Mathematical Description of Physical Systems Federico Zalamea

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Description of Physical Systems Federico Zalamea Chasing Individuation: Mathematical Description of Physical Systems Federico Zalamea To cite this version: Federico Zalamea. Chasing Individuation: Mathematical Description of Physical Systems. Mathe- matical Physics [math-ph]. Université Paris Denis Diderot, 2016. English. tel-01412769 HAL Id: tel-01412769 https://hal.archives-ouvertes.fr/tel-01412769 Submitted on 8 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Université Sorbonne Paris Cité Université Paris.Diderot (Paris 7) ÉCOLE DOCTORALE : Savoirs scientifiques (ED 400) Laboratoire SPHERE, UMR 7219 Basic Research Community for Physics Projet ERC – Philosophie de la Gravitation Quantique Canonique Chasing Individuation: Mathematical Description of Physical Systems par Federico ZALAMEA Thèse de doctorat en Histoire et Philosophie des Sciences Dirigée par Gabriel CATREN Présentée et soutenue publiquement à l’Université Paris Diderot le 23 Novembre 2016 Président du jury: M. Olivier DARRIGOL, Directeur de recherche au CNRS Rapporteurs: M. James LADYMAN, Professeur à l’Université de Bristol M. Nicolaas P. LANDSMAN, Professeur à l’Université Radboud de Nijmegen Examinateurs: M. Marc LACHIÈZE-REY, Directeur de recherche au CNRS M. Thomas RYCKMAN, Professeur de l’Université de Stanford Directeur de thèse: M. Gabriel CATREN, Chargé de recherche au CNRS Université Sorbonne Paris Cité Université Paris.Diderot (Paris 7) ÉCOLE DOCTORALE : Savoirs scientifiques (ED 400) Laboratoire SPHERE, UMR 7219 Basic Research Community for Physics ERC Project – Philosophy of Canonical Quantum Gravity Chasing Individuation: Mathematical Description of Physical Systems by Federico ZALAMEA Ph.D. in Philosophy of Physics Under the supervision of Gabriel CATREN Presented and defended publicly at Paris Diderot University on November 23rd 2016 President of the jury: M. Olivier DARRIGOL, Directeur de recherche at CNRS Rapporteurs: M. James LADYMAN, Professor at the University of Bristol M. Nicolaas P. LANDSMAN, Professor at Radboud University Nijmegen Examinators: M. Marc LACHIÈZE-REY, Directeur de recherche at CNRS M. Thomas RYCKMAN, Professor at the University of Stanford Doctoral supervisor: M. Gabriel CATREN, Chargé de recherche at CNRS “All great insights and discoveries are not only usually thought by several people at the same time, they must also be re-thought in that unique effort to truly say the same thing about the same thing.” Martin Heidegger Acknowledgments The four years of research culminating with this dissertation were almost entirely funded by the European Research Council, under the European Community’s Seventh Framework Programme (Project Philosophy of Canonical Quantum Gravity, FP7/2007- 2013 Grant Agreement n° 263523). First, and foremost, I must thank my supervisor, Gabriel Catren, for providing me with the opportunity to be part of his project. During these past years, I have had the chance of evolving in the blurry borders between Physics, Mathematics and Philosophy. To be sure, the demand of navigating at ease within this triangle has oftentimes been a source of difficult challenges, and even of anguishing questions of identity. Butithas also significantly enlarged my curiosity and consolidated my thinking. I particularly appreciate the freedom I have enjoyed to explore many different fields and develop my own questions. I know this freedom to be the sign of a rare confidence in my work, for which I am the more grateful. I also would like to thank warmly James Ladyman and Klaas Landsman for ac- cepting to be the rapporteurs of my dissertation, for their careful reading and for the detailed comments which will greatly help me in improving my work; Olivier Darrigol, Marc Lachièze-Rey and Thomas Ryckman for accepting to be part of my jury, for their comments, suggestions and encouragements in the various occasions I have had the luck of meeting them. It is for me an honor to have my work evaluated by such a high-level group of thinkers whose several works I admire. Because my research would have been exceedingly more difficult without a vi- brant institution favoring exchanges and discussions, I am indebted to the laboratory i ii Acknowledgments SPHERE that hosted me during my graduate studies. In particular, I thank the former and current directors, David Rabouin and Pascal Crozet, as well as Roberto Angeloni for our discussions on the history of Quantum Mechanics, Karine Chemla for her inspir- ing and indefatigable enthusiasm, Nadine de