Platforms for Biomarker Analysis Using High- Throughput Approaches In

Total Page:16

File Type:pdf, Size:1020Kb

Platforms for Biomarker Analysis Using High- Throughput Approaches In UNIT 2. BIOMARKERS: PRACTICAL ASPECTS CHAPTER 7. Platforms for biomarker analysis using high- throughput approaches in UNIT 2 CHAPTER 7 CHAPTER genomics, transcriptomics, proteomics, metabolomics, and bioinformatics B. Alex Merrick, Robert E. London, Pierre R. Bushel, Sherry F. Grissom, and Richard S. Paules Summary Global biological responses that transcriptomics, proteomics and ultimate aim of genomic platforms reflect disease or exposure biology metabolomics that can be performed is to fully map this landscape to are kinetic and highly dynamic at a cell-, tissue-, or organism- more completely describe all of phenomena. While high-throughput wide basis. Bioinformatics is the the biological interactions within a DNA sequencing continues to discipline that derives knowledge living system, during disease and drive genomics, the possibility of from the large quantity and diversity toxicity, and define the behaviour more broadly measuring changes of biological, genetic, genomic and and relationships of all the in gene expression has been a gene expression data by integrating components of a biological system. recent development manifested by computer science, mathematics, The development of databases and a diversity of technical platforms. statistics and graphic arts. Gene, knowledge bases will support the Such technologies measure protein and metabolite expression integration of data from multiple transcripts, proteins and small profiles can be thought of as domains, as well as computational biological molecules, or metabolites, snapshots of the current, poorly- modelling. This chapter will and respectively define the fields of mapped molecular landscape. The describe the technical platform Unit 2 • Chapter 7. Platforms for biomarker analysis using high-throughput approaches 121 in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics methods involving DNA sequencing, genomes that allow comparison of the genetic blueprint of an individual mass spectrometry, nuclear genetic organization, evolution and is relatively static, the various levels magnetic resonance combined function. Nearly 300 genomes have of gene expression to form and with separation systems, and been completely sequenced and operate a complex organism are bioinformatics to derive genomic range from unicellular organisms, dynamically regulated, structurally and gene expression data and like E. coli and S. cervisiae, to complex and spatially determined. include the relevant bioinformatic model invertebrate organisms, such At any point in time, only a portion tools for analysis. These genomic, as Drosophila melanogaster and of a genome is expressed in or omics platforms should have C. elegans, to several mammalian specific cells and tissues. At the wide application to epidemiological species for which the completed mRNA level of gene expression, the studies. and ongoing genome projects are all transcriptome represents all genes available online (3). transcribed at any one moment, and Introduction Although the conception of the the proteome is the complement of idea for sequencing the human proteins making up cells and tissues. The sequencing of the human genome is relatively recent, the Small molecules and metabolites genome stands as one of the major project could not have occurred comprise the metabolome. The scientific achievements of the without the preceding decades global study of each gene expression twentieth century. It embodies a of biological and technological level is suffixed with “omics,” such defining moment in modern biology developments. Particularly as transcriptomics, proteomics and by which most high-throughput noteworthy of these contributions are metabolomics. Figure 7.1 suggests technologies are compared for size early cytogenetics and chromosomal a sequence of gene expression scope, and complexity. Beginning in studies at the beginning of the based on genomic DNA sequences 1990, it took roughly a decade for the twentieth century by Morgan and that are dynamically reflected in first draft of the human genome to colleagues, the discovery of DNA changes of transcripts, proteins be completed. By 2003, about 99% structure by Watson and Crick in and metabolites. Each level of of all gene-containing regions were 1953, DNA cloning in 1973 by Berg gene expression (represented by described, numbering about 20 500 and Cohen, the