Catastrophe Theory

Total Page:16

File Type:pdf, Size:1020Kb

Catastrophe Theory Catastrophe Theory Things that change suddenly, by fits and starts, have long resisted mathematical analysis. A method derived fi-om topology describes these phenomena as examples of seven "elementary catastrophes" by E. C. Zeeman cientists often describe events by con­ Etudes Scientifique at Bures-sur-Yvette in probable and the dog will most likely flee. structing a mathematical model. In­ France. He presented his ideas in a book Prediction is also straightforward if neither S deed, when such a model is particular­ published in 1972, Stabilite Structurelle et stimulus is present; then the dog is likely to ly successful, it is said not only to describe Morphogenese; an English translation by express some neutral kind of behavior unre­ the events but also to "explain" them; if the David H. Fowler of the University of War­ lated to either aggression or submission. model can be reduced to a simple equation, wick has recently been published. The the­ What if the dog is made to feel both rage it may even be called a law of nature. For ory is derived from topology, the branch of and fear simultaneously? The two control­ 300 years the preeminent method in build­ mathematics concerned with the properties ling factors are then in direct conflict. Sim­ ing such models has been the differential of surfaces in many dimensions. Topology ple models that cannot accommodate dis­ calculus invented by Newton and Leibniz. is involved because the underlying forces in continuity might predict that the two stim­ Newton himself expressed his laws of mo­ nature can be described by smooth surfaces uli would cancel each other, leading again tion and gravitation in terms of differential of equilibrium; it is when the equilibrium to neutral behavior. That prediction merely equations, and James Clerk Maxwell em­ breaks down that catastrophes occur. The reveals the shortcomings of such simplistic ployed them in his theory of electromagnet­ problem for catastrophe theory is therefore models, since neutrality is in fact the least ism. Einstein's general theory of relativity to describe the shapes of all possible equilib­ likely behavior. When a dog is both angry also culminates in a set of differential equa­ rium surfaces. Thorn has solved this prob­ and frightened, the probabilities of both ex­ tions, and to these examples could be added lem in terms of a few archetypal forms, treme modes of behavior are high; the dog many less celebrated ones. Nevertheless, as which he calls the elementary catastrophes. may attack or it may flee, but it will not a descriptive language differential equations For processes controlled by no more than remain indifferent. It is the strength of the have an inherent limitation: they can de­ four factors Thorn has shown that there model derived from catastrophe theory that scribe only those phenomena where change are just seven elementary catastrophes. The it can account for this bimodal distribution is smooth and continuous. In mathematical proof of Thorn's theorem is a difficult one, of probabilities. Moreover, the model pro­ terms, the solutions to a differential equa­ but the results of the proof are relatively vides a basis for predicting, under particular tion must be functions that are differenti­ easy to comprehend. The elementary catas­ circumstances, which behavior the dog will able. Relatively few phenomena are that or­ trophes themselves can be understood and choose. derly and well behaved; on the contrary, the applied to problems in the sciences without To construct the model we first plot the world is full of sudden transformations and reference to the proof. two control parameters, rage and fear, as unpredictable divergences, which call for axes on a horizontal plane, called the con­ functions that are not differentiable. A Model of Aggression trol surface. The behavior of the dog is then A mathematical method for dealing with measured on a third axis, the behavior axis, discontinuous and divergent phenomena The nature of the models derived from which is perpendicular to the first two. We has only recently been developed. The catastrophe theory can best be illustrated by might assume that there is a smooth contin­ method has the potential for describing the example, and I shall begin by considering a uum of possible modes of behavior, ranging, evolution of forms in all aspects of nature, model of aggression in the dog. Konrad Z. for example, from outright retreat through and hence it embodies a theory of great Lorenz has pointed out that aggressive cowering, avoidance, neutrality, growling generality; it can be applied with particular behavior is influenced by two conflicting and snarling to attacking. The most aggres­ effectiveness in those situations where grad­ drives, rage and fear, and he has proposed sive modes of behavior are assigned the ually changing forces or motivations lead to that in the dog these factors can be mea­ largest values on the behavior axis, the least abrupt changes in behavior. For this reason sured with some reliability. A dog's rage is aggressive the smallest values. For each the method has been named catastrophe correlated with the degree to which its point on the control surface (that is, for theory. Many events in physics can now be mouth is open or its teeth are bared; its fear each combination of rage and fear) there is recognized as examples of mathematical