A Matrix-Based Approach to the Image Moment Problem

Total Page:16

File Type:pdf, Size:1020Kb

A Matrix-Based Approach to the Image Moment Problem A Matrix-Based Approach to the Image Moment Problem JUDIT MARTINEZ, JOSEP M. PORTA and FEDERICO THOMAS Insitut de Rob`otica i Inform`atica Industrial (CSIC-UPC), Llorens Artigas 4-6, 08028 Barcelona, Spain {porta,thomas}@iri.upc.edu Abstract. An image can be seen as an element of a vector space and hence it can be expressed in as a linear combination of the elements of any non necessarily orthogonal basis of this space. After giving a matrix formulation of this well-known fact, this paper presents a reconstruction method of an image from its moments that sheds new light on this inverse problem. Two main contributions are presented: (a) the results using the standard approach based on the least squares approximation of the result using orthogonal polynomials can also be obtained using matrix pseudoinverses, which implies higher control on the numerical stability of the problem; and (b) it is possible to use basis functions in the reconstruction different from orthogonal polynomials, such as Fourier or Haar basis, allowing to introduce constraints relative to the bandwidth or the spatial resolution on the image to be reconstructed. Keywords: The moment problem, image moments, moment-invariant image approximations, basis selec- tion. 1. Introduction reconstructing an image from estimates of its mo- ments. In [13], the moment problem has also arisen A very common problem in physics and engineer- when approximating an image to simplify it. In ing is known under the general title of “the mo- this work, a finite number of moments are used to ment problem” [18]. Corresponding to some fi- reconstruct an approximation of the Fourier coeffi- nite number of observations, we are given a set cients of the corresponding image. Unfortunately, of moments –the integrals of various given func- images are not treated as 2D discrete functions. tions with respect to the measure. Since these Instead, using a zigzag scan, they are converted moments will not determine the measure uniquely, into a linear form. the problem consists in deciding which is the best The reconstruction of an image from a set of its estimate. In pure mathematics, this problem dates moments is not necessarily unique. In other words, back to Theodor Stieltjes who proposed it in a pa- it is an ill-posed problem. Therefore, all possible per published in 1894. His work on the moment methods to solve it must impose extra constraints problem was continued and extended primarily by so that the solution becomes unique. Hausdorff and Hamburger. For classical overviews The standard reconstruction method of an image of the subject, including comprehensive historical from some of its moments is based on the least- attributions of classical results, see [1] or [16]. A squares approximation of the image using orthog- more recent survey of the wide range of approaches onal polynomials [17, 15, 12]. Polynomials are the to the problem, including applications, is [5]. most straightforward choice among all possible or- This paper is concerned with the moment prob- thogonal basis functions because they can be eas- lem for images or, more precisely, with the prob- ily related to the multinomial functions that are lem of reconstructing an image from a set of its used to obtain the geometric moments. Legendre geometric moments. and Zernike polynomials were first used in [17]. The moment problem for images arises in sev- They are orthogonal polynomials for continuous eral applications. In [11], the problem of inverting variables in rectangular and polar coordinates, re- the Radon transform is reformulated into that of spectively. However, they are not orthogonal for 1 2 Submitted to the International Journal of Mathematical Imaging and Vision discrete variables, contrary to what is assumed by matrices are always embraced by parenthesis when some authors [15, 6]. Tchebichef polynomials were superscripts refer to power or transpose. used in [8] and [12] which are orthogonal polynomi- Any discrete image of size a b, say Iab, can als in the discrete domain. Independently of the be seen as a vector in a×b or, alternatively,× as a chosen set of polynomials, the standard method bidimensional functionℜ that maps all the points of assumes null projection coefficients onto the cho- the uniform lattice 1, 2,...,a 1, 2,...,b onto { }×{ } sen polynomial set of order higher than the maxi- real values. Then, Iab can be uniquely expressed mum order of available moments. This solves the as a linear combination of the functions of a basis ill-posesness and the solution becomes unique. In set, i.e., a set containing ab linearly independent