Courtenay, Michel Paty and Jean-Jacques Szczeciniarz for their numerous advises and their generosity in sharing their valuable knowledge. The assistance of all the administrative staff has also been crucial all along the way. I thank Sandrine Pellé and Patricia Philippe for their help, Nad Fachard for her joyful presence and for her interest in all aspects of life, and Virginie Maouchi for her kindness and her unshakeable efficiency which rendered simple the otherwise labyrinthine administrative procedures. My colleagues of the ERC Project Philosophy of Canonical Quantum Gravity de- serve a special mention. In these four years, we spent countless hours together in informal discussions, meetings, seminars and workshops. My work would be signifi- cantly poorer had it not been confronted with their critical eye. I am extremely grateful to Alexandre Afgoustidis and Mathieu Anel for their patience and their generosity in guiding me through some regions of Mathematics which seemed inaccessible to me, to Christine Cachot for the many conceptual confusions she helped me dissolving and for her meticulous correction of the various drafts of my dissertation, to Julien Page for all the roads he has been suggesting me in order to broaden my investigations, and to Dimitri Vey for his encouragements and friendship in the most difficult times. Of course, I also think of all my fellow companions who shared with me the vicis- situdes of the daily life of a graduate student. It has been a truly rewarding experience to share so many lunches and coffees discussing our widely different experiences. In particular, I would like to thank: Nacéra Bensaou, Pascal Bertin, Pierre Chaigneau, João Cortese, Vincent Daudon, Simon Decaens, Sarah Erman, Fernando Gálvez, Fabien Grégis, Roberto Hastenreiter-Cruz, Zeinab Karimian, Ramzi Kebaili, Jonathan Regier, Eleonora Sammarchi, Philippe Stamenkovic, Sergio Valencia and Xiaofei Wang. During my PhD, I have had the chance of traveling and participating in several workshops which have lead to important encounters. Particularly inspiring for me was the meeting of Johannes Kleiner, Robin Lorenz and the Basic Research Community Acknowledgments iii for Physics of which I am now a proud member. I also thank Charles Alunni and Jean- Pierre Marquis for their interest in my work and their support, and Michael Wright for his help with my babbling English. Finally, I am beholden to the whole stackexchange community without which the present document would simply not exist. Last, my thoughts go to my closest friends—Alexandre, Ivan, Philippe, Lou and Vera—which laughed with me about my obstinate existential doubts, and to my par- ents. They have managed to create a serene atmosphere of insatiable curiosity and openness towards all regions of knowledge which has deeply influenced me. Their con- stant support and feedback during these four years, and beyond, has been invaluable. And, with all my heart, I thank Camila, who accompanied me in every step of this long journey, silently feeling helpless next to me without realizing she brought me the most essential facet of them all: beauty. Contents List of Figures viii List of Tables ix Introduction 1 I Mathematical Description of Physical Systems 11 I.1 A case study: the birth of Quantum Mechanics (1925–1932) . 18 I.1.1 Matrix and Wave Mechanics ....................... 19 I.1.1.a Matrix Mechanics .......................... 20 I.1.1.b Wave Mechanics ........................... 26 I.1.2 Extracting the physics (1): Schrödinger’s mathematical equivalence . 30 I.1.3 Extracting the physics (2): Dirac’s transformation theory . 40 I.1.4 Extracting the physics (3): von Neumann’s process of abstraction . 48 I.2 Abstract mathematical entities ........................ 58 I.2.1 Ontology: the abstract/particular as hierarchy of objects . 60 I.2.2 Epistemology: the abstract/particular as hierarchy of information . 68 I.2.3 Mixture: the abstract/particular as hierarchy of identities . 79 I.3 Abstract mathematical structures ...................... 88 I.3.1 Mathematical structuralism ....................... 90 I.3.1.a Characterizing structuralism .................... 91 I.3.1.b Eliminative vs. ante rem structuralism . 99 I.3.2 Identity within an abstract mathematical structure . 105 I.3.2.a The problem of the identity of indiscernibles . 105 I.3.2.b First attempts at a solution . 109 I.3.2.c The solution: primitive typed identity . 115 I.3.3 Individuation within an abstract mathematical structure . 119 v vi Contents I.3.3.a
Recommended publications
  • Abelian, Amenable Operator Algebras Are Similar to C∗-Algebras
