Texto Completo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Birmingham Milky Way Satellites Shining Bright In
University of Birmingham Milky way satellites shining bright in gravitational waves Roebber, Elinore; Buscicchio, Riccardo; Vecchio, Alberto; Moore, Christopher J.; Klein, Antoine; Korol, Valeriya; Toonen, Silvia; Gerosa, Davide; Goldstein, Janna; Gaebel, Sebastian M.; Woods, Tyrone E. DOI: 10.3847/2041-8213/ab8ac9 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Roebber, E, Buscicchio, R, Vecchio, A, Moore, CJ, Klein, A, Korol, V, Toonen, S, Gerosa, D, Goldstein, J, Gaebel, SM & Woods, TE 2020, 'Milky way satellites shining bright in gravitational waves', Astrophysical Journal Letters, vol. 894, no. 2, L15. https://doi.org/10.3847/2041-8213/ab8ac9 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. -
Archaeologic Inspection of the Milky Way Using Vibrations of a Fossil Seismic, Spectroscopic and Kinematic Characterization of a Binary Metal-Poor Halo Star
Department of Physics and Astronomy Bachelor thesis in Physics, 15 credits Archaeologic inspection of the Milky Way using vibrations of a fossil Seismic, spectroscopic and kinematic characterization of a binary metal-poor Halo star Amanda Bystr¨om Supervisor: Marica Valentini Subject reader: Andreas Korn Examiner: Matthias Weiszflog Spring semester 2020 In collaboration with Leibniz-Institut fur¨ Astrophysik Potsdam Abstract - English The Milky Way has undergone several mergers with other galaxies during its lifetime. The mergers have been identified via stellar debris in the Halo of the Milky Way. The practice of mapping these mergers is called galactic ar- chaeology. To perform this archaeologic inspection, three stellar features must be mapped: chemistry, kinematics and age. Historically, the latter has been difficult to determine, but can today to high degree be determined through as- teroseismology. Red giants are well fit for these analyses. In this thesis, the red giant HE1405-0822 is completely characterized, using spectroscopy, asteroseis- mology and orbit integration, to map its origin. HE1405-0822 is a CEMP-r/s enhanced star in a binary system. Spectroscopy and asteroseismology are used in concert, iteratively to get precise stellar parameters, abundances and age. Its kinematics are analyzed, e.g. in action and velocity space, to see if it belongs to any known kinematical substructures in the Halo. It is shown that the mass accretion that HE1405-0822 has undergone has given it a seemingly younger age than probable. The binary probably transfered C- and s-process rich matter, but how it gained its r-process enhancement is still unknown. It also does not seem like the star comes from a known merger event based on its kinematics, and could possibly be a heated thick disk star. -
Kinematics of Antlia 2 and Crater 2 from the Southern Stellar Stream Spectroscopic Survey (S5)
Draft version September 23, 2021 Typeset using LATEX twocolumn style in AASTeX63 Kinematics of Antlia 2 and Crater 2 from The Southern Stellar Stream Spectroscopic Survey (S5) Alexander P. Ji ,1, 2, 3 Sergey E. Koposov ,4, 5, 6 Ting S. Li ,1, 7, 8, 9 Denis Erkal ,10 Andrew B. Pace ,11 Joshua D. Simon ,1 Vasily Belokurov ,5 Lara R. Cullinane ,12 Gary S. Da Costa ,12, 13 Kyler Kuehn ,14, 15 Geraint F. Lewis ,16 Dougal Mackey ,12 Nora Shipp ,2, 3 Jeffrey D. Simpson ,17, 13 Daniel B. Zucker ,18, 19 Terese T. Hansen 20, 21 And Joss Bland-Hawthorn 16, 13 (S5 Collaboration) 1Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA 2Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637, USA 3Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 4Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK 5Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 7Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 8Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto ON, M5S 3H4, Canada 9NHFP Einstein Fellow 10Department of Physics, University of Surrey, Guildford GU2 7XH, UK 11McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, -