ca­ is reflected by how much its ears are flat­ at least one most probable behavior, which tastrophes. Ultimately, however, the most tened back. By employing facial expression we represent as a point directly above the important applications of the theory may be as an indicator of the dog's emotional state point on the control surface and at a height in biology and the social sciences, where we can attempt to learn how the dog's be­ appropriate to the behavior. For many discontinuous and divergent phenomena havior varies as a function of its mood. points on the control surface, where either are ubiquitous and where other mathemati­ If only one of the conflicting emotional rage or fear is predominant, there will be cal techniques have so far proved ineffec­ factors is present, the response of the dog is just one behavior point. Near the center of tive. Catastrophe theory could thus provide relatively easy to predict. If the dog is en­ the graph, however, where rage and fear are a mathematical language for the hitherto raged but not afraid, then some aggressive roughly equal, each point on the control "inexact" sciences. action, such as attacking, can be expected. surface has two behavior points, one at a Catastrophe theory is the invention When the dog is frightened but is not large value on the behavior axis represent­ of Rene Thorn of the Institut des Hautes provoked to anger, aggression becomes im- ing aggressive action, the other at a small 65 © 1976 SCIENTIFIC AMERICAN, INC value representing submissive action. In ad­ surface. The surface has an overall slope creating a pleat without creases, which dition we can note a third point that will from high values where rage predominates grows narrower from the front of the sur­ always fall between these two, representing to low values in the region where fear is the face to the back and eventually disappears the least likely neutral behavior. prevailing state of mind, but the slope is not in a singular point where the three sheets of If the behavior points for the entire con­ its most distinctive feature. Catastrophe the pleat come together [see illustration be­ trol surface are plotted and then connected, theory reveals that in the middle of the sur­ low]. It is the pleat that gives the model they form a smooth surface: the behavior face there must be a smooth double fold, its most interesting characteristics. All the GROWLING C ATIACKING BEHAVIOR SURFACE AVOIDING FLIGHT CATASTROPHE CONTROL SURFACE - -----.... A AGGRESSION IN DOGS can be described by a model based on becomes narrower, and eventually it vanishes. The line defining the one of the elementary catastrophes. The model assumes that aggres­ edges of the pleat is called the fold curve, and its projection onto the sive behavior is controlled by two conflicting factors, rage and fear, control surface is a cusp-shaped curve. Because the cusp marks the which are plotted as axes on a horizontal plane: the control surface. boundary where the behavior becomes bimodal it is called the bifur­ The behavior of the dog, which ranges from attacking to retreating, is cation set and the model is called a cusp catastrophe. If an angry dog represented on a vertical axis. For any combination of rage and fear, is made more fearful, its mood follows the trajectory on the control A and thus for any point on the control surface, there is at least one like­ surface. The corresponding path on the behavior surface moves to the ly form of behavior, indicated as a point above the corresponding left on the top sheet until it reaches the fold curve; the top sheet then point on the control surface and at the appropriate height on the be­ vanishes, and the path must jump abruptly to the bottom sheet. Thus havior axis. The set of all such points makes up the behavior surface. the dog abandons its attack and suddenly flees. Similarly, a fright­ In most cases there is only one probable mode of behavior, but where ened dog that is angered follows the trajectory The dog remains B. rage and fear are roughly equal there are two modes: a dog both angry on the bottom sheet until that sheet disappears, then as it jumps to and fearful may either attack or retreat.
Recommended publications
  • The Seduction of Curves by Allan Mcrobie
    Journal of Humanistic Mathematics Volume 9 | Issue 2 July 2019 Book Review: The Seduction of Curves by Allan McRobie Hans J. Rindisbacher Pomona College Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Rindisbacher, H. J. "Book Review: The Seduction of Curves by Allan McRobie," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 323-328. DOI: 10.5642/jhummath.201902.22 . Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/22 ©2019 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Book Review: The Seduction of Curves by Allan McRobie Hans J. Rindisbacher Department of German and Russian, Pomona College, California, USA [email protected] Synopsis This review emphasizes, as does the compelling and beautiful book, The Se- duction of Curves by Allan McRobie, the \lines of beauty" that link art and mathematics. McRobie and his collaborator on the indispensable visuals of the volume, Helena Weightman, succeed admirably in connecting theoretically and visually the mathematical field of singularity or catastrophe theory and its graph- ical representations on the one hand and the seemingly intersecting lines around the volumes of the human body in the artistic representation of the nude.