DNA sequencing upward, curved, dotted lines) has genes (1), although some regions of reaction in 1975 by Sanger, reverse the opportunity to feed back and the genome, such as centromeres, transcriptase in 1970 and restriction influence other levels reflective telomeres and gene deserts, endonucleases in 1971, and the of highly integrated, multicellular continue to undergo characterization polymerase chain reaction (PCR) processes in cells, tissues and and study. Data from the human by Mullis in 1983 (4). A new century organisms. Studies of each gene genome project has provided a now begins with an era of “omics,” expression area utilize very generalized human map of the those fields describing a multitude of different technical platforms to three billion nucleotides comprising genomic functions aimed at further maximize large scale coverage of the DNA of a few human subjects. deciphering the biological meaning the transcriptome, proteome and However, studies on the variations of sequences in the human genome. metabolome. Technical platforms (polymorphisms) in human DNA The purpose of this chapter is may involve mass parallel analysis sequences are currently underway; to describe the technical platforms using robotics, miniaturization, samples from 270 individuals of in genomics, transcriptomics, automation and computer multiethnic backgrounds are being proteomics, metabolomics and processing. The integration of the used in a consortium called the bioinformatics that could be useful many levels of gene expression is International HapMap Project for in epidemiologic studies. These often referred to as systems biology haplotype mapping (http://www. analytical platforms favour high by bioinformatics or computational hapmap.org) (2). The goal is to sample throughput and generation biology. Bioinformatics represents identify the patterns of single of large data sets. an applied field of mathematics to nucleotide polymorphism (SNP) biochemistry and molecular biology groups, called haplotypes or haps, Omes and omics using statistics, computer science among individual human beings. In and artificial intelligence to design addition, interpretation of the human Gene expression constantly algorithms to derive biological genome has been greatly enhanced changes during health, adaptation, meaning from gene expression by the DNA sequencing of many other toxicity, disease and aging. While data. 122 Figure 7.1. The interdependence of the cellular metabolome, proteome, transcriptome, chromosomal aberrations and and genome. Each type of characterization provides a functional indication of the mutations that affect phenotype. activity of the proceeding set of molecules (solid lines). Conversely, there will be DNA sequencing does have inherent some degree of feedback regulation built into the system (dotted lines). advantages in achieving single- base resolution and importantly for de novo analysis of samples without the prior knowledge of existing DNA sequence required for fabricated sequence platforms (8). New sequencing technologies that are high-throughput and low-cost while maintaining high accuracy and completeness are in continued development (9). New UNIT 2 platforms often integrate real-time (RT) PCR and may incorporate 7 CHAPTER microelectrophoresis, sequencing by hybridization, mass spectrometry, high-density oligonucleotide arrays, or incorporation of nanopore technology to bring within sight the goal of routine human genome sequencing (10) for personalized medicine (11). There are several alternatives to whole-genome assessment of chromosomal abnormalities that do not involve traditional DNA sequencing. Alternative platforms involve selective genotyping of very focused genomic loci (short Genomics such as those in p53 in the Li- sections of DNA) that are potentially Fraumeni syndrome (5) and ATM in related to disease susceptibility. Chromosomal abnormalities are ataxia telangiectasia (6), have been Haplotype mapping data have responsible for many developmental found by sectional resequencing been extremely useful in providing defects and malignancies, and of genomic DNA or PCR-amplified candidate genomic regions with high include rearrangements in genomic DNA or RNA. However, de novo polymorphic variation. Hundreds DNA or changes in copy number, sequencing of individuals using of thousands of loci can be very such as deletions, duplications automated Sanger-based capillary rapidly genotyped using BeadArray and amplifications. Identification of electrophoresis systems has so far platforms, a technology based genomic changes and mutations been practical for only small regions upon direct hybridization of whole- that underlie disease rely on of the human genome-containing genome-amplified (WGA) genomic comparisons of DNA sequences candidate genes. DNA to BeadArrays of locus- between affected and unaffected Recent advances in nucleic specific, 50mer oligonucleotide individuals. Finding disease- acid sequencing technologies using sequences (12). As such, genome- causing chromosomal abnormalities massive parallel sequencing, called wide association studies (GWAS) by genomic analysis is confounded next-generation sequencing,
