ABSTRACT SECOND ORDER PYRAMIDAL SLIP in ZINC SINGLE CRYSTALS K. H. Adams,* R. C. Blish and T. Vreeland, Jr. W. M. Keck Laborator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Aspects of Cross-Slip Mechanisms in Metals and Alloys Daniel Caillard, J.L
Some aspects of cross-slip mechanisms in metals and alloys Daniel Caillard, J.L. Martin To cite this version: Daniel Caillard, J.L. Martin. Some aspects of cross-slip mechanisms in metals and alloys. Journal de Physique, 1989, 50 (18), pp.2455-2473. 10.1051/jphys:0198900500180245500. jpa-00211074 HAL Id: jpa-00211074 https://hal.archives-ouvertes.fr/jpa-00211074 Submitted on 1 Jan 1989 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. Phys. France 50 (1989) 2455-2473 15 SEPTEMBRE 1989, 2455 Classification Physics Abstracts 62.20H Some aspects of cross-slip mechanisms in metals and alloys D. Caillard (1) and J. L. Martin (2) (1) Laboratoire d’Optique Electronique du CNRS, B.P. 4347, F-31055 Toulouse Cedex, France (2) Institut de Génie Atomique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland (Reçu le 6 mars 1989, accepté sous forme définitive le 24 mai 1989) Résumé. 2014 Des modèles ont été proposés pour décrire le glissement dévié des dislocations dans les métaux de structure CFC et HC. On montre comment ces modèles se sont développés et comment des résultats expérimentaux récents confirment leurs prédictions. -
Dislocations and Plastic Deformation in Mgo Crystals: a Review
Dislocations and Plastic Deformation in MgO Crystals: A Review Jonathan Amodeo, Sébastien Merkel, Christophe Tromas, Philippe Carrez, Sandra Korte-Kerzel, Patrick Cordier, Jérome Chevalier To cite this version: Jonathan Amodeo, Sébastien Merkel, Christophe Tromas, Philippe Carrez, Sandra Korte-Kerzel, et al.. Dislocations and Plastic Deformation in MgO Crystals: A Review. Crystals, MDPI, 2018, 8 (6), pp.1-53. 10.3390/cryst8060240. hal-01807690 HAL Id: hal-01807690 https://hal.archives-ouvertes.fr/hal-01807690 Submitted on 5 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License crystals Review Dislocations and Plastic Deformation in MgO Crystals: A Review Jonathan Amodeo 1,* ID ,Sébastien Merkel 2,3 ID , Christophe Tromas 4 ID , Philippe Carrez 2 ID , Sandra Korte-Kerzel 5, Patrick Cordier 2 ID and Jérôme Chevalier 1 1 Université de Lyon, INSA-Lyon, CNRS, MATEIS UMR5510, F-69621 Villeurbanne, France; [email protected] 2 Université de Lille, CNRS, INRA, ENSCL, -
Mechanisms in Creep and Anelastic Recovery of Face- Centered Cubic Alloys
Review: mechanisms in creep and anelastic recovery of face- centered cubic alloys Kun Gao MT 11.14 Supervisor: Dr.ir. Hans van Dommelen Eindhoven University of Technology Department of mechanical engineering 1 Abstract In order to understand anelastic recovery behavior of Al-Cu thin films in RF-MEMS, this literature report firstly reviews creep behavior of face-centered cubic (f.c.c.) alloys and corresponding mechanisms including grain boundary sliding, dislocation glide and climb. In addition, the Orowan process, the Friedel process and thermal detachment, which are important in precipitate- strengthened alloys, are also discussed. Then, relations between these mechanisms and the anelastic recovery are investigated. In the second part, some creep models based on the mechanisms in the first part are presented. The conclusions of this report are as follows: grain boundary sliding due to diffusion is not involved in the anelastic recovery; dislocation glide encumbered by the Orowan stress and the Friedel stress is a possible mechanism in the room-temperature anelastic recovery; the driving force may originate from unbowing of bowed dislocations and dislocation pile-up. At high temperature, dislocation climb may determine creep rate due to active diffusion. Besides climbing, dislocations can also bypass particles by cross-slip, which will occur if internal stress increases, and thermal detachment that appears to be strong for small particles. For modeling the anelasitc behavior, the power law is very flexible and it is feasible to include some internal variables for the sake of a stronger physical meaning. In addition, building up direct relations between the strain rate and internal variables is also a good choice. -
Deformation of Single Crystals
Deformation of Single Crystals When a single crystal is deformed under a tensile stress, it is observed that plastic deformation occurs by slip on well‐defined parallel crystal planes. Sections of the crystal slide relative to one another, changing the geometry of the sample as shown in the diagram. Slip always occurs on a particular set of crystallographic planes, known as slip planes. Slip always takes place along a consistent set of directions within these planes –these are called slip directions. The combination of slip plane and slip direction together makes up a slip system. Slip systems are usually specified using the Miller index notation. For example, cubic close‐packed metals slip on 1 1 0{} 1 1 1 The slip direction must lie in the slip plane. Slip occurs by dislocation motion. To move dislocations, a certain stress must be applied to overcome the resistance to dislocation motion. Slip occurs when the shear stress acting in the slip direction on the slip plane reaches some critical value. This critical shear stress is related to the stress required to move dislocations across the slip plane. The tensile yield stress of a material is the applied stress required to start plastic deformation of the material under a tensile load. We want to relate the tensile stress applied to a sample to the shear stress that acts along the slip direction. resolved_____actingforce on slipF cos planeλ F τ = =cos =φ λ cos=cos σ φ cos λ R area of___ slip plane A A cosφ It is found that the value of τR at which slip occurs in a given material with specified dislocation density and purity is a constant, known as the critical resolved shear stress τC. -
Effects of Selected Minor Alloying Additions on the Structure And
ABSTRACT AN ABSTRACT OF THE THESIS OF GEORGE J. DOOLEY III for the Doctor of Philosophy in Materials Science presented on May 7, 1969. Title: Effects of Selected Minor Alloying Additions on the Structure and Deformation Characteristics of Beryllium Abstract approved: William D. McMullen Solid solution alloying was employed in an attempt to produce some relatively ductile form of beryllium. If the c/a ratio could be significantly altered, it was felt new or different slip systems could be activated. The following elements were selected on the basis of atomic size, melting point, crystal structure and density for adding to beryllium in amounts of 0. 5, 1.0, 2.0, 3.0, 4.0, 5.0 and 10.0 atomic percentages: boron, manganese and, titanium. All samples were non -consumable arc melted, machined and sectioned for wet chemical, spectrographic, X -ray diffraction and metal - lographic analysis as well as for mechanical (compression) testing. These tests showed all alloy samples exceeded the solubility limits in each respective system. Be4_5B, Be8Mn and Be12Ti'were identified as the second phases in the individual systems. Beryllium -boron alloys ex- hibited an eutectic or peritectic reaction and the eutectic composition in the beryllium -manganese system was established at 22.0 weight percent manganese. The samples Be /0. 5B, Be /1.0Mn and Be /0. 5Ti gave yield strengths of 47, 200 psi, 56, 600 psi and 81, 250 psi respectively in compression testing. These same specimens yielded work hardening rates of 1.07 x 106 psi, 1.3 x 106 psi and 1. 52 x 106 psi respectively.