order to avoid this assumption, which is difficult bidimensional functions, which will be denoted by kl to interpret in terms of the image properties, a the set Ξab , so that maximum entropy method was proposed in [14]. { } It consists in obtaining the image with maximum a b kl kl entropy with the desired moments. Solving the Iab = α Ξab. k l problem using Lagrange multipliers permits to ob- X=1 X=1 tain an explicit form of the reconstructed image in To avoid in what follows this double summation terms of an exponential function. Alternatively, in the formulation of the problem, we introduce a [10] proposes minimizing the divergence of the im- matrix-based formulation, but first we need some age, instead of maximizing its entropy, using also definitions. a variational approach. Unfortunately, both ap- proaches assume a continuous domain for the im- Definition 1 (Basis matrix). The functions in age. any basis set are assumed to be separable and In this paper, we propose a reconstruction kl equally defined for both coordinates, i.e., Ξab = method that permits introducing constraints that k l t k l φa(φb) , where φa and φb are vectors which can be interpreted in terms of image properties, will be grouped in matrices of the form Φab = such as bandwidth or spatial resolution. We also 1 b (φa,..., φa) called basis matrices. show how the standard least-squares reconstruc- a tion method can be seen as a particular case of Definition 2 (Gram matrix). The matrix Γb = t it. First, we introduce the necessary mathematical (Φab) Φab, containing the inner products between background. Section 3. reformulates the standard the elements of the corresponding basis matrix, is method in terms of the presented formalism. Sec- called a Gram matrix. tion 4. generalizes the result to other orthogonal a k l bases different from polynomials. Finally, section Note that, since Γb [k, l] = φa, φa , the Gram h i 5. contains the conclusions and prospects for fu- matrices are diagonal for orthogonal basis sets and ture research. the identity for orthonormalized basis. Definition 3 (Projection matrix). The matrix 2. Mathematical background containing the projection coefficients of image Iab kl onto the first m n elements of Ξab are called 2.1. Notation and definitions projection matrices× , which can{ be expressed} as m t Ω Φ t I Φ . Let zm denote a column vector, z its trans- mn = ( am) ab bn ∈ ℜ m pose, and zm[k], with k = 1,...,m, each of its el- kl k t l m×n Note that Ωmn[k, l] = Iab, Ξab = (φa) Iab φb. ements. Likewise, let Zmn denote a ma- h i ∈ ℜ Image Iab can be approximated in terms of the trix of size m n and Zmn[k, l], its element (k, l), × first m n elements of Ξkl by where k = 1,...,m and l = 1,...,n. For simplic- × { ab } ity, square matrices will only have one subscript. m n Superscripts are used to denote any parameter on ˆmn kl kl t Iab = λ Ξab = Φam Λmn (Φbn) , which a matrix depends. Two unary matrix opera- k=1 l=1 tions are used: ( )t denotes the transpose of a given X X −·1 kl matrix; and ( ) , its inverse. To avoid confusions, where m a, n b, and Λmn[k, l] = λ . · ≤ ≤ Submitted to the International Journal of Mathematical Imaging and Vision 3 Definition 4 (Expansion matrix). If the image approximation coefficients λkl are chosen so that the truncation error is minimized using the least- Iab squares error criterion, Λmn is called an expan- sion matrix. mn Iab 2.2. A Theorem Lemma 1. The approximation of image Iab, in the least-squares sense, can be expressed in terms ˆImn of the projection matrix Ωmn as ab ˆmn t Iab = Φam Λmn (Φbn) a −1 b −1 t = Φam (Γm) Ωmn (Γn) (Φbn) t −1 = Φam ((Φam) Φam) t −1 t Ωmn ((Φbn) Φbn) (Φbn) Figure 1: Lemma 1 permits to obtain the best approx- mn imation, ˆIab , of image Iab in the least-squares sense, = (Φ )− Ω (Φ )+, am mn bn contained in the subspace represented by the plane in gray, that is, its orthogonal projection onto this sub- where ( )− and ( )+ stand for the left and right space. Theorem 1 is a generalization of this lemma Moore-Penrose· pseudoinverses.· mn that permits to obtain the image Iab contained in kl other subspaces, here represented by a white plane, Proof. Since λ is chosen so that the truncation mn mn that also projects orthogonally onto ˆIab . Both Iab error is minimized according to the least-squares mn and ˆIab preserve the first m × n moments of Iab. error criterion, the subspaces generated by the er- ror and that in which the approximated image is contained are orthogonal. That is, There are infinite images, not only Iab, that lead to the same projection matrix, Ωmn, resulting ij t Ξab, Iab Φam Λmn (Φbn) = 0, from projecting them onto the first m n elements h − i kl × of the basis Ξab . The above lemma permits to for i = 1,...,m and j = 1,...,n.