    [Show full text]
  • Bifurcations, Global Change, Tipping Points and All That
    TiPES IHP, Paris, Kick-off 16 October 2019 Meeeting Bifurcations, Global Change, Tipping Points and All That Michael Ghil Ecole Normale Supérieure, Paris, and University of California, Los Angeles Please visit these sites for more info. on the talk http://www.atmos.ucla.edu/tcd/, http://www.environnement.ens.fr/, and https://www.researchgate.net/profile/Michael_Ghil SC1/NP1.5: Tipping Points in the Geosciences Michael Ghil, Peter Ditlevsen and Henk Dijkstra NP division, EGU-GA 2012 Wednesday, April 25, 2012 Outline • Intrinsic vs. forced variability – short-, intermediate, & long-term prediction – multiple scales of motion – IPCC & the uncertainties • Time-dependent forcing – pullback and random attractors (PBAs & RAs) – tipping points (TPs) • An illustrative example – the Lorenz convection model with stochastic forcing – LORA – its topological analysis (BraMaH) – “grand unification” = deterministic + stochastic • Conclusions and references – what do we & don’t we know? – selected bibliography Motivation • There’s a lot of talk about “tipping points.” • It sounds threatening, like falling off a cliff: that’s why we care! • But what are they, and what do we know about them? • Here’s a disambiguation page (cf. Wikipedia), first. • Sociology: “the moment of critical mass, the threshold, the boiling point” (Gladwell, 2000); a previously rare phenomenon becomes rapidly and dramatically more common. • Physics: the point at which a system changes from a stable equilibrium into a new, qualitatively dissimilar equilibrium (throwing a switch, tilting a plank, boiling water, etc.). • Climatology: “A climate tipping point is a somewhat ill-defined concept […]”— so we’ll try to actually define it better. • Catastrophe theory: branch of bifurcation theory in the study of dynamical systems; here, a tipping point is “a parameter value at which the set of equilibria abruptly change.” è Let’s see! M.
    [Show full text]
  • Catastrophe Theory and Urban Processes
    CATASTROPHE THEORY AND URBAN PROCESSES John Casti and Harry Swain Research Scholars at the International Institute for Applied Systems Analysis Schloss Laxenburg A-2361Laxenburg, Austria Abstract Phenomena exhibiting discontinuous change, divergent processes, and hysteresis can be modelled with catastrophe theory, a recent development in differential topology. Ex- position of the theory is illustrated by qualitative interpretations of the appear- ance of functions in central place systems, and of price cycles for urban housing. Introduction A mathematical theory of "catastrophes" has recently been developed by the French mathematician R6n6 Thom [6,7] in an attempt to rationally account for the phenomenon of discontinuous change in behaviors (out- puts) resulting from continuous change in parameters (inputs) in a given system. The power and scope of Thom's ideas have been exploited by others, notably Zeeman [I0,11], to give a mathematical account of various observed discontinuous phenomena in physics, economics, biology, [4] and psychology. We particularly note the work of Amson [I] on equilibrium models of cities, which is most closely associated with the work presented here. With the notable exception of Amson's work, little use has been made of the powerful tools of catastrophe theory in the study of urban problems. Perhaps this is not surprising since the theory is only now becoming generally known in mathematical circles. However, despite the formidable mathematical appearance of the basic theorems of the theory, the application of catastrophe theory to a given 389 situation is often quite simple, requiring only a modest understanding of simple geometric notions. In this regard, catastrophe theory is much like linear programming in the sense that it is not necessary to understand the mechanism in order to make it work--a fairly typical requirement of the working scientist when faced with a new mathematical tool.
