Organizing Multi-Enzyme Systems Into Programmable Materials for Biocatalysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structural Studies of Lumazine Synthases – Thermostability, Catalytic Mechanism and Molecular Assembly
Center for Structural Biochemistry Department of Biosciences at Novum Karolinska Institutet, S-141 57 Huddinge, Sweden Structural Studies of Lumazine Synthases – Thermostability, Catalytic Mechanism and Molecular Assembly Xiaofeng Zhang Stockholm 2005 Cover Illustration: Electron density of the active site of lumazine synthase from the hyperthermophilic bacterium Aquifex aeolicus. All previously published papers were reproduced with permission from the publisher. Published and printed by Karolinska University Press Box 200, SE-171 77 Stockholm, Sweden © Xiaofeng Zhang, 2005 ISBN 91-7140-605-0 ABSTRACT Riboflavin, also known as vitamin B2, is biosynthesized in plants, bacteria, archaea and fungi. The primary biological function of riboflavin is related to its existence as a component of the two coenzymes, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which play an important role for electron transfer in energy metabolism. This project is mainly focused on structural studies of lumazine synthase (LS) from the hyperthermophilic bacterium Aquifex aeolicus (LSAQ). The enzyme is involved in the penultimate step of biosynthesis of riboflavin. The aim of this study is to gain insights into the structural basis of thermostability, catalytic mechanism as well as the molecular assembly of the enzyme. Methods used for these studies include X-ray crystallography, electron microscopy (EM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Lumazine synthase from the hyperthermophile A. aeolicus displays dramatic stability against high temperature. The calorimetric melting profile indicates an apparent melting temperature (Tm) of 120qC. The factors that determine the thermostability of A. aeolicus LS were revealed by structural comparisons (Paper I, 2001). In the second last step of riboflavin biosynthesis, lumazine synthase catalyzes the formation of 6-7-dimethyl-8-ribityllumazine, which is subsequently converted to riboflavin. -
Subtiligase-Catalyzed Peptide Ligation Amy M
Review Cite This: Chem. Rev. 2020, 120, 3127−3160 pubs.acs.org/CR Subtiligase-Catalyzed Peptide Ligation Amy M. Weeks*,† and James A. Wells*,†,‡ † Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States ‡ Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States ABSTRACT: Subtiligase-catalyzed peptide ligation is a powerful approach for site- specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed. CONTENTS 6.1. Subtiligase-Catalyzed Thioester and Thioa- cid Synthesis for Peptide and Protein 1. Introduction 3128 Bioconjugation 3138 2. Using Proteases in Reverse for Peptide Bond 6.2. Peptide Segment Condensation 3139 Formation 3129 6.3. Peptide Cyclization 3140 2.1. Protease-Catalyzed Peptide Bond Synthesis 6.4. Total Protein Synthesis 3140 under Thermodynamic Control 3129 7. Application of Subtiligase for Site-Specific 2.2. Protease-Catalyzed Peptide Bond Synthesis Protein Bioconjugation 3141 under Kinetic Control 3129 7.1. Sequence and Structural Requirements for 3. Protein Engineering of Subtilisin for Improved N-Terminal Modification by Subtiligase 3142 Peptide Bond Synthesis 3129 7.1.1. Characterization of Sequence and 3.1. Mutation of the Catalytic Serine to Cysteine 3129 Structural Requirements 3142 3.2. -
Cysteine Proteinases of Microorganisms and Viruses