N° PUBLICACIÓN FACULTAD DEPARTAMENTO Bellorin, J; Droguett, B
Publicaciones 2019 Web of Science (WoS), según Journal Citation Reports: N° PUBLICACIÓN FACULTAD DEPARTAMENTO Bellorin, J; Droguett, B. Point-particle solution and the asymptotic flatness in 2+1D Horava 1 Cs. Básicas Depto. Física gravity PHYSICAL REVIEW D 100, 064021 (2019) Bellorin, J. Phenomenologically viable gravitational theory based on a 2 Cs. Básicas Depto. Física preferred foliation without extra modes General Relativity and Gravitation (2019) 51:133. Turek, O.; Goyeneche, D. 3 A generalization of circulant Hadamard and conference matrices Cs. Básicas Depto. Física Linear Algebra and its Applications, 2019; 569: 241-265 Appleby, M.; Bengtsson, I.; Flammia, S.; Goyeneche, D. 4 Tight frames, Hadamard matrices and Zauner’s conjecture Cs. Básicas Depto. Física J. Phys. A: Math. Theor., 2019; 52, 295301 (26pp) Cervera-Lierta, A; Latorre, J.I.; Goyeneche, D. 5 Quantum circuits for maximally entangled states Cs. Básicas Depto. Física PHYSICAL REVIEW A, 2019; 100, 022342 Sunil Kumar Maurya, Francisco Tello-Ortiz 6 Charged anisotropic strange stars in general relativity. Cs. Básicas Depto. Física The European Physical Journal C, 2019; 79:33 S. K. Maurya, Francisco Tello-Ortiz Generalized relativistic anisotropic compact star models by 7 Cs. Básicas Depto. Física gravitational decoupling. Eur. Phys. J. C, 2019; 79:85 Franciscto Tello-Ortiz, S.K Maurya, Abdelghani Errehymy, Ksh. Newton Singh & Mohamed Daoud 8 Anisotropic relativistic fluid spheres: an embedding class I approach Cs. Básicas Depto. Física Eur. Phys. J. C, 2019 Vol. 79; 885 Bhar, Piyali; Singh, Ksh. Newton; Tello-Ortiz, Francisco Compact star in Tolman-Kuchowicz spacetime in the background of 9 Cs. Básicas Depto. Física Einstein-Gauss-Bonnet gravity Eur. -
Observational Aspects of Globular Cluster and Halo Stars in the GALAH Survey
THE UNIVERSITY OF NEW SOUTH WALES DOCTORAL THESIS Observational aspects of globular cluster and halo stars in the GALAH survey Student: Supervisor: Mohd Hafiz MOHD SAADON Associate Professor Sarah MARTELL A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Physics Faculty of Science The University of New South Wales 12 March 2021 i ii iii iv Declaration of Authorship I, Mohd Hafiz MOHD SAADON, declare that this thesis titled, “Observational aspects of globular cluster and halo stars in the GALAH survey” and the work presented in it are my own. I confirm that: • This work was done wholly or mainly while in candidature for a research degree at this University. • Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly at- tributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help. Signed: Date: v “In loving memory of my grandmothers, Ramlah and Halijah, who wished to see me this far but could not be here anymore.” – your grandson. “To Amani, my sweet little angel, this thesis is your sibling.” – your father. vi THE UNIVERSITY OF NEW SOUTH WALES Abstract Doctor of Philosophy Observational aspects of globular cluster and halo stars in the GALAH survey by Mohd Hafiz MOHD SAADON This thesis is a study of the observational aspects of globular cluster and halo stars in the Galactic Archaeology with HERMES (GALAH) survey. -
Vasily Belokurov Institute of Astronomy, Cambridge Based on Torrealba Et Al. 2019 What Controls the Size of a (Dwarf) Galaxy?