    [Show full text]
  • Systems Approach"
    INTRODUCTION TO "SYSTEMS APPROACH" Gernot M. R. Winkler U.S. Naval Observatory Washington, D.C. DEFINITION AND OVERVIEW Systems and timekeeping have several "interfaces": First, all systems are subject to processes, or better, processes are the essential aspect of systems. I11 all these processes, time is the one general, abstract parameter which relates the state of these processes to the state of all other systems. Time is. therefore, the universal system parameter (I). Second, since time is the universal system interface, the use of clocks in systems is increasing, commensurate with our increasing demands for precision in systems interfacing. We now distin- guish a class of "time ardered systems" (even though in principle all systems are time ordered) in order to emphasize the precision aspects which necessitate the use of precision clocks (2). Third, all clocks are of necessity systems; systems in which we attempt to repeat the same proc- esses as identically as possible so that we obtain a uniform time scale. Therefore, any system could be used as a clock, albeit, not a very good one, e.g. we ourselves are systems, i.e. clocks, and one can read the time off our faces! For these reasons, since clocks are systems, and are part of systems, a general overlook and intro- duction to the systems approach has been suggested. This appears the more appropriate since some of it, the most critical aspects of the subject, fall somewliat outside the purely engineering frame of mind; the subject is indeed trans-disciplinary. Onc may even be tempted to clai~vthat these most general, but strategically essential aspects of slstems belong to philosopily in its prope sense rather than to any specific technical specialty (3).
    [Show full text]
  • Bifurcations and Catastrophe Theory: Physical and Natural Systems Petri
    Bifurcations and Catastrophe Theory: Physical and Natural Systems ICTS program on Modern Finance and Macroeconomics: A Multidisciplinary Approach Petri Piiroinen National University of Ireland, Galway - NUIG Email: [email protected] Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 1 / 111 NUI Galway Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 2 / 111 Dynamical systems See Piiroinen et al. [1-5]. Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 3 / 111 Real data Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 4 / 111 Real data Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 5 / 111 Real data Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 6 / 111 Overview 1 Linear Systems I Solutions I Equilibrium types 2 Nonlinear systems I Steady-state solution I Transitions 3 Stability I Equilibria, fixed points and periodic orbits 4 Bifurcations and transitions 5 Examples Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 7 / 111 Dynamical System Modelling and Analysis There is a natural order between real-world systems, modelling and numerical analysis,... Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 8 / 111 Dynamical System Modelling and Analysis There is a natural order between real-world systems, modelling and numerical analysis,... Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 9 / 111 Dynamical System Modelling and Analysis There is a natural order between real-world systems, modelling and numerical analysis, but that order is not always followed. Bifurcations & Catastrophes ICTS, Bengaluru { 01/01/2016 Modern Finance and . 10 / 111 Dynamical System Modelling and Analysis There is a natural order between real-world systems, modelling and numerical analysis, but that order is not always followed.
    [Show full text]
  • Early-Warning Signals for Critical Transitions
    Vol 461 3 September 2009 doi:10.1038/nature08227 j j REVIEWS Early-warning signals for critical transitions Marten Scheffer1, Jordi Bascompte2, William A. Brock3, Victor Brovkin5, Stephen R. Carpenter4, Vasilis Dakos1, Hermann Held6, Egbert H. van Nes1, Max Rietkerk7 & George Sugihara8 Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching. t is becoming increasingly clear that many complex systems have considered to capture the essence of shifts at tipping points in a wide critical thresholds—so-called tipping points—at which the system range of natural systems ranging from cell signalling pathways14 to 7,15 6 shifts abruptly from one state to another. In medicine, we have ecosystems and the climate . At fold bifurcation points (F1 and F2, spontaneous systemic failures such as asthma attacks1 or epileptic Box 1), the dominant eigenvalue characterizing the rates of change I 2,3 seizures ; in global finance, there is concern about systemic market around the equilibrium becomes zero. This implies that as the system crashes4,5; in the Earth system, abrupt shifts in ocean circulation or approaches such critical points, it becomes increasingly slow in re- climate may occur6; and catastrophic shifts in rangelands, fish popula- covering from small perturbations (Fig.