ISSN 00062979, Biochemistry (Moscow), 2008, Vol. 73, No. 1, pp. 113. © Pleiades Publishing, Ltd., 2008. Original Russian Text © G. N. Rudenskaya, D. V. Pupov, 2008, published in Biokhimiya, 2008, Vol. 73, No. 1, pp. 317. REVIEW Cysteine Proteinases of Microorganisms and Viruses G. N. Rudenskaya1* and D. V. Pupov2 1Faculty of Chemistry and 2Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; fax: (495) 9393181; Email: [email protected] Received May 7, 2007 Revision received July 18, 2007 Abstract—This review considers properties of secreted cysteine proteinases of protozoa, bacteria, and viruses and presents information on the contemporary taxonomy of cysteine proteinases. Literature data on the structure and physicochemical and enzymatic properties of these enzymes are reviewed. High interest in cysteine proteinases is explained by the discovery of these enzymes mostly in pathogenic organisms. The role of the proteinases in pathogenesis of several severe diseases of human and animals is discussed. DOI: 10.1134/S000629790801001X Key words: cysteine proteinases, properties, protozoa, bacteria, viruses Classification and Catalytic Mechanism papain and related peptidases showed that the catalytic of Cysteine Proteinases residues are arranged in the following order in the polypeptide chain: Cys, His, and Asn. Also, a glutamine Cysteine proteinases are peptidyl hydrolases in residue preceding the catalytic cysteine is also important which the role of the nucleophilic group of the active site for catalysis. This residue is probably involved in the for is performed by the sulfhydryl group of a cysteine residue. mation of the oxyanion cavity of the enzyme. The cat Cysteine proteinases were first discovered and investigat alytic cysteine residue is usually followed by a residue of ed in tropic plants. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Proteolytic Enzymes in Grass Pollen and Their Relationship to Allergenic Proteins
Proteolytic Enzymes in Grass Pollen and their Relationship to Allergenic Proteins By Rohit G. Saldanha A thesis submitted in fulfilment of the requirements for the degree of Masters by Research Faculty of Medicine The University of New South Wales March 2005 TABLE OF CONTENTS TABLE OF CONTENTS 1 LIST OF FIGURES 6 LIST OF TABLES 8 LIST OF TABLES 8 ABBREVIATIONS 8 ACKNOWLEDGEMENTS 11 PUBLISHED WORK FROM THIS THESIS 12 ABSTRACT 13 1. ASTHMA AND SENSITISATION IN ALLERGIC DISEASES 14 1.1 Defining Asthma and its Clinical Presentation 14 1.2 Inflammatory Responses in Asthma 15 1.2.1 The Early Phase Response 15 1.2.2 The Late Phase Reaction 16 1.3 Effects of Airway Inflammation 16 1.3.1 Respiratory Epithelium 16 1.3.2 Airway Remodelling 17 1.4 Classification of Asthma 18 1.4.1 Extrinsic Asthma 19 1.4.2 Intrinsic Asthma 19 1.5 Prevalence of Asthma 20 1.6 Immunological Sensitisation 22 1.7 Antigen Presentation and development of T cell Responses. 22 1.8 Factors Influencing T cell Activation Responses 25 1.8.1 Co-Stimulatory Interactions 25 1.8.2 Cognate Cellular Interactions 26 1.8.3 Soluble Pro-inflammatory Factors 26 1.9 Intracellular Signalling Mechanisms Regulating T cell Differentiation 30 2 POLLEN ALLERGENS AND THEIR RELATIONSHIP TO PROTEOLYTIC ENZYMES 33 1 2.1 The Role of Pollen Allergens in Asthma 33 2.2 Environmental Factors influencing Pollen Exposure 33 2.3 Classification of Pollen Sources 35 2.3.1 Taxonomy of Pollen Sources 35 2.3.2 Cross-Reactivity between different Pollen Allergens 40 2.4 Classification of Pollen Allergens 41 2.4.1 -
CV for Mark Cushman
Mark Cushman CURRICULUM VITAE - MARK CUSHMAN Professional Title: Distinguished Professor of Medicinal Chemistry Date of Birth: August 20, 1945 Place of Birth: Fresno, California Citizenship: United States Education: Undergraduate: Fresno State College Fresno, California 1963-1965 Professional: Doctor of Pharmacy University of California San Francisco, California 1965-1969 Graduate: Ph.D., Pharmaceutical Chemistry University of California San Francisco, California 1969-1973 Postdoctoral: Organic Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 1973-1975 Academic Appointments: Assistant Professor of Medicinal Chemistry Purdue University, 1975-1980 Associate Professor of Medicinal Chemistry Purdue University, 1980-1985 Professor of Medicinal Chemistry Purdue University, 1985-2010 Distinguished Professor of Medicinal Chemistry Purdue University, 2010-present Adjunct Professor of Pharmacology and Toxicology Indiana University School of Medicine, Lafayette, 2014-present Sabbatical: Senior Fulbright Scholar Lehrstuhl für Organische Chemie und Biochemie der Technische Universität München Garching, West Germany, 1983-1984 Present Position: Distinguished Professor of Medicinal Chemistry Purdue University, 2012-present 1 Mark Cushman Awards and Honors: Bank of America Achievement Award in Music, 1963 University of California Regents Scholarship, 1965-1969 American Foundation for Pharmaceutical Education Fellowship, 1969-1973 National Defense Education Act Title IV Fellowship, 1969-1973 National Institutes of Health Postdoctoral -
