Genome-Wide Association Study Identifies a New Susceptibility Locus

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Association Study Identifies a New Susceptibility Locus ARTICLE Received 18 Aug 2014 | Accepted 27 Jan 2015 | Published 16 Mar 2015 DOI: 10.1038/ncomms7414 Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate Yimin Sun1,2,3,4,*, Yongqing Huang5,6,*, Aihua Yin7,8,9,*, Yongchu Pan10,11,12,*, Yirui Wang1,3,4,*, Cheng Wang12,13,*, Yong Du5,6, Meilin Wang14, Feifei Lan7,8,9, Zhibin Hu12,13, Guoqing Wang3,4, Min Jiang5,6, Junqing Ma10,11, Xiaozhuang Zhang15, Hongxia Ma12,13, Jian Ma5,6, Weibing Zhang10,11, Qun Huang16, Zhongwei Zhou5,6, Lan Ma10,11, Yadi Li5,6, Hongbing Jiang10,17, Lan Xie1, Yuyang Jiang2, Bing Shi18,19,y, Jing Cheng1,3,4,y, Hongbing Shen12,13,y, Lin Wang10,11,12,y & Yinxue Yang5,6,y Nonsyndromic cleft lip with or without a cleft palate (NSCL/P) is among the most common human congenital birth defects and imposes a substantial physical and financial burden on affected individuals. Here, we conduct a case–control-based GWAS followed by two rounds of replication; we include six independent cohorts from China to elucidate the genetic architecture of NSCL/P in Chinese populations. Using this combined analysis, we identify a new locus at 16p13.3 associated with NSCL/P: rs8049367 between CREBBP and ADCY9 (odds ratio ¼ 0.74, P ¼ 8.98 Â 10 À 12). We confirm that the reported loci at 1q32.2, 10q25.3, 17p13.1 and 20q12 are also involved in NSCL/P development in Chinese populations. Our results provide additional evidence that the rs2235371-related haplotype at 1q32.2 could play a more important role than the previously identified causal variant rs642961 in Chinese populations. These findings provide information on the genetic basis and mechanisms of NSCL/P. 1 Department of Biomedical Engineering, Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing 100084, China. 2 The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. 3 CapitalBio Corporation, Beijing 102206, China. 4 National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China. 5 General Hospital of Ningxia Medical University, Yinchuan 750004, China. 6 National Engineering Research Center for Beijing Biochip Technology, Sub-center in Ningxia, Yinchuan 750004, China. 7 Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou 511442, China. 8 Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou 511442, China. 9 Biobank of Guangdong Women and Children Hospital, Guangzhou 511442, China. 10 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China. 11 Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China. 12 State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China. 13 Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China. 14 Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China. 15 Thalassemia Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou 511442, China. 16 Department of Dentistry, Guangdong Women and Children Hospital, Guangzhou 511442, China. 17 Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China. 18 The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China. 19 West China College of Stomatology, Sichuan University, Chengdu 610041, China. * These authors contributed equally to this work. y These authors jointly supervised this work. Correspondence and requests for materials should be addressed to Y.Y. (email: [email protected]) or to L.W. (email: [email protected]) or to H.S. (email: [email protected]). NATURE COMMUNICATIONS | 6:6414 | DOI: 10.1038/ncomms7414 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7414 onsyndromic cleft lip with or without cleft palate (NSCL/ loci at 1q32.2, 10q25.3, 17p13.1 and 20q12 are also involved in P) is among the most common human congenital birth NSCL/P development in Chinese populations. Ndefects1. Despite improvements in surgical correction techniques, this serious malformation has lifelong implications Results for health and imposes a substantial financial burden on affected Genome-wide association analysis. In the initial discovery phase, families2. Previous genetic and epidemiological studies clarified we performed a GWAS scan in two cohorts (Huaxi and Nanjing, that the aetiology of NSCL/P is multifactorial, with both genetic Supplementary Fig. 1; Supplementary Table 1). After quality and environmental factors contributing to the phenotype3–5. control (Supplementary Fig. 2), 842,556 autosomal SNPs were To date, four multi-stage, well-designed genome-wide associa- analysed (see Methods) in 858 cases and 1,248 controls (504 cases tion studies (GWAS) of NSCL/P have been conducted. In and 455 controls from the Huaxi cohort (GWAS I), and 354 cases addition to the susceptibility gene IRF6, which was previously and 793 controls from the Nanjing cohort (GWAS II)). We identified in candidate studies before the GWAS era6,7, Birnbaum performed logistic regression in each cohort with adjustments for et al.8 identified a key locus for NSCL/P at 8q24.21 using 686 sex and the significant principal components of the correspond- cases and 1,337 control subjects of European ancestry. An ing cohort to test the additive effect of minor alleles of each SNP. extension of this study, which involved 401 cases and 1,323 Meta-analysis was used to combine the results of the two cohorts controls in