Recommended publications
  • Matrix-Valued Moment Problems
    Matrix-valued moment problems A Thesis Submitted to the Faculty of Drexel University by David P. Kimsey in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics June 2011 c Copyright 2011 David P. Kimsey. All Rights Reserved. ii Acknowledgments I wish to thank my advisor Professor Hugo J. Woerdeman for being a source of mathematical and professional inspiration. Woerdeman's encouragement and support have been extremely beneficial during my undergraduate and graduate career. Next, I would like to thank Professor Robert P. Boyer for providing a very important men- toring role which guided me toward a career in mathematics. I owe many thanks to L. Richard Duffy for providing encouragement and discussions on fundamental topics. Professor Dmitry Kaliuzhnyi-Verbovetskyi participated in many helpful discussions which helped shape my understanding of several mathematical topics of interest to me. In addition, Professor Anatolii Grinshpan participated in many useful discussions gave lots of encouragement. I wish to thank my Ph.D. defense committee members: Professors Boyer, Lawrence A. Fialkow, Grinshpan, Pawel Hitczenko, and Woerde- man for pointing out any gaps in my understanding as well as typographical mistakes in my thesis. Finally, I wish to acknowledge funding for my research assistantship which was provided by the National Science Foundation, via the grant DMS-0901628. iii Table of Contents Abstract ................................................................................ iv 1. INTRODUCTION ................................................................
    [Show full text]
  • Geometry of the Pfaff Lattices 3
    GEOMETRY OF THE PFAFF LATTICES YUJI KODAMA∗ AND VIRGIL U. PIERCE∗∗ Abstract. The (semi-infinite) Pfaff lattice was introduced by Adler and van Moerbeke [2] to describe the partition functions for the random matrix models of GOE and GSE type. The partition functions of those matrix models are given by the Pfaffians of certain skew-symmetric matrices called the moment matrices, and they are the τ-functions of the Pfaff lattice. In this paper, we study a finite version of the Pfaff lattice equation as a Hamiltonian system. In particular, we prove the complete integrability in the sense of Arnold-Liouville, and using a moment map, we describe the real isospectral varieties of the Pfaff lattice. The image of the moment map is a convex polytope whose vertices are identified as the fixed points of the flow generated by the Pfaff lattice. Contents 1. Introduction 2 1.1. Lie algebra splitting related to SR-factorization 2 1.2. Hamiltonian structure 3 1.3. Outline of the paper 5 2. Integrability 6 2.1. The integrals Fr,k(L) 6 2.2. The angle variables conjugate to Fr,k(L) 10 2.3. Extended Jacobian 14 3. Matrix factorization and the τ-functions 16 3.1. Moment matrix and the τ-functions 17 3.2. Foliation of the phase space by Fr,k(L) 21 3.3. Examples from the matrix models 22 4. Real solutions 23 arXiv:0705.0510v1 [nlin.SI] 3 May 2007 4.1. Skew-orthogonal polynomials 23 4.2. Fixed points of the Pfaff flows 26 4.3.