Vitamin Biosynthesis As an Antifungal Target
Journal of Fungi Review Vitamin Biosynthesis as an Antifungal Target Zohar Meir and Nir Osherov * Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel; [email protected] * Correspondence: [email protected]; Tel.: +972-3-640-9599; Fax: +972-3-640-9160 Received: 29 May 2018; Accepted: 13 June 2018; Published: 17 June 2018 Abstract: The large increase in the population of immunosuppressed patients, coupled with the limited efficacy of existing antifungals and rising resistance toward them, have dramatically highlighted the need to develop novel drugs for the treatment of invasive fungal infections. An attractive possibility is the identification of possible drug targets within essential fungal metabolic pathways not shared with humans. Here, we review the vitamin biosynthetic pathways (vitamins A–E, K) as candidates for the development of antifungals. We present a set of ranking criteria that identify the vitamin B2 (riboflavin), B5 (pantothenic acid), and B9 (folate) biosynthesis pathways as being particularly rich in new antifungal targets. We propose that recent scientific advances in the fields of drug design and fungal genomics have developed sufficiently to merit a renewed look at these pathways as promising sources for the development of novel classes of antifungals. Keywords: antifungals; fungal vitamin metabolism; drug target; essential genes 1. Introduction The number of life-threatening fungal infections has risen dramatically over the last twenty years. Recent estimates have identified a global burden of almost two million patients with systemic and invasive fungal infections, including ~700,000 cases of invasive candidiasis, ~500,000 cases of Pneumocystis jirovecii pneumonia, ~250,000 cases of invasive aspergillosis, ~220,000 cases of cryptococcal meningitis, and ~100,000 cases of disseminated histoplasmosis [1,2]. -
Genome-Wide Investigation of Cellular Functions for Trna Nucleus
Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions. -
Imidazo[4,5-B] Pyridines As Lumazine Synthase Inhibitors for Their Effective Antimicrobial Activity
Original Article In-silico docking based design and synthesis of [1H,3H] imidazo[4,5-b] pyridines as lumazine synthase inhibitors for their effective antimicrobial activity Sunil L. Harer, Manish S. Bhatia Department of ABSTRACT Pharmaceutical Chemistry, Purpose: The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number Bharati Vidyapeeth College of Pharmacy, of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin Kolhapur, Maharashtra, biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in India microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5‑b] pyridine test ligands and target protein Address for correspondence: Lumazine synthase (protein Data Bank 2C92), one‑step synthesis of title compounds and further evaluation of Prof. Sunil L. Harer, them for in vitro antimicrobial activity. Materials and Methods: Active pocket of the target protein involved in E-mail: sunil.harer5@gmail. com the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In‑silico docking suggests H‑bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme‑inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Results and Discussion: Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal’s forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. -
Structure-Guided Computational Approaches to Unravel Druggable Proteomic Landscape of Mycobacterium Leprae