Antlia 2 The hidden giant Vasily Belokurov Institute of Astronomy, Cambridge based on Torrealba et al. 2019 What controls the size of a (dwarf) galaxy? based on: size-luminosity + abundance matching (both highly non-linear) Kravtsov 2013 Stellar feedback? Navarro et al 1996 Mashchenko et al 2008 Pontzen & Governato 2012 Zolotov et al 2012 Madau et al 2014 Di Cintio et al 2014 Brooks & Zolotov 2014 Read, Agertz & Collins 2016 … Bullock & Boylan-Kolchin 2017 Gaia, the halo explorer • relatively bright magnitude limit, but • no weather • perfect star/galaxy separation • artifact rejection • whole sky • uniform(ish) quality • astrometry Prediction • “Our experiments suggest that Gaia will be able to detect UFDGs that are similar to some of the known UFDGs even if the limit of Gaia is around 2 mag brighter than that of SDSS, with the advantage of having a full-sky catalogue. We also see that Gaia could even find some UFDGs that have lower surface brightness than the SDSS limit” Gaia DR2 Galactic latitude Galactic longitude Galactic latitude Galactic longitude Galactic latitude Galactic longitude Gaia’s magic New satellite revealed by RR Lyrae - RR Lyrae with distances D > 70 kpc Archival deeper DECam imaging Distance to Antlia 2 Archival deeper DECam imaging Blue Horizontal Branch - distant RR Lyrae “standard candle” D=130 kpc Size and luminosity super mega ultra diffuse! Spectroscopic Follow-up confirmed members Antlia 2 dwarf Galactic foreground line-of-sight velocity 3D motion + metallicity Kinematics PM expected if Ant 2 moves in the direction -
Arxiv:2007.05011V2 [Astro-Ph.GA] 17 Aug 2020 Laboration Et Al
Draft version August 19, 2020 Typeset using LATEX twocolumn style in AASTeX63 Revised and new proper motions for confirmed and candidate Milky Way dwarf galaxies Alan W. McConnachie1 and Kim A. Venn2 1NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, B.C., Canada, V9E 2E7 2Physics & Astronomy Department, University of Victoria, 3800 Finnerty Rd, Victoria, B.C., Canada, V8P 5C2 ABSTRACT A new derivation of systemic proper motions of Milky Way satellites is presented, and applied to 59 confirmed or candidate dwarf galaxy satellites using Gaia Data Release 2. This constitutes all known Milky Way dwarf galaxies (and likely candidates) as of May 2020 except the Magellanic Clouds, the Canis Major and Hydra 1 stellar overdensities, and the tidally disrupting Bootes III and Sagittarius dwarf galaxies. We derive systemic proper motions for the first time for Indus 1, DES J0225+0304, Cetus 2, Pictor 2 and Leo T, but note that the latter three rely on photometry that is of poorer quality than for the rest of the sample. We cannot resolve a signal for Bootes 4, Cetus 3, Indus 2, Pegasus 3, or Virgo 1. Our method is inspired by the maximum likelihood approach of Pace & Li(2019) and examines simultaneously the spatial, color-magnitude, and proper motion distribution of sources. Systemic proper motions are derived without the need to identify confirmed radial velocity members, although the proper motions of these stars, where available, are incorporated into the analysis through a prior on the model. The associated uncertainties on the systemic proper motions are on average a factor of ∼ 1:4 smaller than existing literature values. -
Blanco Decam Bulge Survey (BDBS) II: Project Performance, Data Analysis, and Early Science Results
MNRAS 499, 2357–2379 (2020) doi:10.1093/mnras/staa2393 Advance Access publication 2020 September 3 Blanco DECam Bulge Survey (BDBS) II: project performance, data analysis, and early science results Christian I. Johnson ,1‹ Robert Michael Rich ,2 Michael D. Young,3 Iulia T. Simion,4 William I. Clarkson,5 Catherine A. Pilachowski,6 Scott Michael,6 Andrea Kunder,7 Andreas Koch8 and Anna Katherina Vivas 9 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA 3Indiana University, University Information Technology Services, CIB 2709 E 10th Street, Bloomington, IN 47401 USA 4Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai 200030, China Downloaded from https://academic.oup.com/mnras/article/499/2/2357/5900983 by guest on 23 October 2020 5Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Rd. Dearborn, MI 48128, USA 6Indiana University Department of Astronomy, SW319, 727 E 3rd Street, Bloomington, IN 47405 USA 7Saint Martin’s University, 5000 Abbey Way SE, Lacey, WA 98503, USA 8Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Astronomisches Rechen-Institut, Monchhofstr.