • Call: three or more snore-like sounds • Body length: up to 8 cm head and angled upwards followed by interspersed grunting and 4 • Call: series of short, raspy • Background colour: light to dark brown chuckling sounds duck-like quacking sounds • Body length: up to 10 cm 3 • Call: series of quick low-pitched click sounds 2 photo: ACA, Kris Kendell 1 photo: Twan Leenders photo: Richard D.
    [Show full text]
  • Density Dependence and Adult Survival Drive Dynamics in Two High Elevation Amphibian Populations
    diversity Article Density Dependence and Adult Survival Drive Dynamics in Two High Elevation Amphibian Populations Amanda M. Kissel 1,*, Simone Tenan 2 and Erin Muths 3 1 Conservation Science Partners, 11050 Pioneer Trail, Suite 202, Truckee, CA 96161, USA 2 National Research Council, Institute of Marine Sciences (CNR-ISMAR), Arsenale, Tesa 104, Castello 2737/F, 30122 Venezia, Italy; [email protected] 3 U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave. Bldg C, Fort Collins, CO 80526, USA; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 11 December 2020; Published: 15 December 2020 Abstract: Amphibian conservation has progressed from the identification of declines to mitigation, but efforts are hampered by the lack of nuanced information about the effects of environmental characteristics and stressors on mechanistic processes of population regulation. Challenges include a paucity of long-term data and scant information about the relative roles of extrinsic (e.g., weather) and intrinsic (e.g., density dependence) factors. We used a Bayesian formulation of an open population capture-recapture model and >30 years of data to examine intrinsic and extrinsic factors regulating two adult boreal chorus frogs (Pseudacris maculata) populations. We modelled population growth rate and apparent survival directly, assessed their temporal variability, and derived estimates of recruitment. Populations were relatively stable (geometric mean population growth rate >1) and regulated by negative density dependence (i.e., higher population sizes reduced population growth rate). In the smaller population, density dependence also acted on adult survival. In the larger population, higher population growth was associated with warmer autumns.
    [Show full text]
  • Identifying Priority Ecoregions for Amphibian Conservation in the U.S. and Canada
    Acknowledgements This assessment was conducted as part of a priority setting effort for Operation Frog Pond, a project of Tree Walkers International. Operation Frog Pond is designed to encourage private individuals and community groups to become involved in amphibian conservation around their homes and communities. Funding for this assessment was provided by The Lawrence Foundation, Northwest Frog Fest, and members of Tree Walkers International. This assessment would not be possible without data provided by The Global Amphibian Assessment, NatureServe, and the International Conservation Union. We are indebted to their foresight in compiling basic scientific information about species’ distributions, ecology, and conservation status; and making these data available to the public, so that we can provide informed stewardship for our natural resources. I would also like to extend a special thank you to Aaron Bloch for compiling conservation status data for amphibians in the United States and to Joe Milmoe and the U.S. Fish and Wildlife Service, Partners for Fish and Wildlife Program for supporting Operation Frog Pond. Photo Credits Photographs are credited to each photographer on the pages where they appear. All rights are reserved by individual photographers. All photos on the front and back cover are copyright Tim Paine. Suggested Citation Brock, B.L. 2007. Identifying priority ecoregions for amphibian conservation in the U.S. and Canada. Tree Walkers International Special Report. Tree Walkers International, USA. Text © 2007 by Brent L. Brock and Tree Walkers International Tree Walkers International, 3025 Woodchuck Road, Bozeman, MT 59715-1702 Layout and design: Elizabeth K. Brock Photographs: as noted, all rights reserved by individual photographers.
    [Show full text]
  • Blanchard Cricket Frog (Acris Blanchardi)
    COSEWIC Status Appraisal Summary on the Blanchard’s Cricket Frog Acris blanchardi in Canada ENDANGERED 2011 COSEWIC status appraisal summaries are working documents used in assigning the status of wildlife species suspected of being at risk in Canada. This document may be cited as follows: COSEWIC. 2011. COSEWIC status appraisal summary on the Blanchard’s Cricket Frog Acris blanchardi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge David M. Green for writing the status appraisal summary on the Blanchard’s Cricket Frog Acris blanchardi in Canada, prepared under contract with Environment Canada. This status appraisal summary was overseen and edited by Ronald J. Brooks, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Sommaire du statut de l’espèce du COSEPAC sur le rainette grillon de Blanchard (Acris blanchardi) au Canada. ©Her Majesty the Queen in Right of Canada, 2011. Catalogue No. CW69-14/2-13-2011E-PDF ISBN 978-1-100-18722-8 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2011 Common name Blanchard's Cricket Frog Scientific name Acris blanchardi Status Endangered Reason for designation This small frog is widespread, but declining rapidly, in the U.S. In Canada, it is known only from extreme southwest Ontario.
    [Show full text]