Recommended publications
  • Technical Considerations and Protocol Optimization for Neonatal Salivary Biomarker Discovery and Analysis
    PERSPECTIVE published: 26 January 2021 doi: 10.3389/fped.2020.618553 Technical Considerations and Protocol Optimization for Neonatal Salivary Biomarker Discovery and Analysis Elizabeth Yen 1,2, Tomoko Kaneko-Tarui 1 and Jill L. Maron 1,2* 1 Mother Infant Research Institute at Tufts Medical Center, Boston, MA, United States, 2 Division of Newborn Medicine, Tufts Children’s Hospital, Boston, MA, United States Non-invasive techniques to monitor and diagnose neonates, particularly those born prematurely, are a long-sought out goal of Newborn Medicine. In recent years, technical advances, combined with increased assay sensitivity, have permitted the high-throughput analysis of multiple biomarkers simultaneously from a single sample source. Multiplexed transcriptomic and proteomic platforms, along with more comprehensive assays such as RNASeq, allow for interrogation of ongoing physiology and pathology in unprecedented ways. In the fragile neonatal population, saliva is an ideal biofluid to assess clinical status serially and offers many advantages over more Edited by: invasively obtained blood samples. Importantly, saliva samples are amenable to analysis Diego Gazzolo, SS Annunziata Polyclinic Hospital, on emerging proteomic and transcriptomic platforms, even at quantitatively limited Chieti, Italy volumes. However, biomarker targets are often degraded in human saliva, and as a mixed Reviewed by: source biofluid containing both human and microbial targets, saliva presents unique Anne Lee Solevåg, challenges for the investigator. Here, we provide insight into technical considerations Akershus University Hospital, Norway Trent E. Tipple, and protocol optimizations developed in our laboratory to quantify and discover neonatal University of Oklahoma Health salivary biomarkers with improved reproducibility and reliability. We will detail insights Sciences Center, United States learned from years of experimentation on neonatal saliva within our laboratory ranging *Correspondence: Jill L.
    [Show full text]
  • Exploring the Transcriptome for Novel Biomarker Discovery AMP-AD Biomarker Pilot Study
    Exploring the transcriptome for novel biomarker discovery AMP-AD Biomarker Pilot Study Nilüfer Ertekin-Taner, MD, PhD Professor of Neurology and Neuroscience Mayo Clinic Florida Spring ADC Meeting May 2nd, 2019 ©2016 MFMER | slide-1 AMP-AD Team Mayo Clinic Florida Banner Sun Health Nilüfer Ertekin Taner, MD, PhD Tom Beach, MD Steven G. Younkin, MD, PhD Dennis Dickson, MD New York Genomics Center (WGS) Minerva Carrasquillo, PhD Mariet Allen, PhD Mayo Clinic Genomics Core Joseph Reddy, PhD Bruce Eckloff (RNASeq) Xue Wang, PhD Julie Cunningham, PhD (GWAS) Kim Malphrus Thuy Nguyen Mayo Clinic Bioinformatics Core Sarah Lincoln Asha Nair, PhD University of Florida Mayo Clinic Epigenomics Development Todd Golde, MD, PhD. Laboratory Jada Lewis, Ph.D. Tamas Ordog, MD Paramita Chakrabarty, PhD Jeong-Hong Lee, PhD Yona Levites, PhD Mayo Clinic IT Institute for Systems Biology Andy Cook Nathan Price, PhD Curt Younkin Cory Funk, PhD Hongdong Li, PhD Mayo Clinic Study of Aging Paul Shannon Ronald Petersen, MD, PhD *AMP-AD consortium* ©2016 MFMER | slide-2 Overarching Goal A System Approach to Targeting Innate Immunity in AD (U01 AG046193) To identify and validate targets within innate immune signaling, and other pathways that can provide disease- modifying effects in AD using a multifaceted systems level approach. ©2016 MFMER | slide-3 AMP-AD Phase I Original Aim 1: To detect Original Aim 2: To assess AD Original Aim 3: To Original Aim 4: To transcript alterations in innate risk conferred by variants in manipulate innate determine outcome of immunity genes in mice and innate immunity genes from immune states in gene manipulation in humans.