    ABELIAN, AMENABLE OPERATOR ALGEBRAS ARE SIMILAR TO C∗-ALGEBRAS LAURENT W. MARCOUX1 AND ALEXEY I. POPOV Abstract. Suppose that H is a complex Hilbert space and that B(H) denotes the bounded linear operators on H. We show that every abelian, amenable operator algebra is similar to a C∗-algebra. We do this by showing that if A ⊆ B(H) is an abelian algebra with the property that given any bounded representation % : A!B(H%) of A on a Hilbert space H%, every invariant subspace of %(A) is topologically complemented by another invariant subspace of %(A), then A is similar to an abelian C∗-algebra. 1. Introduction. 1.1. Let A be a Banach algebra and X be a Banach space which is also a bimodule over A. We say that X is a Banach bimodule over A if the module operations are continuous; that is, if there exists κ > 0 so that kaxk 6 κkak kxk, and kxbk 6 κkxk kbk for all a; b 2 A and x 2 X. Given a Banach bimodule X over A, we introduce an action of A upon the dual space X∗ of X under which X∗ becomes a dual Banach A-bimodule. This is the so-called dual action: (ax∗)(x) = x∗(xa) and (x∗a)(x) = x∗(ax) for all a 2 A, x 2 X, x∗ 2 X∗. A (continuous) derivation from a Banach algebra A into a Banach A-bimodule X is a continuous linear map δ : A! X satisfying δ(ab) = aδ(b) + δ(a)b for all a; b 2 A.
    [Show full text]
  • On the Space of Generalized Fluxes for Loop Quantum Gravity
    Home Search Collections Journals About Contact us My IOPscience On the space of generalized fluxes for loop quantum gravity This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2013 Class. Quantum Grav. 30 055008 (http://iopscience.iop.org/0264-9381/30/5/055008) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 194.94.224.254 The article was downloaded on 07/03/2013 at 11:02 Please note that terms and conditions apply. IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 30 (2013) 055008 (24pp) doi:10.1088/0264-9381/30/5/055008 On the space of generalized fluxes for loop quantum gravity B Dittrich1,2, C Guedes1 and D Oriti1 1 Max Planck Institute for Gravitational Physics, Am Muhlenberg¨ 1, D-14476 Golm, Germany 2 Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo ON N2 L 2Y5, Canada E-mail: [email protected], [email protected] and [email protected] Received 5 September 2012, in final form 13 January 2013 Published 5 February 2013 Online at stacks.iop.org/CQG/30/055008 Abstract We show that the space of generalized fluxes—momentum space—for loop quantum gravity cannot be constructed by Fourier transforming the projective limit construction of the space of generalized connections—position space— due to the non-Abelianess of the gauge group SU(2). From the Abelianization of SU(2),U(1)3, we learn that the space of generalized fluxes turns out to be an inductive limit, and we determine the consistency conditions the fluxes should satisfy under coarse graining of the underlying graphs.
    [Show full text]
  • Chapter 2 C -Algebras
    Chapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e.
    [Show full text]
  • Banach Algebras
    Banach Algebras Yurii Khomskii Bachelor Thesis Department of Mathematics, Leiden University Supervisor: Dr. Marcel de Jeu April 18, 2005 i Contents Foreword iv 1. Algebraic Concepts 1 1.1. Preliminaries . 1 1.2. Regular Ideals . 3 1.3. Adjoining an Identity . 4 1.4. Quasi-inverses . 8 2. Banach Algebras 10 2.1. Preliminaries of Normed and Banach Algebras . 10 2.2. Inversion and Quasi-inversion in Banach Algebras . 14 3. Spectra 18 3.1. Preliminaries . 18 3.2. Polynomial Spectral Mapping Theorem and the Spectral Radius Formula . 22 4. Gelfand Representation Theory 25 4.1. Multiplicative Linear Functionals and the Maximal Ideal Space . 25 4.2. The Gelfand Topology . 30 4.3. The Gelfand Representation . 31 4.4. The Radical and Semi-simplicity . 33 4.5. Generators of Banach algebras . 34 5. Examples of Gelfand Representations 36 5.1. C (X ) for X compact and Hausdorff . 36 5.2. C 0(X ) for X locally compact and Hausdorff. 41 5.3. Stone-Cecˇ h compactification . 42 5.4. A(D) . 44 5.5. AC (Γ) . 46 5.6. H 1 . 47 ii iii Foreword The study of Banach algebras began in the twentieth century and originated from the observation that some Banach spaces show interesting properties when they can be supplied with an extra multiplication operation. A standard exam- ple was the space of bounded linear operators on a Banach space, but another important one was function spaces (of continuous, bounded, vanishing at infin- ity etc. functions as well as functions with absolutely convergent Fourier series). Nowadays Banach algebras is a wide discipline with a variety of specializations and applications.