    [Show full text]
  • Pre-Publication Accepted Manuscript
    Peter Forrester, Shi-Hao Li Classical discrete symplectic ensembles on the linear and exponential lattice: skew orthogonal polynomials and correlation functions Transactions of the American Mathematical Society DOI: 10.1090/tran/7957 Accepted Manuscript This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a \Recently Published Article" before being placed in an issue. That electronically published article will become the Version of Record. This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record. The Version of Record is accessible to everyone five years after publication in an issue. CLASSICAL DISCRETE SYMPLECTIC ENSEMBLES ON THE LINEAR AND EXPONENTIAL LATTICE: SKEW ORTHOGONAL POLYNOMIALS AND CORRELATION FUNCTIONS PETER J. FORRESTER AND SHI-HAO LI Abstract. The eigenvalue probability density function for symplectic invariant random matrix ensembles can be generalised to discrete settings involving either a linear or exponential lattice. The corresponding correlation functions can be expressed in terms of certain discrete, and q, skew orthogonal polynomials respectively. We give a theory of both of these classes of polynomials, and the correlation kernels determining the correlation functions, in the cases that the weights for the corresponding discrete unitary ensembles are classical.
    [Show full text]
  • Representational Models: a Common Framework for Understanding Encoding, Pattern-Component, and Representational-Similarity Analysis
    Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis Jörn Diedrichsen1 & Nikolaus Kriegeskorte2 1. Brain and Mind Institute, Western University, Canada 2. Cognitive and Brain Sciences Unit, Cambridge University, UK Abstract Representational models explain how activity patterns in populations of neurons (or, more generally, in multivariate brain activity measurements) relate to sensory stimuli, motor actions, or cognitive processes. In an experimental context, representational models can be defined as probabilistic hypotheses about what profiles of activations across conditions are likely to be observed. We describe three methods to test such models – encoding models, pattern component modeling (PCM), and representational similarity analysis (RSA). We show that these methods are closely related in that they all evaluate the statistical second moment of the activity profile distribution. Using simulated data from three different fMRI experiments, we compare the power of the approaches to adjudicate between competing representational models. PCM implements a likelihood-ratio test and therefore constitutes the most powerful test if its assumptions hold. However, the other two approaches – when conducted appropriately – can perform similarly. In encoding approaches, the linear model needs to be appropriately regularized, which imposes a prior on the activity profiles. Without such a prior, encoding approaches do not test well-defined representational models. In RSA, the unequal variances and dependencies of the distance measures can be taken into account using a multi-normal approximation to the sampling distribution of the distance measures, so as to enable optimal inference. Each of the three techniques renders different information explicit (e.g. single response tuning in encoding models and population representational dissimilarity in RSA) and has specific advantages in terms of computational demands, ease of use, and extensibility.
    [Show full text]
  • A Panorama of Positivity
    A PANORAMA OF POSITIVITY ALEXANDER BELTON, DOMINIQUE GUILLOT, APOORVA KHARE, AND MIHAI PUTINAR Abstract. This survey contains a selection of topics unified by the concept of positive semi-definiteness (of matrices or kernels), reflecting natural constraints imposed on discrete data (graphs or networks) or continuous objects (probability or mass distributions). We put empha- sis on entrywise operations which preserve positivity, in a variety of guises. Techniques from harmonic analysis, function theory, operator theory, statistics, combinatorics, and group representations are invoked. Some partially forgotten classical roots in metric geometry and distance transforms are presented with comments and full bibliographical refer- ences. Modern applications to high-dimensional covariance estimation and regularization are included. Contents 1. Introduction 2 2. From metric geometry to matrix positivity 4 2.1. Distance geometry 4 2.2. Spherical distance geometry 6 2.3. Distance transforms 6 2.4. Altering Euclidean distance 8 2.5. Positive definite functions on homogeneous spaces 11 2.6. Connections to harmonic analysis 15 3. Entrywise functions preserving positivity in all dimensions 18 Date: November 13, 2019. 2010 Mathematics Subject Classification. 15-02, 26-02, 15B48, 51F99, 15B05, 05E05, arXiv:1812.05482v3 [math.CA] 12 Nov 2019 44A60, 15A24, 15A15, 15A45, 15A83, 47B35, 05C50, 30E05, 62J10. Key words and phrases. metric geometry, positive semidefinite matrix, Toeplitz ma- trix, Hankel matrix, positive definite function, completely monotone functions, absolutely monotonic functions, entrywise calculus, generalized Vandermonde matrix, Schur polyno- mials, symmetric function identities, totally positive matrices, totally non-negative matri- ces, totally positive completion problem, sample covariance, covariance estimation, hard / soft thresholding, sparsity pattern, critical exponent of a graph, chordal graph, Loewner monotonicity, convexity, and super-additivity.