fmolb-08-663301 May 3, 2021 Time: 16:56 # 1 REVIEW published: 07 May 2021 doi: 10.3389/fmolb.2021.663301 Structure-Guided Computational Approaches to Unravel Druggable Proteomic Landscape of Mycobacterium leprae Sundeep Chaitanya Vedithi1*†, Sony Malhotra2†, Marta Acebrón-García-de-Eulate1, Modestas Matusevicius1, Pedro Henrique Monteiro Torres3 and Tom L. Blundell1* 1 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom, 2 Rutherford Appleton Laboratory, Science and Technology Facilities Council, Oxon, United Kingdom, 3 Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil Leprosy, caused by Mycobacterium leprae (M. leprae), is treated with a multidrug Edited by: Alexandre G. De Brevern, regimen comprising Dapsone, Rifampicin, and Clofazimine. These drugs exhibit INSERM U1134 Biologie Intégrée du bacteriostatic, bactericidal and anti-inflammatory properties, respectively, and control Globule Rouge, France the dissemination of infection in the host. However, the current treatment is not cost- Reviewed by: effective, does not favor patient compliance due to its long duration (12 months) Stéphane Téletchéa, Université de Nantes, France and does not protect against the incumbent nerve damage, which is a severe Jeremy Esque, leprosy complication. The chronic infectious peripheral neuropathy associated with Institut Biotechnologique de Toulouse (INSA), France the disease is primarily due to the bacterial components infiltrating the Schwann *Correspondence: cells that protect neuronal axons, thereby inducing a demyelinating phenotype. There Sundeep Chaitanya Vedithi is a need to discover novel/repurposed drugs that can act as short duration and [email protected] effective alternatives to the existing treatment regimens, preventing nerve damage Tom L. -
Recognition of Class II MHC Peptide Ligands That Contain Β-Amino Acids Ross W
Recognition of Class II MHC Peptide Ligands That Contain β-Amino Acids Ross W. Cheloha, Andrew W. Woodham, Djenet Bousbaine, Tong Wang, Shi Liu, John Sidney, Alessandro Sette, Samuel This information is current as H. Gellman and Hidde L. Ploegh of October 1, 2021. J Immunol published online 7 August 2019 http://www.jimmunol.org/content/early/2019/08/06/jimmun ol.1900536 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/08/06/jimmunol.190053 Material 6.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 7, 2019, doi:10.4049/jimmunol.1900536 The Journal of Immunology Recognition of Class II MHC Peptide Ligands That Contain b-Amino Acids Ross W. Cheloha,* Andrew W. Woodham,* Djenet Bousbaine,*,† Tong Wang,‡ Shi Liu,‡ John Sidney,x Alessandro Sette,x,{ Samuel H. -
[Thesis Title Goes Here]
BIOLOGICALLY ACTIVE ASSEMBLIES THAT ATTENUATE THROMBOSIS ON BLOOD-CONTACTING SURFACES A Dissertation Presented to The Academic Faculty by Zheng Qu In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Bioengineering Georgia Institute of Technology December 2012 BIOLOGICALLY ACTIVE ASSEMBLIES THAT ATTENUATE THROMBOSIS ON BLOOD-CONTACTING SURFACES Approved by: Dr. Elliot L. Chaikof, Advisor Dr. Larry V. McIntire The Wallace H. Coulter Department of The Wallace H. Coulter Department of Biomedical Engineering Biomedical Engineering Georgia Institute of Technology Georgia Institute of Technology Department of Surgery Beth Israel Deaconess Medical Center Dr. Julia E. Babensee Dr. W. Robert Taylor The Wallace H.Coulter Department of Division of Cardiology Biomedical Engineering Emory University School of Medicine Georgia Institute of Technology Dr. Stephen R. Hanson Department of Biomedical Engineering Oregon Health and Science University Date Approved: November 2, 2012 Dedicated to my parents, for their unconditional love. ACKNOWLEDGEMENTS The progress and advances made in this research were enabled by contributions from many colleagues and peers, as well as support from family and friends. It is these relationships that were forged during the course of my career that I cherish the most. First and foremost, I want to express my sincerest gratitude for Dr. Elliot Chaikof, for guiding me through the many challenges of scientific research with innovative ideas and patient advice, and above all, by always keeping the “big picture” in perspective. Dr. Chaikof has taken the time to personally support every step along the way of my career as a PhD candidate despite his huge commitments to the clinic.