    [Show full text]
  • Mathematical Tripos Part III Lecture Courses in 2013-2014
    Mathematical Tripos Part III Lecture Courses in 2013-2014 Department of Pure Mathematics & Mathematical Statistics Department of Applied Mathematics & Theoretical Physics Notes and Disclaimers. • Students may take any combination of lectures that is allowed by the timetable. The examination timetable corresponds to the lecture timetable and it is therefore not possible to take two courses for examination that are lectured in the same timetable slot. There is no requirement that students study only courses offered by one Department. • The code in parentheses after each course name indicates the term of the course (M: Michaelmas; L: Lent; E: Easter), and the number of lectures in the course. Unless indicated otherwise, a 16 lecture course is equivalent to 2 credit units, while a 24 lecture course is equivalent to 3 credit units. Please note that certain courses are non-examinable, and are indicated as such after the title. Some of these courses may be the basis for Part III essays. • At the start of some sections there is a paragraph indicating the desirable previous knowledge for courses in that section. On one hand, such paragraphs are not exhaustive, whilst on the other, not all courses require all the pre-requisite material indicated. However you are strongly recommended to read up on the material with which you are unfamiliar if you intend to take a significant number of courses from a particular section. • The courses described in this document apply only for the academic year 2013-14. Details for subsequent years are often broadly similar, but not necessarily identical. The courses evolve from year to year.
    [Show full text]
  • Spectral Theory
    SPECTRAL THEORY EVAN JENKINS Abstract. These are notes from two lectures given in MATH 27200, Basic Functional Analysis, at the University of Chicago in March 2010. The proof of the spectral theorem for compact operators comes from [Zim90, Chapter 3]. 1. The Spectral Theorem for Compact Operators The idea of the proof of the spectral theorem for compact self-adjoint operators on a Hilbert space is very similar to the finite-dimensional case. Namely, we first show that an eigenvector exists, and then we show that there is an orthonormal basis of eigenvectors by an inductive argument (in the form of an application of Zorn's lemma). We first recall a few facts about self-adjoint operators. Proposition 1.1. Let V be a Hilbert space, and T : V ! V a bounded, self-adjoint operator. (1) If W ⊂ V is a T -invariant subspace, then W ? is T -invariant. (2) For all v 2 V , hT v; vi 2 R. (3) Let Vλ = fv 2 V j T v = λvg. Then Vλ ? Vµ whenever λ 6= µ. We will need one further technical fact that characterizes the norm of a self-adjoint operator. Lemma 1.2. Let V be a Hilbert space, and T : V ! V a bounded, self-adjoint operator. Then kT k = supfjhT v; vij j kvk = 1g. Proof. Let α = supfjhT v; vij j kvk = 1g. Evidently, α ≤ kT k. We need to show the other direction. Given v 2 V with T v 6= 0, setting w0 = T v=kT vk gives jhT v; w0ij = kT vk.
    [Show full text]
  • MAT 449 : Representation Theory
    MAT 449 : Representation theory Sophie Morel December 17, 2018 Contents I Representations of topological groups5 I.1 Topological groups . .5 I.2 Haar measures . .9 I.3 Representations . 17 I.3.1 Continuous representations . 17 I.3.2 Unitary representations . 20 I.3.3 Cyclic representations . 24 I.3.4 Schur’s lemma . 25 I.3.5 Finite-dimensional representations . 27 I.4 The convolution product and the group algebra . 28 I.4.1 Convolution on L1(G) and the group algebra of G ............ 28 I.4.2 Representations of G vs representations of L1(G) ............. 33 I.4.3 Convolution on other Lp spaces . 39 II Some Gelfand theory 43 II.1 Banach algebras . 43 II.1.1 Spectrum of an element . 43 II.1.2 The Gelfand-Mazur theorem . 47 II.2 Spectrum of a Banach algebra . 48 II.3 C∗-algebras and the Gelfand-Naimark theorem . 52 II.4 The spectral theorem . 55 III The Gelfand-Raikov theorem 59 III.1 L1(G) ....................................... 59 III.2 Functions of positive type . 59 III.3 Functions of positive type and irreducible representations . 65 III.4 The convex set P1 ................................. 68 III.5 The Gelfand-Raikov theorem . 73 IV The Peter-Weyl theorem 75 IV.1 Compact operators . 75 IV.2 Semisimplicity of unitary representations of compact groups . 77 IV.3 Matrix coefficients . 80 IV.4 The Peter-Weyl theorem . 86 IV.5 Characters . 87 3 Contents IV.6 The Fourier transform . 90 IV.7 Characters and Fourier transforms . 93 V Gelfand pairs 97 V.1 Invariant and bi-invariant functions .