    [Show full text]
  • New Publications Offered by The
    New Publications Offered by the AMS To subscribe to email notification of new AMS publications, please go to http://www.ams.org/bookstore-email. Algebra and Algebraic Introduction Geometry to Orthogonal, Symplectic and Unitary The Schrödinger Representations of Model for the Minimal Finite Groups Representation of the Carl R. Riehm, McMaster Indefinite Orthogonal University, Hamilton, ON, Group O(p; q) Canada, and The Fields Institute, Toronto, ON, Canada Toshiyuki Kobayashi, University of Tokyo, Japan, and Gen Mano, Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of PricewaterhouseCoopers Aarata, mathematics—linear representations of finite groups, and the Tokyo, Japan theory of quadratic, skew symmetric and Hermitian forms—and thus inherit some of the characteristics of both. Contents: Introduction; Two models of the minimal representation of O(p; q); K-finite eigenvectors in the Schrödinger model L2(C); This book is written as an introduction to the subject and not as an Radial part of the inversion; Main theorem; Bessel distributions; encyclopaedic reference text. The principal goal is an exposition of Appendix: special functions; Bibliography; List of Symbols; Index. the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the “classical” Memoirs of the American Mathematical Society, Volume 213, fields—algebraically closed, real closed, finite, local and global. A Number 1000 detailed exposition of the background material needed is given in August 2011, 132 pages, Softcover, ISBN: 978-0-8218-4757-2, the first chapter. 2010 Mathematics Subject Classification: 22E30; 22E46, 43A80, It was A.
    [Show full text]
  • RANK SHIFT CONDITIONS and REDUCTIONS of 2D-TODA THEORY 3 Expressed in Terms of the Cauchy Two-Matrix Model
    RANK SHIFT CONDITIONS AND REDUCTIONS OF 2D-TODA THEORY SHI-HAO LI AND GUO-FU YU Abstract. This paper focuses on different reductions of 2-dimensional (2d-)Toda hierarchy. Symmetric and skew symmetric moment matrices are firstly considered, resulting in the differ- ential relations between symmetric/skew symmetric tau functions and 2d-Toda’s tau functions respectively. Furthermore, motivated by the Cauchy two-matrix model and Bures ensemble from random matrix theory, we study the rank one shift condition in symmetric case and rank two shift condition in skew symmetric case, from which the C-Toda hierarchy and B-Toda hierarchy are found, together with their special Lax matrices and integrable structures. 1. Introduction The studies in random matrix theory and classic integrable systems promote the development of both communities, and the orthogonal polynomials play an important role to connect these two totally different subjects. For example, in [17, §2], it is shown that these polynomials can lead to an iso-spectral flow of the Toda lattice, while the normalisation factors of the orthogonal polynomials can be expressed in terms of the partition function of the unitary invariant Hermitian matrix model. Later on, several novel random matrix models have been found in the course of doing analysis of the classical integrable systems. An example is the appearance of the Cauchy two-matrix model. This model was proposed in the studies of the peakon solutions of the Degasperis-Procesi equation and its related Hermite-Padé approximation problem [34]. To some extent, the relation between random matrix and integrable system can be described in terms of the partition function and tau functions.