    [Show full text]
  • Emerging Role and Recent Applications of Metabolomics Biomarkers in Obesity Disease Cite This: RSC Adv.,2017,7, 14966 Research
    RSC Advances View Article Online REVIEW View Journal | View Issue Emerging role and recent applications of metabolomics biomarkers in obesity disease Cite this: RSC Adv.,2017,7, 14966 research Aihua Zhang,a Hui Suna and Xijun Wang*ab Metabolomics is a promising approach for the identification of metabolites which serve for early diagnosis, prediction of therapeutic response and prognosis of disease. Obesity is becoming a major health concern in the world. The mechanisms underlying obesity have not been well characterized; obviously, more sensitive biomarkers for obesity diseases are urgently needed. Fortunately, metabolomics – the systematic study of metabolites, which are small molecules generated by the process of metabolism – has been important in elucidating the pathways underlying obesity-associated co-morbidities. The endogenous metabolites have key roles in biological systems and represent attractive candidates to understand obesity phenotypes. Novel metabolite markers are crucial to develop diagnostics for obesity related metabolic disorders. Received 26th December 2016 Creative Commons Attribution 3.0 Unported Licence. Metabolomics allows unparalleled opportunities to seize the molecular mechanisms of obesity and Accepted 28th February 2017 obesity-related diseases. In this review, we discuss the current state of metabolomic analysis of obesity DOI: 10.1039/c6ra28715h diseases, and also highlight the potential role of key metabolites in assessing obesity disease and explore rsc.li/rsc-advances the interrelated pathways. 1. Introduction
    [Show full text]
  • Apply Proteomic Approaches to Biomarker Discovery Proteomics for Biomarker Discovery
    Apply Proteomic Approaches to Biomarker Discovery Proteomics for Biomarker Discovery Why is it important to discover biomarkers? Biomarkers are biological substances that can be measured and quantified as indicators for objective assessment of physiological processes, therapeutic outcomes, environmental exposure, or pharmacologic responses to a certain drug. Biomarker discovery has many excellent outcomes: ◆ Provides specific information about the ◆ Allows clinicians to predict or monitor presence of a certain disease or disease stage. drug efficacy. ◆ Allows researchers to evaluate the safety or ◆ Confirms a drug’s pharmacological or efficacy of a particular drug in development. biological mechanism of action and helps minimize the safety risks. Figure 1. Potential use of biomarkers. Proteomics in biomarker discovery Typical molecular biomarkers include proteins, genetic mutations, aberrant methylation patterns, abnormal transcripts, miRNAs, and other biological molecules. Protein biomarkers are considered to be reliable indicators of the disease state and clinical outcome as they are the endpoint of biological processes. Remarkable innovations in proteomic technologies in the last years have greatly accelerated the process of biomarker discovery. 45-1 Ramsey Road, Shirley, NY 11967, USA www.creative-proteomics.com Tel: 1-631-275-3058 Fax: 1-631-614-7828 Email: [email protected] Proteomics for Biomarker Discovery ◆ Proteomes and proteomics Proteomes represent the network of interactions between genetic background and environmental factors. They may be considered as molecular signatures of disease, involving small circulating proteins or peptide chains from degraded molecules in various disease states. Proteomics is the study of the proteome including protein identification and quantification, and detection of protein-protein or protein-nucleic acid interactions, and post-translational modifications.
    [Show full text]
  • Biomarkers and Disease Severity in Children with Community-Acquired Pneumonia Todd A
    Biomarkers and Disease Severity in Children With Community-Acquired Pneumonia Todd A. Florin, MD, MSCE,a Lilliam Ambroggio, PhD, MPH,b Cole Brokamp, PhD,c,d Yin Zhang, MS,c,d Mantosh Rattan, MD,e,f Eric Crotty, MD,e,f Michael A. Belsky, MS,g Sara Krueger, BA,f Thomas N. Epperson, IV, BA,h Andrea Kachelmeyer, BS,d,i Richard Ruddy, MD,d,i Samir S. Shah, MD, MSCEd,j BACKGROUND: Host biomarkers predict disease severity in adults with community-acquired abstract pneumonia (CAP). We evaluated the association of the white blood cell (WBC) count, absolute neutrophil count (ANC), C-reactive protein (CRP), and procalcitonin with the development of severe outcomes in children with CAP. METHODS: We performed a prospective cohort study of children 3 months to 18 years of age with CAP in the emergency department. The primary outcome was disease severity: mild (discharged from the hospital), mild-moderate (hospitalized but not moderate-severe or severe), moderate-severe (eg, hospitalized with receipt of intravenous fluids, supplemental oxygen, complicated pneumonia), and severe (eg, intensive care, vasoactive infusions, chest drainage, severe sepsis). Outcomes were examined within the cohort with suspected CAP and in a subset with radiographic CAP. RESULTS: Of 477 children, there were no statistical differences in the median WBC count, ANC, CRP, or procalcitonin across severity categories. No biomarker had adequate discriminatory ability between severe and nonsevere disease (area under the curve [AUC]: 0.53–0.6 for suspected CAP and 0.59–0.64 for radiographic CAP). In analyses adjusted for age, antibiotic use, fever duration, and viral pathogen detection, CRP was associated with moderate-severe disease (odds ratio 1.12; 95% confidence interval, 1.0–1.25).