    [Show full text]
  • Arxiv:Math/0203199V1 [Math.FA] 19 Mar 2002
    Amenability for dual Banach algebras Volker Runde Abstract ∗ We define a Banach algebra A to be dual if A = (A∗) for a closed submodule A∗ of A∗. The class of dual Banach algebras includes all W ∗-algebras, but also all algebras M(G) for locally compact groups G, all algebras L(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception than the rule. We confirm this impression. We first show that under certain conditions an amenable dual Ba- nach algebra is already super-amenable and thus finite-dimensional. We then develop two notions of amenability — Connes-amenability and strong Connes-amenability — which take the w∗-topology on dual Banach algebras into account. We relate the amenability of an Arens regular Banach algebra A to the (strong) Connes-amenability of A∗∗; as an application, we show that there are reflexive Banach spaces with the approximation property such that L(E) is not Connes-amenable. We characterize the amenability of inner amenable locally compact groups in terms of their algebras of pseudo-measures. Finally, we give a proof of the known fact that the amenable von Neumann algebras are the subhomogeneous ones which avoids the equivalence of amenability and nuclearity for C∗-algebras. 2000 Mathematics Subject Classification: 43A10, 46B28, 46H25, 46H99 (primary), 46L10, 46M20. 1 Introduction arXiv:math/0203199v1 [math.FA] 19 Mar 2002 Amenable Banach algebras were introduced by B. E. Johnson in [Joh 2], and have since then turned out to be extremely interesting objects of research.
    [Show full text]
  • Lecture 2: Operator Amenability of the Fourier Algebra
    Lecture 2: Operator Amenability of the Fourier Algebra Zhong-Jin Ruan at Leeds, Tuesday 18 May , 2010 1 Amenability of Groups Let us first recall that a locally compact group G is amenable if there exists a left invariant mean on L∞(G), i.e. there exists a positive linear functional m : L∞(G) → C such that m(1) = 1 and m(sh) = m(h) for all s ∈ G and h ∈ L∞(G), where we define sh(t) = h(st). Theorem: The following are equivalent: 1. G is amenable; 2. G satisfies the Følner condition: for every ε > 0 and compact subset C ⊆ G, there exists a compact subset K ⊆ G such that |K∆sK| < ε for all s ∈ C; µ(K) 3. A(G) has a bounded (or contractive) approximate identity. 2 Amenability of Banach Algebras In the early 1970’s, B. Johnson introduced the bounded Hochschild cohomology and the amenability for Banach algebras. A Banach algebra A is called amenable if for every bounded A-bimodule V , every bounded derivation D : A → V ∗ is inner, i.e. there exists f ∈ V ∗ such that D(a) = a · f − f · a. A linear map D : A → V ∗ is a derivation if it satisfies D(ab) = D(a) · b + a · D(b) for all a, b ∈ A. Theorem [B. Johnson 1972] : A locally compact group G is amenable if and only if L1(G) is an amenable Banach algebra. 3 Amenability of A(G) Question: Since A(G) is the natural dual object of L1(G), it is natural to ask whether G is amenable if and only if A(G) is amenable ?? B.