addition to independent replication in European trios, in the GWA scan. Because the controls in the Nanjing cohort identified two additional relevant loci at 10q25.3 and 17q22 ref. 9. were derived from imputed data from a previous study and did Beaty et al.10 applied a case–parent design to explore genome- not include newborn infants, we applied a random-effect model wide transmission patterns in 825 trios of European ancestry and in the meta-analysis when heterogeneity existed (P for Cochran’s 1,038 trios of Asian ancestry and validated the identified single- Q statistic o0.05) to avoid false-positive results caused by nucleotide polymorphisms (SNPs) with 331 Asian and 51 South putative population stratification or bias derived from age-based Asian families, 1,149 European families and 434 South/Central differences and imputation error. Quantile–quantile plots of American families, which resulted in the identification of two new genome-wide association test statistics revealed minimal inflation; susceptibility loci at 1p22.1 and 20q12. Subsequent validation of thus, substantial cryptic population substructure and differing Beaty’s study identified three other loci at 1p36.13, 3q12.3 and genotypic variants between the cases and controls were 17p13 that are significantly associated with NSCL/P11.By unlikely after meta-analysis of the two cohorts (l ¼ 1.03, combining the discovery phase of previous GWAS9,10, Ludwig Huaxi l ¼ 1.10 and l ¼ 1.06, Supplementary Fig. 3). et al.12 reported five additional loci (1p36.13, 2p21, 3p11.1, 8q21.3 Nanjing meta Thirty-four SNPs exhibited consistently significant associations and 13q31.1) that are associated with NSCL/P. These on analysis during the discovery phase (see Methods). Among observations not only targeted multiple regions influencing the these SNPs, 18 representative SNPs were selected for subsequent risk of NSCL/P but also suggested that European and Asian evaluation, and the other 16 were ignored because of their high populations may have different causal variants in the same locus linkage disequilibrium (LD) (r240.8) with at least one of the 18 as a result of different genetic backgrounds2. Although these selected SNPs (see Methods, Supplementary Table 2). Coupled studies8–10,12 were well designed, they mainly focused on with an additional 11 SNPs identified in previous studies (see susceptibility loci in people of European ancestry. Some of Methods, Table 1), we included a total of 29 SNPs in the first them involved individuals from Asia10,12, but they recruited validation conducted in Guangzhou (validation Ia), Huaxi samples from different countries and only some of them included (validation Ib) and Nanjing (validation Ic) (see Methods, Fig. 1 individuals from China. and Supplementary Fig. 4). Thus, to further elucidate the genetic architecture of NSCL/P in Chinese individuals and to identify new susceptibility loci for NSCL/P, we conduct a GWAS followed by two rounds of Replication and combined analysis. In the first round of repli- replication in a Chinese population. Using this combined cation, sixteen SNPs exhibited evidence of association with analysis, we identify a new locus at 16p13.3 associated with NSCL/P (Meta P value of validation I o0.05, Supplementary NSCL/P: rs8049367 between CREBBP and ADCY9 (odds Table 3), and we then evaluated these SNPs in the Hui population ratio ¼ 0.74, P ¼ 8.98 Â 10 À 12). We confirm that the reported (validation II), a racial minority in China. In the combined Table 1 | Twelve reported SNPs that met the validation criteria, 11 of which were included in the following validation. w z y Cytoband Published SNPs* Ref Ppublished
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Deletion of Vax1 from Gonadotropin-Releasing Hormone (Gnrh) Neurons Abolishes Gnrh Expression and Leads to Hypogonadism and Infertility
    3506 • The Journal of Neuroscience, March 23, 2016 • 36(12):3506–3518 Cellular/Molecular Deletion of Vax1 from Gonadotropin-Releasing Hormone (GnRH) Neurons Abolishes GnRH Expression and Leads to Hypogonadism and Infertility Hanne M. Hoffmann,1 Crystal Trang,1 Ping Gong,1 Ikuo Kimura,2 Erica C. Pandolfi,1 and XPamela L. Mellon1 1Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674, and 2Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Japan Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regu- lates mammalian fertility. Herein we demonstrate a critical role for the homeodomain transcription factor ventral anterior homeobox 1 (VAX1) in GnRH neuron maturation and show that Vax1 deletion from GnRH neurons leads to complete infertility in males and females. Specifically, global Vax1 knock-out embryos had normal numbers of GnRH neurons at 13 d of gestation, but no GnRH staining was detected by embryonic day 17. To identify the role of VAX1 specifically in GnRH neuron development, Vax1flox mice were generated and lineage tracing performed in Vax1flox/flox:GnRHcre:RosaLacZ mice. This identified VAX1 as essential for maintaining expression of Gnrh1. The absence of GnRH staining in adult Vax1flox/flox:GnRHcre mice led to delayed puberty, hypogonadism, and infertility. To address the mechanism by which VAX1 maintains Gnrh1 transcription, the capacity of VAX1 to regulate Gnrh1 transcription was evaluated in the GnRH cell lines GN11 and GT1-7.