    [Show full text]
  • Metabolomics to Provide Biomarkers and Mechanistic Insights
    RTI International Metabolomics to Provide Biomarkers and Mechanistic Insights Susan Sumner, PhD Director NIH Eastern Regional Comprehensive Metabolomics Resource Core Systems and Translational Sciences Program RTI International [email protected] www.rti.org\rcmrc 919-541-7479 RTI International is a trade name of Research Triangle Institute. www.rti.org RTI International About RTI International . RTI is an independent not-for-profit research institute established in 1958 in Research Triangle Park, NC. RTI’s mission is to improve the human condition by turning knowledge into practice. RTI has 9 offices in the United States, 8 offices worldwide, and has projects in more than 40 countries. RTI is staffed with more than 4,000 employees working in health and pharmaceuticals, laboratory and chemistry services, advanced technology, statistics, international development, energy and the environment, education and training, and surveys. RTI has more than 800,000 square feet (ft2) of laboratory and office facilities in RTP, NC. The metabolomics facility in the Research Triangle Park consists of ~22,000 ft2 laboratory space. RTI International Metabolomics . Metabolomics involves the broad spectrum analysis of the low molecular weight complement of cells, tissues, or biological fluids. Metabolomics makes it feasible to uniquely profile the biochemistry of an individual, or system, apart from, or in addition to, the genome. – Metabon(l)omics is used to determine the pattern of changes (and related metabolites) arising from disease, dysfunction, disorder, or from the therapeutic or adverse effects of xenobiotics; including applications in plant and mammalian studies. This leading-edge method is now coming to the fore to reveal biomarkers for the early detection and diagnosis of disease, to monitor therapeutic treatments, and to provide insights into biological mechanisms.
    [Show full text]
  • S41598-018-25035-1.Pdf
    www.nature.com/scientificreports OPEN An Innovative Approach for The Integration of Proteomics and Metabolomics Data In Severe Received: 23 October 2017 Accepted: 9 April 2018 Septic Shock Patients Stratifed for Published: xx xx xxxx Mortality Alice Cambiaghi1, Ramón Díaz2, Julia Bauzá Martinez2, Antonia Odena2, Laura Brunelli3, Pietro Caironi4,5, Serge Masson3, Giuseppe Baselli1, Giuseppe Ristagno 3, Luciano Gattinoni6, Eliandre de Oliveira2, Roberta Pastorelli3 & Manuela Ferrario 1 In this work, we examined plasma metabolome, proteome and clinical features in patients with severe septic shock enrolled in the multicenter ALBIOS study. The objective was to identify changes in the levels of metabolites involved in septic shock progression and to integrate this information with the variation occurring in proteins and clinical data. Mass spectrometry-based targeted metabolomics and untargeted proteomics allowed us to quantify absolute metabolites concentration and relative proteins abundance. We computed the ratio D7/D1 to take into account their variation from day 1 (D1) to day 7 (D7) after shock diagnosis. Patients were divided into two groups according to 28-day mortality. Three diferent elastic net logistic regression models were built: one on metabolites only, one on metabolites and proteins and one to integrate metabolomics and proteomics data with clinical parameters. Linear discriminant analysis and Partial least squares Discriminant Analysis were also implemented. All the obtained models correctly classifed the observations in the testing set. By looking at the variable importance (VIP) and the selected features, the integration of metabolomics with proteomics data showed the importance of circulating lipids and coagulation cascade in septic shock progression, thus capturing a further layer of biological information complementary to metabolomics information.