    [Show full text]
  • Tipping Point Trend in Climate Change Communication
    Global Environmental Change 19 (2009) 336–344 Contents lists available at ScienceDirect Global Environmental Change journal homepage: www.elsevier.com/locate/gloenvcha The tipping point trend in climate change communication Chris Russill a,*, Zoe Nyssa b a Carleton University, School of Journalism & Communication, 305 St. Patrick’s Bldg., 1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6 b University of Chicago, The Committee on Conceptual and Historical Studies of Science Social Sciences Building, Rm. 205, 1126 East 59th Street Chicago, IL, 60637, USA ARTICLE INFO ABSTRACT Article history: This article documents the use of tipping points in climate change discourse to discuss their significance. Received 27 July 2008 We review the relevant literature, and discuss the popular emergence of tipping points before their Received in revised form 3 April 2009 adoption in climate change discourse. We describe the tipping point trend in mainstream US and UK Accepted 22 April 2009 print news media and in the primary scientific literature on climate change by replicating the methodologies of Oreskes [Oreskes, N., 2004. The scientific consensus on climate change. Nature 306, Keywords: 1686] and Boykoff and Boykoff [Boykoff, M.T., Boykoff, J.M., 2004. Balance as bias: global warming and Alarmism the US prestige press. Global Environmental Change 14, 125–136]. We then discuss the significance of Climate change communication climate change tipping points and their popular use in terms of generative metaphor. Dangerous anthropogenic interference Metaphor
    [Show full text]
  • Complexity and Non-Linear Dynamical Systems
    7 Complexity and Non-linear Dynamical Systems Notions of a single equilibrium and stable state were followed by recognition of the existence of multiple stable and unstable states with nonlinearity rec- ognized as common in geomorphology. Such recognition, and also that major changes could occur as a result of relatively minor shifts, gives complex behaviour outcomes that are not predictable in linear systems. Research on complexity theory and nonlinear dynamical systems has included concepts involving chaos theory, dissipative structures, bifurcation and catastrophe theory, and fractal patterning, as well as instability, resilience theory, adap- tive cycles, and uncertainty. Such promising concepts are still developing with multidisciplinary centres established to progress further research. Table 7.2 Principles of Earth surface systems suggested by Phillips (1999) 11 Principles of Earth Surface Systems • Earth surface systems are inherently unstable, chaotic and self-organizing • Earth surface systems are inherently orderly • Order and complexity are emergent properties of Earth surface systems • Earth surface systems have both self-organizing and non-self organizing modes • Both unstable/chaotic and stable/non-chaotic features may coexist in the same landscape at the same time • Simultaneous order and regularity may be explained by a view of Earth systems as complex nonlinear dynamical systems • The tendency of small perturbations to persist and grow over times and spaces is an inevitable outcome of Earth surface systems dynamics •
    [Show full text]
  • Addressing Tipping Points for a Precarious Future
    Addressing Tipping Points for a Precarious Future Addressing Tipping Points for a Precarious Future Edited by Tim O’Riordan and Tim Lenton Published for THE BRITISH ACADEMY by OXFORD UNIVERSITY PRESS Oxford University Press, Great Clarendon Street, Oxford OX2 6DP © The British Academy 2013 Database right The British Academy (maker) First edition published in 2013 Some rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, for commercial purposes without the prior permission in writing of the British Academy, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. This is an open access publication, available online and distributed under the terms of a Creative Commons Attribution –Non Commercial –No Derivatives 4.0 International licence (CC BY-NC-ND 4.0), a copy of which is available at http://creativecommons.org/licenses/by-nc-nd/4.0/ Enquiries concerning reproduction outside the scope of the above should be sent to the Publications Department, The British Academy, 10–11 Carlton House Terrace, London SW1Y 5AH British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available Typeset by Keystroke, Station Road, Codsall, Wolverhampton Printed in Great Britain by T.J. International, Padstow, Cornwall ISBN 978-0-726553-6 For our next generation who will live through what we create for them James, Zoë, Joseph, Esther, Edward and Sammy
    [Show full text]
  • Talk on Catastrophe Theory