¨ 12, D-69120 Heidelberg, Germany 9Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603 La Serena, Chile Accepted 2020 August 6. Received 2020 August 6; in original form 2019 December 9 ABSTRACT The Blanco DECam Bulge Survey (BDBS) imaged more than 200 sq deg of the Southern Galactic bulge using the ugrizY filters of the Dark Energy Camera, and produced point spread function photometry of approximately 250 million unique sources. -
Arxiv:1812.04999V1 [Astro-Ph.GA] 12 Dec 2018 Density Lying Well Inside the Bulge, And, If Proved to Be Genuine Clusters, Most Are Expected to Be of Low Mass
Draft version December 13, 2018 Preprint typeset using LATEX style AASTeX6 v. 1.0 A SEQUOIA IN THE GARDEN: FSR 1758 - DWARF GALAXY OR GIANT GLOBULAR CLUSTER? a Rodolfo H. Barba´1, Dante Minniti2,3,4, Douglas Geisler5,1,7, Javier Alonso-Garc´ıa6,3, Maren Hempel2, Antonela Monachesi7,1, Julia I. Arias1, Facundo A. Gomez´ 7,1 1Departamento de F´ısica y Astronom´ıa, Universidad de La Serena, Avenida Juan Cisternas 1200, La Serena, Chile. 2Depto. de Ciencias F´ısicas,Facultad de Ciencias Exactas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago, Chile. 3Millennium Institute of Astrophysics, Av. Vicuna Mackenna 4860, 782-0436, Santiago, Chile. 4Vatican Observatory, V00120 Vatican City State, Italy. 5Departamento de Astronomia, Casilla 160-C, Universidad de Concepcion, Chile. 6Centro de Astronom´ıa(CITEVA), Universidad de Antofagasta, Av. Angamos 601, Antofagasta, Chile. 7Instituto de Investigaci´onMultidisciplinar en Ciencia y Tecnolog´ıa,Universidad de La Serena, Ra´ulBitr´an1305, La Serena, Chile. ABSTRACT We present the physical characterization of FSR 1758, a new large, massive object very recently discovered in the Galactic Bulge. The combination of optical data from the 2nd Gaia Data Release (GDR2) and the DECam Plane Survey (DECaPS), and near-IR data from the VISTA Variables in the V´ıaL´acteaExtended Survey (VVVX) led to a clean sample of likely members. Based on this integrated dataset, position, distance, reddening, size, metallicity, absolute magnitude, and proper motion of this object are measured. We estimate the following parameters: α = 17 : 31 : 12, δ = −39 : 48 : 30 (J2000), D = 11:5 ± 1:0 kpc, E(J − Ks) = 0:20 ± 0:03 mag, Rc = 10 pc, Rt = 150 −1 −1 pc,[F e=H] = −1:5 ± 0:3 dex, Mi < −8:6 ± 1:0, µα = −2:85 mas yr , and µδ = 2:55 mas yr . -
Partitioning the Galactic Halo with Gaussian Mixture Models
Research in Astron. Astrophys. Vol.0 (20xx) No.0, 000–000 Research in http://www.raa-journal.org http://www.iop.org/journals/raa Astronomy and (LATEX: 2020-0400.tex; printed on January 11, 2021; 13:55) Astrophysics Partitioning the Galactic Halo with Gaussian Mixture Models Xi-Long Liang1;2, Yu-Qin Chen2;1, Jing-Kun Zhao2;1 and Gang Zhao2;1 1 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China 2 CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences,Beijing 100101, China; [email protected] Received 2020 November 6; accepted 2021 January 5 Abstract The Galactic halo is supposed to form from merging with nearby dwarf galax- ies. In order to probe different components of the Galactic halo, we have applied the Gaussian Mixture Models method to a selected sample of metal poor stars with [Fe/H] < −0:7 dex in the APOGEE DR16 catalogue based on four-parameters, metallicity, [Mg/Fe] ratio and spatial velocity (VR, Vφ). Nine groups are identified with four from the halo (group 1, 3, 4 and 5), one from the thick disk (group 6), one from the thin disk (group 8) and one from dwarf galaxies (group 7) by analyzing their distributions in the ([M/H], [Mg/Fe]), (VR, Vφ), (Zmax, eccentricity), (Energy, Lz) and ([Mg/Mn], [Al/Fe]) coordinates. The rest two groups are respectively caused by observational effect (group 9) and the cross section component (group 2) between the thin disk and the thick disk. It is found that in the extremely outer accreted halo (group 1), stars born in the Milky Way can not be distinguished from those accreted from other galaxies either chemically or kine- matically. -