    [Show full text]
  • Sums of Squares, Moment Matrices and Optimization Over Polynomials
    SUMS OF SQUARES, MOMENT MATRICES AND OPTIMIZATION OVER POLYNOMIALS MONIQUE LAURENT∗ May 8, 2008 Abstract. We consider the problem of minimizing a polynomial over a semialge- braic set defined by polynomial equations and inequalities, which is NP-hard in general. Hierarchies of semidefinite relaxations have been proposed in the literature, involving positive semidefinite moment matrices and the dual theory of sums of squares of poly- nomials. We present these hierarchies of approximations and their main properties: asymptotic/finite convergence, optimality certificate, and extraction of global optimum solutions. We review the mathematical tools underlying these properties, in particular, some sums of squares representation results for positive polynomials, some results about moment matrices (in particular, of Curto and Fialkow), and the algebraic eigenvalue method for solving zero-dimensional systems of polynomial equations. We try whenever possible to provide detailed proofs and background. Key words. positive polynomial, sum of squares of polynomials, moment problem, polynomial optimization, semidefinite programming. AMS(MOS) subject classifications. 13P10, 13J25, 13J30, 14P10, 15A99, 44A60, 90C22, 90C30. Contents 1 Introduction...............................158 1.1 The polynomial optimization problem . 159 1.2 Thescopeofthispaper . .161 1.3 Preliminaries on polynomials and semidefinite programs . 162 1.4 Contentsofthepaper . .166 2 Algebraic preliminaries . 166 2.1 Polynomial ideals and varieties . 166 2.2 The quotient algebra R[x]/I .................169 2.3 Gr¨obner bases and standard monomial bases . 171 2.4 Solving systems of polynomial equations . 173 3 Positive polynomials and sums of squares . 178 3.1 Somebasicfacts ........................178 3.2 Sums of squares and positive polynomials: Hilbert’s result . 178 3.3 Recognizing sums of squares of polynomials .
    [Show full text]
  • Arxiv:2006.16213V4 [Math.FA] 9 Jan 2021 41,4B4(Secondary)
    TOTALLY POSITIVE KERNELS, POLYA´ FREQUENCY FUNCTIONS, AND THEIR TRANSFORMS ALEXANDER BELTON, DOMINIQUE GUILLOT, APOORVA KHARE, AND MIHAI PUTINAR Abstract. The composition operators preserving total non-negativity and total pos- itivity for various classes of kernels are classified, following three themes. Letting a function act by post composition on kernels with arbitrary domains, it is shown that such a composition operator maps the set of totally non-negative kernels to itself if and only if the function is constant or linear, or just linear if it preserves total positiv- ity. Symmetric kernels are also discussed, with a similar outcome. These classification results are a byproduct of two matrix-completion results and the second theme: an extension of A.M. Whitney’s density theorem from finite domains to subsets of the real line. This extension is derived via a discrete convolution with modulated Gauss- ian kernels. The third theme consists of analyzing, with tools from harmonic analysis, the preservers of several families of totally non-negative and totally positive kernels with additional structure: continuous Hankel kernels on an interval, P´olya frequency functions, and P´olya frequency sequences. The rigid structure of post-composition transforms of totally positive kernels acting on infinite sets is obtained by combining several specialized situations settled in our present and earlier works. Contents 1. Introduction and main results 2 2. Preliminaries and overview 7 3. Total non-negativity preservers 9 4. Total-positivity preservers. I. Semi-finite domains 14 5. Total-positivity preservers are continuous 22 6. Extensions of Whitney’s approximation theorem 24 7. Totally non-negative and totally positive Hankel kernels 30 arXiv:2006.16213v4 [math.FA] 9 Jan 2021 8.
    [Show full text]
  • Lecture 1: Bivariate Linear Model
    Covariance Structure Analysis (LISREL) Professor Ross L. Matsueda Lecture Notes Do not copy, quote, or cite without permission LECTURE 1: MOMENTS AND PARAMETERS IN A BIVARIATE LINEAR STRUCTURAL MODEL I PRELIMINARIES: STRUCTURAL EQUATION MODELS. II. POPULATION MOMENTS AND PARAMETERS. III. CORRELATIONS AND STANDARDIZED COEFFICIENTS. IV. ESTIMATION AND TESTING. I. PRELIMINARIES: STRUCTURAL EQUATION MODELS This course is about the use of structural equation models for examining social phenomena. There are four basic principles involved: 1. Assume we can characterize a social phenomenon by a set of random variables. A random variable is one whose values or outcomes are governed by a probability distribution. A set of random variables have joint outcomes, which are governed by a joint probability distribution. We characterize this joint distribution by observable moments (means, variances, and covariances). 2. We assume that some underlying causal structure or model generates observed moments (covariances) The underlying structural model represents our (parsimonious) theory of the phenomenon. The model generates the data (joint distribution of random variables), which we characterize by observed moments. The parameters of the model are assumed to be invariant: they are somewhat stable over time and only change when there is true social change. The causal structure can be expressed in linear structural equations and path diagrams. Hence the terms, "covariance structure analysis," "path analysis" and "structural equation models." 3. Given observed population moments, we could compute population parameters of our structural model (assuming the model is identified). 4. However, we lack access to population moments, and therefore, we cannot compute population parameters. Instead, we have access only to sample moments.