    [Show full text]
  • A Metabolomics Approach to Pharmacotherapy Personalization
    Journal of Personalized Medicine Review A Metabolomics Approach to Pharmacotherapy Personalization Elena E. Balashova *, Dmitry L. Maslov and Petr G. Lokhov Institute of Biomedical Chemistry, Pogodinskaya St. 10, Moscow 119121, Russia; [email protected] (D.L.M.); [email protected] (P.G.L.) * Correspondence: [email protected] Received: 29 June 2018; Accepted: 3 September 2018; Published: 5 September 2018 Abstract: The optimization of drug therapy according to the personal characteristics of patients is a perspective direction in modern medicine. One of the possible ways to achieve such personalization is through the application of “omics” technologies, including current, promising metabolomics methods. This review demonstrates that the analysis of pre-dose metabolite biofluid profiles allows clinicians to predict the effectiveness of a selected drug treatment for a given individual. In the review, it is also shown that the monitoring of post-dose metabolite profiles could allow clinicians to evaluate drug efficiency, the reaction of the host to the treatment, and the outcome of the therapy. A comparative description of pharmacotherapy personalization (pharmacogenomics, pharmacoproteomics, and therapeutic drug monitoring) and personalization based on the analysis of metabolite profiles for biofluids (pharmacometabolomics) is also provided. Keywords: pharmacometabolomics; metabolomics; pharmacogenomics; therapeutic drug monitoring; personalized medicine; mass spectrometry 1. Introduction The uniformity of the drug response or low inter-individual differences in drug response are commonly accepted tenets in the field of medicine. Almost all drugs are prescribed on the basis of this statement. This approach can be described as treatment of the “average patient” by “the average pill” or “one size fits all”. However, clinicians have long observed that the actual effectiveness of the pharmacotherapy may be variable.
    [Show full text]
  • Biomarker Discovery Comprehensive Crownbio’S Programs
    Biomarker Discovery Increase your success rate by bridging discovery knowledge to clinical results Gain in-depth biological insights and make RATE data-informed trial decisions through Biomarker haracolo stud to Discovery. De-risk therapeutic development by assess and confir oA identifying robust and sensitive biomarkers early in drug development. Maximize your clinical success rate by incorporating biomarkers into your drug development programs. CrownBio’s comprehensive Biomarker Discovery enables you to: BUILD • Corroborate clinical-preclinical data. Statistical odels to interret haracolo data • Evaluate the predictive value of potential biomarkers. • Identify genomic and proteomic signatures corresponding to treatment response. • Rescue previously ‘unsuccessful’ drugs. • Improve patient stratification. Discover and validate biomarkers through our integrated platform encompassing: SCR AATE • Portfolio of well-characterized in vivo, ex vivo, and in vitro models as Hothesis ree ioarer discovery reliable, clinically relevant test systems for functional and efficacy evaluation. • Comprehensive menu of validated genomic and proteomic assays to understand drug MoA. • Extensive datasets collected over decades of research covering thousands of models, including growth curves, sequencing data, and pharmacological data including mouse clinical trials. • Proprietary bioinformatics solutions using in-house and public datasets OPTIMIZE enabling systematic analysis of genomics and proteomics. Clinical trial desin • Expert in-house team to assist with experimental design, high complexity analyses, and result interpretation. Contact Sales Schedule Scientific Consultation Additional Resources 1.0 Version US: +1.855.827.6968 Request a consultation to discuss Read supporting publications, white UK: +44 (0)870 166 6234 your project. papers, watch presentations, and more. [email protected] [email protected] crownbio.com/resources +1.855.827.6968 | [email protected] | www.crownbio.com.