Dynamical Modelling of Stellar Systems in the Gaia Era
Dynamical modelling of stellar systems in the Gaia era Eugene Vasiliev Institute of Astronomy, Cambridge Synopsis Overview of dynamical modelling Overview of the Gaia mission Examples: Large Magellanic Cloud Globular clusters Measurement of the Milky Way gravitational potential Fred Hoyle vs. the Universe What does \dynamical modelling" mean? It does not refer to a simulation (e.g. N-body) of the evolution of a stellar system. Most often, it means \modelling a stellar system in a dynamical equilibrium" (used interchangeably with \steady state"). vs. the Universe What does \dynamical modelling" mean? It does not refer to a simulation (e.g. N-body) of the evolution of a stellar system. Most often, it means \modelling a stellar system in a dynamical equilibrium" (used interchangeably with \steady state"). Fred Hoyle What does \dynamical modelling" mean? It does not refer to a simulation (e.g. N-body) of the evolution of a stellar system. Most often, it means \modelling a stellar system in a dynamical equilibrium" (used interchangeably with \steady state"). Fred Hoyle vs. the Universe 3D Steady-state assumption =) Jeans theorem: f (x; v)= f I(x; v;Φ) observations: 3D { 6D integrals of motion (≤ 3D?), e.g., I = fE; L;::: g Why steady state? Distribution function of stars f (x; v; t) satisfies [sometimes] the collisionless Boltzmann equation: @f (x; v; t) @f (x; v; t) @Φ(x; t) @f (x; v; t) + v − = 0: @t @x @x @v Potential , mass distribution @f (x; v; t) ; t ; t ; t + @t 3D observations: 3D { 6D integrals of motion (≤ 3D?), e.g., I = fE; L;::: -
Thesis Derives from Three Projects Conducted Dur- Ing My Ph.D, Focusing on Both the Milky Way and the Magellanic Clouds
GALACTICSTRUCTUREWITHGIANTSTARS james richard grady Corpus Christi College University of Cambridge March 2021 This dissertation is submitted for the degree of Doctor of Philosophy James Richard Grady: Galactic Structure with Giant Stars, Corpus Christi College University of Cambridge, © March 2021 ABSTRACT The content of this thesis derives from three projects conducted dur- ing my Ph.D, focusing on both the Milky Way and the Magellanic Clouds. I deploy long period variables, especially Miras, as chronome- ters to study the evolution of Galactic structure over stellar age. I study red giants in the Magellanic Clouds, assign them photometric metallicities and map large scale trends both in their chemistry and proper motions. In Chapter 1 I provide an overview of the historical observations that underpin our current understanding of the Galactic components. Specifically, I detail those pertaining to the Galactic bulge, the Galactic disc and the Magellanic Clouds as it is these that constitute the main focus of the work in this thesis. In Chapter 2 I collate a sample of predominately oxygen-rich Mira variables and show that gradients exists in their pulsation period pro- files through the Galaxy. Under the interpretation that the period of Miras correlates inversely with their stellar age, I find age gradients consistent with the inside-out disc formation scenario. I develop such analysis further in Chapter 3: seizing on the Miras provided by Gaia DR2, I observe them to trace the Galactic bulge/bar and disc. With the novel ability to slice both components chronolog- ically at once, the old disc is seen to be stubby; radially constricted and vertically extended.