    [Show full text]
  • An Integrative, Genomic, Transcriptomic and Network-Assisted
    Yan et al. BMC Medical Genomics 2020, 13(Suppl 5):39 https://doi.org/10.1186/s12920-020-0675-4 RESEARCH Open Access An integrative, genomic, transcriptomic and network-assisted study to identify genes associated with human cleft lip with or without cleft palate Fangfang Yan1†, Yulin Dai1†, Junichi Iwata2,3, Zhongming Zhao1,4,5* and Peilin Jia1* From The International Conference on Intelligent Biology and Medicine (ICIBM) 2019 Columbus, OH, USA. 9-11 June 2019 Abstract Background: Cleft lip with or without cleft palate (CL/P) is one of the most common congenital human birth defects. A combination of genetic and epidemiology studies has contributed to a better knowledge of CL/P-associated candidate genes and environmental risk factors. However, the etiology of CL/P remains not fully understood. In this study, to identify new CL/P-associated genes, we conducted an integrative analysis using our in-house network tools, dmGWAS [dense module search for Genome-Wide Association Studies (GWAS)] and EW_dmGWAS (Edge-Weighted dmGWAS), in a combination with GWAS data, the human protein-protein interaction (PPI) network, and differential gene expression profiles. Results: A total of 87 genes were consistently detected in both European and Asian ancestries in dmGWAS. There were 31.0% (27/87) showed nominal significance with CL/P (gene-based p < 0.05), with three genes showing strong association signals, including KIAA1598, GPR183,andZMYND11 (p <1×10− 3). In EW_dmGWAS, we identified 253 and 245 module genes associated with CL/P for European ancestry and the Asian ancestry, respectively. Functional enrichment analysis demonstrated that these genes were involved in cell adhesion, protein localization to the plasma membrane, the regulation of the apoptotic signaling pathway, and other pathological conditions.