    [Show full text]
  • Cyclic Peptide Mimotopes for the Detection of Serum Anti–ATIC Autoantibody Biomarker in Hepato-Cellular Carcinoma
    International Journal of Molecular Sciences Article Cyclic Peptide Mimotopes for the Detection of Serum Anti–ATIC Autoantibody Biomarker in Hepato-Cellular Carcinoma Chang-Kyu Heo 1, Hai-Min Hwang 1, Won-Hee Lim 1,2, Hye-Jung Lee 3, Jong-Shin Yoo 4, Kook-Jin Lim 3 and Eun-Wie Cho 1,2,* 1 Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; [email protected] (C.-K.H.); [email protected] (H.-M.H.); [email protected] (W.-H.L.) 2 Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea 3 ProteomeTech Inc. 401, Yangcheon-ro, Gangseo-gu, Seoul 07528, Korea; [email protected] (H.-J.L.); [email protected] (K.-J.L.) 4 Biomedical Omics Group, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongju, Chungbuk 28119, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-860-4155 Received: 12 November 2020; Accepted: 16 December 2020; Published: 19 December 2020 Abstract: Tumor-associated (TA) autoantibodies have been identified at the early tumor stage before developing clinical symptoms, which holds hope for early cancer diagnosis. We identified a TA autoantibody from HBx-transgenic (HBx-tg) hepatocellular carcinoma (HCC) model mouse, characterized its target antigen, and examined its relationship to human HCC. The mimotopes corresponding to the antigenic epitope of TA autoantibody were screened from a random cyclic peptide library and used for the detection of serum TA autoantibody. The target antigen of the TA autoantibody was identified as an oncogenic bi-functional purine biosynthesis protein, ATIC.
    [Show full text]
  • The Metabolomic Paradigm of Pharmacogenomics in Complex
    ics: O om pe ol n b A a c t c e e M s s Cacabelos, Metabolomics 2012, 2:5 Metabolomics: Open Access DOI: 10.4172/2153-0769.1000e119 ISSN: 2153-0769 Editorial Open Access The Metabolomic Paradigm of Pharmacogenomics in Complex Disorders Ramón Cacabelos1,2* 1EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, 15165-Bergondo, Corunna, Spain 2President, World Association of Genomic Medicine, Spain Metabolomics represents the networking organization of multiple pathogenic genes usually converge in metabolomic networks leading biochemical pathways leading to a physiological function in living to specific pathogenic cascades responsible for disease phenotypes. organisms. The frontier between health and disease is likely to be the The genomics of the mechanism of action of drugs has so far been result of a fine-tuning equilibrium or disequilibrium, respectively, neglected by the scientific community, and consequently less than 5% between the genomic-transcriptomic-proteomic-metabolomic cascade of FDA-approved drugs, with a pharmacologically-defined mechanism and environmental factors and/or epigenetic phenomena. In recent of action, have been studied in order to evaluate whether mutations times, diverse metabolomic studies have emerged in medical science in the genes encoding receptors or enzymes may affect efficacy and to explain physiological and pathogenic events in several disciplines, safety issues. Pleiotropic genes, involved in multiple pathogenic events,
    [Show full text]
  • Model-Based Integration of Genomics and Metabolomics Reveals SNP Functionality in Mycobacterium Tuberculosis
    Model-based integration of genomics and metabolomics reveals SNP functionality in Mycobacterium tuberculosis Ove Øyåsa,b,1, Sonia Borrellc,d,1, Andrej Traunerc,d,1, Michael Zimmermanne, Julia Feldmannc,d, Thomas Liphardta,b, Sebastien Gagneuxc,d, Jörg Stellinga,b, Uwe Sauere, and Mattia Zampierie,2 aDepartment of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; bSIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; cDepartment of Medical Parasitoloy and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; dUniversity of Basel, 4058 Basel, Switzerland; and eInstitute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved March 2, 2020 (received for review September 12, 2019) Human tuberculosis is caused by members of the Mycobacterium infection of macrophages (29–32). Beyond analyses of individual tuberculosis complex (MTBC) that vary in virulence and transmis- laboratory strains, however, no systematic characterization and sibility. While genome-wide association studies have uncovered comparative analysis of intrinsic metabolic differences across several mutations conferring drug resistance, much less is known human-adapted MTBC clinical strains has been performed. about the factors underlying other bacterial phenotypes. Variation If the metabolic and other phenotypic diversity between in the outcome of tuberculosis infection and diseases has been MTBC strains contributes to and modulates pathogenicity, an attributed primarily to patient and environmental factors, but obvious question is: Which elements of the limited genetic di- recent evidence indicates an additional role for the genetic diver- versity in the MTBC are responsible for phenotypic strain di- sity among MTBC clinical strains.
    [Show full text]