    Chaos and Complexity Seminar Thom’s Catastrophe Theory and Zeeman’s model of the Stock Market Joel W. Robbin February 19, 2013 JWR (UW Madison) Catastrophe Theory February19,2013 1/45 The two best things I learned at college. Too much of anything is bad; otherwise it wouldn’t be too much. – Norman Kretzmann There are two kinds of people in this world: those who say “There are two kinds of people in this world” and those who don’t. – William Gelman JWR (UW Madison) Catastrophe Theory February19,2013 2/45 The two best things I learned at college. Too much of anything is bad; otherwise it wouldn’t be too much. – Norman Kretzmann There are two kinds of people in this world: those who say “There are two kinds of people in this world” and those who don’t. – William Gelman (This has nothing to do with the rest of the talk.) JWR (UW Madison) Catastrophe Theory February19,2013 2/45 Catastrophe Theory is ... Catastrophe theory is a method for describing the evolution of forms in nature. It was invented by Ren´eThom in the 1960’s. Thom expounded the philosophy behind the theory in his 1972 book Structural stability and morphogenesis. Catastrophe theory is particularly applicable where gradually changing forces produce sudden effects. The applications of catastrophe theory in classical physics (or more generally in any subject governed by a ‘minimization principle’) help us understand what diverse models have in common. The theory has also been applied in the social and biological sciences. In this talk I will discuss three examples: Zeeman’s toy (the “catastrophe machine”), light caustics, and Zeeman’s explanation of stock market booms and busts.
    [Show full text]
  • Dialectics and Catastrophe Martin Zwick Systems Science Ph.D
    Dialectics and Catastrophe Martin Zwick Systems Science Ph.D. Program, Portland State University, Portland, Oregon 97207 From Sociocybernetics, F. Geyer and J, van der Zouwen, eds., Martinus Nijhoff, The Hague, The Netherlands, 1978,1 pp. 129-154. 1. Introduction The Catastrophe Theory of René Thom and E. C. Zeeman' suggests a mathematical interpretation of certain aspects of Hegelian and Marxist dialectics. Specifically, the three ‘classical’ dialectical principles2, (1) the transformation of quantity into quality, (2) the unity and struggle of opposites, and (3) the negation of negation, can be modeled with the seven ‘elementary catastrophes’3 given by Thom, especially the catastrophes known as the ‘cusp’ and the ‘butterfly’. Far from being empty metaphysics or scholasticism, as critics have argued, the dialectical principles embody genuine insights into a class of phenomena, insights which can now be expressed within a precise mathematical formalism. This fact does not, however, support the claim that these principles, possibly modified or supplemented, constitute the laws of motion for human thought and for natural and social processes - or even just the last of these. There is, of course, an enormous and diverse literature on dialectics. The three Hegelian ‘laws’ will be focused upon, somewhat arbitrarily, because they offer a clear context for discussion. These laws are certainly only one particular reification of a more general framework for analysis and synthesis, which has been extensively developed by writers and philosophers associated with the Communist movement4, the independent left, and the academic research community. This paper will give only a preliminary demonstration of the close relationship which exists between dialectics and catastrophe theory.
    [Show full text]
  • Regime Shifts, Thresholds and Tipping Points. Oxford Bibliographies in Environmental Science Vasilis Dakos
    Ecological Transitions: Regime Shifts, Thresholds and Tipping Points. Oxford Bibliographies in Environmental Science Vasilis Dakos To cite this version: Vasilis Dakos. Ecological Transitions: Regime Shifts, Thresholds and Tipping Points. Oxford Bibli- ographies in Environmental Science. 2019. hal-02195008 HAL Id: hal-02195008 https://hal.archives-ouvertes.fr/hal-02195008 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article details Article title: Ecological Transitions: Regime Shifts, Thresholds and Tipping Points Article ID: 9780199363445-0108 Article author(s): Vasilis Dakos Publishing Group: Reference-US ☐Revision Substantive Update: Y/N Heavily Revised article (with new author(s)): Y/N Title revised? Y/N Previous title: Table of contents: Introduction General Overviews Textbooks Journals Definition Historical Overviews Related Terms and Concepts Catastrophe Theory Types of Ecological Transitions Features of Ecological Transitions Positive Feedbacks Alternative States Discontinuity Irreversibility Ecological Resilience
    [Show full text]