    [Show full text]
  • Arxiv:1811.10987V1 [Math.FA]
    FRECHET´ ALGEBRAS IN ABSTRACT HARMONIC ANALYSIS Z. ALIMOHAMMADI AND A. REJALI Abstract. We provide a survey of the similarities and differences between Banach and Fr´echet algebras including some known results and examples. We also collect some important generalizations in abstract harmonic anal- ysis; for example, the generalization of the concepts of vector-valued Lips- chitz algebras, abstract Segal algebras, Arens regularity, amenability, weak amenability, ideal amenability, etc. 0. Introduction The class of Fr´echet algebras which is an important class of locally convex algebras has been widely studied by many authors. For a full understanding of Fr´echet algebras, one may refer to [27, 36]. In the class of Banach algebras, there are many concepts which were generalized to the Fr´echet case. Examples of these concepts are as follows. Biprojective Banach algebras were studied by several authors, notably A. Ya. Helemskii [35] and Yu. V. Selivanov [62]. A number of papers appeared in the literature concerned with extending the notion of biprojectivity and its results to the Fr´echet algebras; see for example [48, 63]. Flat cyclic Fr´echet modules were investigated by A. Yu. Pirkovskii [49]. Let A be a Fr´echet algebra and I be a closed left ideal in A. Pirkovskii showed that there exists a necessary and sufficient condition for a cyclic Fr´echet A-module A♯/I to be strictly flat. He also generalized a number of characterizations of amenable Ba- nach algebras to the Fr´echet algebras (ibid.). In 2008, P. Lawson and C. J. Read [43] introduced and studied the notions of approximate amenability and approxi- mate contractibility of Fr´echet algebras.
    [Show full text]
  • Israel Moiseevich Gelfand, (1913 - 2009)
    1 Israel Moiseevich Gelfand, (1913 - 2009) V.S.Sunder The Institute of Mathematical Sciences, Taramani, Chennai 600113, India e-mail: [email protected] January 17, 2011 When Gelfand passed away on October 5th, 2009, the world might have seen the last of the classical scholars (in the mould of Henri Poincare or John von Neumann) whose accomplishments/scholarship were not confined by artificial borders. The wikipedia ‘paraphrases’ his work thus: ‘Israel Gelfand is known for many developments including: • the Gelfand representation in Banach algebra theory; • the Gelfand Mazur theorem in Banach algebra theory; • the Gelfand Naimark theorem; • the Gelfand Naimark Segal construction; • Gelfand Shilov spaces • the Gelfand Pettis integral; • the representation theory of the complex classical Lie groups; • contributions to the theory of Verma modules in the represen- tation theory of semisimple Lie algebras (with I.N. Bernstein and S.I. Gelfand); • contributions to distribution theory and measures on infinite- dimensional spaces; • the first observation of the connection of automorphic forms with representations (with Sergei Fomin); • conjectures about the index theorem; 2 • Ordinary differential equations (Gelfand Levitan theory); • work on calculus of variations and soliton theory (Gelfand Dikii equations); • contributions to the philosophy of cusp forms; • Gelfand Fuks cohomology of foliations; • Gelfand Kirillov dimension; • integral geometry; • combinatorial definition of the Pontryagin class; • Coxeter functors; • generalised hypergeometric series; • Gelfand - Tsetlin patterns; • and many other results, particularly in the representation the- ory for the classical groups.’ When I was requested to write something about Gelfand, my first reaction was to say ‘how can I hope to do justice to his breadth and depth of mathematical contributions?’ and at once realised that no one can.
    [Show full text]
  • MATHEMATICAL TRIPOS Part III PAPER 106 FUNCTIONAL ANALYSIS
    MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 106 FUNCTIONAL ANALYSIS Attempt no more than FOUR questions. There are FIVE questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS Coversheet None Treasury Tag Script paper You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2 1 Let A be a unital Banach algebra. Prove that the group G(A) of invertible elements of A is open and that the map x → x−1 : G(A) → G(A) is continuous. Let A be a Banach algebra and x ∈ A. Define the spectrum σA(x) of x in A both in the case that A is unital and in the case A is not unital. Let A be a Banach algebra and x ∈ A. Prove that σA(x) is a non-empty compact subset of C. [You may assume any version of the Hahn–Banach theorem without proof.] State and prove the Gelfand–Mazur theorem concerning complex unital normed division algebras. Let K be an arbitrary set. Let A be an algebra of complex-valued functions on K with pointwise operations and assume that · is a complete algebra norm on A. Prove carefully that supK|f| 6 f for all f ∈ A. 2 State and prove Mazur’s theorem on the weak-closure and norm-closure of a convex set in a Banach space. [Any version of the Hahn–Banach theorem can be assumed without proof provided it is clearly stated.] Let (xn) be a sequence in a Banach space X.
    [Show full text]