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Mouse Traf3ip3 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Traf3ip3 Knockout Project (CRISPR/Cas9) Objective: To create a Traf3ip3 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Traf3ip3 gene (NCBI Reference Sequence: NM_153137 ; Ensembl: ENSMUSG00000037318 ) is located on Mouse chromosome 1. 16 exons are identified, with the ATG start codon in exon 3 and the TGA stop codon in exon 16 (Transcript: ENSMUST00000043550). Exon 3~8 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit impaired single positive thymocyte development and increased gamma-delta T cell numbers. Exon 3 starts from the coding region. Exon 3~8 covers 45.81% of the coding region. The size of effective KO region: ~3789 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 6 7 8 16 Legends Exon of mouse Traf3ip3 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 8 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Lncrna Mediated Hijacking of T-Cell Hypoxia Response Pathway by Mycobacterium Tuberculosis Predicts Latent to Active Progression in Humans
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037176; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. lncRNA Mediated Hijacking of T-cell Hypoxia Response Pathway by Mycobacterium Tuberculosis Predicts Latent to Active Progression in Humans 1# 1# 2# 1* Jyotsana Mehra ,​ Vikram Kumar ,​ Priyansh Srivastava ,​ Tavpritesh Sethi ​ ​ ​ ​ 1 1 2 1* [email protected] ,​ [email protected] ,​ [email protected] ,​ [email protected] ​ ​ ​ ​ ​ ​ ​ ​ 1 2 Indraprastha​ Institute of Information Technology, Delhi, India, Amity​ University, Noida, Uttar Pradesh, India ​ # * Equal​ Contribution, Corresponding​ Author ​ ​ Abstract- Cytosolic functions of Long non-coding RNAs including mRNA translation masking and ​ sponging are major regulators of biological pathways. Formation of T cell- bounded hypoxic granuloma is a host immune defense for containing infected Mtb-macrophages. Our study exploits the mechanistic pathway of Mtb-induced HIF1A silencing by the antisense lncRNA-HIF1A-AS2 in T cells. Computational analysis of in-vitro T-cell stimulation assays in progressors(n=119) versus latent(n=221) tuberculosis patients revealed the role of lncRNA mediated disruption of hypoxia adaptation pathways in progressors. We found 291 upregulated and 227 downregulated lncRNAs that were correlated at mRNA level with HIF1A and HILPDA which are major players in hypoxia response. We also report novel lncRNA-AC010655 (AC010655.4 and AC010655.2) in cis with HILPDA, both of which contain binding sites for the BARX2 transcription factor, thus indicating a mechanistic role.
    [Show full text]
  • Genome-Scale Single-Cell Mechanical Phenotyping Reveals Disease-Related Genes Involved in Mitotic Rounding
    ARTICLE DOI: 10.1038/s41467-017-01147-6 OPEN Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding Yusuke Toyoda 1,2, Cedric J. Cattin3, Martin P. Stewart 3,4,5, Ina Poser1, Mirko Theis6, Teymuras V. Kurzchalia1, Frank Buchholz1,6, Anthony A. Hyman1 & Daniel J. Müller 3 To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson’s disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape. 1 Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. 2 Division of Cell Biology, Life Science Institute, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan. 3 Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
    [Show full text]
  • Role of Genomic Variants in the Response to Biologics Targeting Common Autoimmune Disorders
    Role of genomic variants in the response to biologics targeting common autoimmune disorders by Gordana Lenert, PhD The thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science Ottawa-Carleton Joint Program in Bioinformatics Carleton University Ottawa, Canada © 2016 Gordana Lenert Abstract Autoimmune diseases (AID) are common chronic inflammatory conditions initiated by the loss of the immunological tolerance to self-antigens. Chronic immune response and uncontrolled inflammation provoke diverse clinical manifestations, causing impairment of various tissues, organs or organ systems. To avoid disability and death, AID must be managed in clinical practice over long periods with complex and closely controlled medication regimens. The anti-tumor necrosis factor biologics (aTNFs) are targeted therapeutic drugs used for AID management. However, in spite of being very successful therapeutics, aTNFs are not able to induce remission in one third of AID phenotypes. In our research, we investigated genomic variability of AID phenotypes in order to explain unpredictable lack of response to aTNFs. Our hypothesis is that key genetic factors, responsible for the aTNFs unresponsiveness, are positioned at the crossroads between aTNF therapeutic processes that generate remission and pathogenic or disease processes that lead to AID phenotypes expression. In order to find these key genetic factors at the intersection of the curative and the disease pathways, we combined genomic variation data collected from publicly available curated AID genome wide association studies (AID GWAS) for each disease. Using collected data, we performed prioritization of genes and other genomic structures, defined the key disease pathways and networks, and related the results with the known data by the bioinformatics approaches.
    [Show full text]
  • STRIPAK Complexes in Cell Signaling and Cancer
    Oncogene (2016), 1–9 © 2016 Macmillan Publishers Limited All rights reserved 0950-9232/16 www.nature.com/onc REVIEW STRIPAK complexes in cell signaling and cancer Z Shi1,2, S Jiao1 and Z Zhou1,3 Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de) phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer. Oncogene advance online publication, 15 February 2016; doi:10.1038/onc.2016.9 INTRODUCTION in the central nervous system and STRN4 is mostly abundant in Recent proteomic studies identified a group of novel multi- the brain and lung, whereas STRN3 is ubiquitously expressed in 5–9 component complexes named striatin (STRN)-interacting phos- almost all tissues. STRNs share a
    [Show full text]