    [Show full text]
  • A Geometric and Topological Viewpoint
    IOP Journal of Physics A: Mathematical and Theoretical J. Phys. A: Math. Theor. Journal of Physics A: Mathematical and Theoretical J. Phys. A: Math. Theor. 51 (2018) 353001 (39pp) https://doi.org/10.1088/1751-8121/aacecf 51 Topical Review 2018 © 2018 IOP Publishing Ltd Fifty years of the fnite nonperiodic Toda lattice: a geometric and topological JPHAC5 viewpoint 353001 Yuji Kodama1,3 and Barbara A Shipman2 Y Kodama and B A Shipman 1 Department of Mathematics, Ohio State University, Columbus, OH 43210, United States of America 2 Department of Mathematics, The University of Texas at Arlington, Arlington, TX Fifty years of the fnite nonperiodic Toda lattice TX 76010, United States of America E-mail: [email protected] and [email protected] Printed in the UK Received 26 January 2018, revised 20 June 2018 JPA Accepted for publication 25 June 2018 Published 23 July 2018 10.1088/1751-8121/aacecf Abstract In 1967, Japanese physicist Morikazu Toda published a pair of seminal papers in the Journal of the Physical Society of Japan that exhibited soliton solutions to a chain of particles with nonlinear interactions between nearest neighbors. In the ffty years that followed, Toda’s system of particles has been generalized in different directions, each with its own analytic, geometric, and topological 1751-8121 characteristics. These are known collectively as the Toda lattice. This survey recounts and compares the various versions of the fnite nonperiodic Toda lattice from the perspective of their geometry and topology. In particular, we highlight the polytope structure of the solution spaces as viewed through the moment map, and we explain the connection between the real indefnite Toda fows and the integral cohomology of real fag varieties.
    [Show full text]
  • Sums of Squares, Moment Matrices and Optimization Over Polynomials
    SUMS OF SQUARES, MOMENT MATRICES AND OPTIMIZATION OVER POLYNOMIALS MONIQUE LAURENT∗ Updated version: February 6, 2010 Abstract. We consider the problem of minimizing a polynomial over a semialge- braic set defined by polynomial equations and inequalities, which is NP-hard in general. Hierarchies of semidefinite relaxations have been proposed in the literature, involving positive semidefinite moment matrices and the dual theory of sums of squares of poly- nomials. We present these hierarchies of approximations and their main properties: asymptotic/finite convergence, optimality certificate, and extraction of global optimum solutions. We review the mathematical tools underlying these properties, in particular, some sums of squares representation results for positive polynomials, some results about moment matrices (in particular, of Curto and Fialkow), and the algebraic eigenvalue method for solving zero-dimensional systems of polynomial equations. We try whenever possible to provide detailed proofs and background. Key words. positive polynomial, sum of squares of polynomials, moment problem, polynomial optimization, semidefinite programming AMS(MOS) subject classifications. 13P10, 13J25, 13J30, 14P10, 15A99, 44A60, 90C22, 90C30 Contents 1 Introduction............................... 3 1.1 The polynomial optimization problem . 4 1.2 Thescopeofthispaper .................... 6 1.3 Preliminaries on polynomials and semidefinite programs . 7 1.3.1 Polynomials ..................... 7 1.3.2 Positive semidefinite matrices . 8 1.3.3 Flat extensions of matrices . 9 1.3.4 Semidefinite programs . 9 1.4 Contentsofthepaper ..................... 11 2 Algebraic preliminaries . 11 2.1 Polynomial ideals and varieties . 11 2.2 The quotient algebra R[x]/I ................. 14 2.3 Gr¨obner bases and standard monomial bases . 16 2.4 Solving systems of polynomial equations .
    [Show full text]