Evaluation of Generalized Variance Function Estimators for the U.S

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Generalized Variance Function Estimators for the U.S EVALUATION OF GENERALIZED VARIANCE FUNCTION ESTIMATORS FOR THE U.S. CURRENT EMPLOYMENT SURVEY Moon J. Cho, John L. Eltinge, Julie Gershunskaya, Larry Huff, U.S. Bureau of Labor Statistics Moon J. Cho, 2 Massachusetts Avenue NE, Washington, DC 20212 (Cho [email protected]) Key Words: Complex sample design, Covered Em- ple, in CES survey, domains are the combinations ployment and Wages Program (ES-202), Design- of industries, areas and time. DeÞne Vpj= Vp(θˆj ) based inference, Generalized least squares, Model- as the design variance of θˆj ,andVˆpj = Vˆp(θˆj )as based inference, Superpopulation model, Variance an estimator of Vpj . Throughout this paper, the estimator stability. subscript “p” denotes the method to obtain an ex- pectation or variance evaluated with respect to the 1. Introduction sample design. The generalized variance function method models In applied work with generalized variance function the variance of a survey estimator, Vpj, as a function models for sample survey data, one generally seeks of the estimate and possibly other variables (Wolter to develop and validate a model that is relatively 1985). The common speciÞcation is parsimonious and that produces variance estimators that are approximately unbiased and relatively sta- Vpj = f(θj ,Xj , γj )+qj (1) ble. This development and validation work often begins with regression of initial variance estimators where Xj is a vector of predictor variables poten- (computed through standard design-based methods) tially relevant to estimators of Vpj, qj is a univariate on one or more candidate explanatory variables. “equation error” with the mean 0, and γj is a vector Evaluation of the adequacy of the resulting regres- of variance function parameters which we need to sion Þt depends heavily on the relative magnitudes of estimate. Note especially that qj represents the de- error terms associated, respectively, with pure sam- viation of Vpj from its modeled value f(θj ,Xj , γj ). pling variability of the initial design-based variance estimators; the deterministic lack of Þt in the pro- 3. Current Employment Survey Data posed generalized variance function model; and the random equation error associated with the gener- The CES survey collects data on employment, hours, alized variance function model. This paper presents and earnings from 400,000 nonfarm establishments some simple methods of evaluating the relative mag- monthly. Employment is the total number of persons nitudes of the sampling error and equation error employed full or part time in a nonfarm establish- terms. Both parametric and nonparametric regres- ment during a speciÞed payroll period. An establish- sion methods are used in producing smoothed esti- ment, which is an economic unit, is generally located mators of the mean squared equation error in the at a single location, and is engaged predominantly in underlying generalized variance function model Þt. one type of economic activity (BLS Handbook,1997). Some of the proposed diagnostics are applied to This paper will focus only on total employment in data from the U.S. Current Employment Survey. the reporting establishment. One important feature of the CES program is that 2. Variance Function Model complete universe employment counts of the previ- ous year become available from the Unemployment DeÞne θˆj a point estimator of θj , a Þnite population Insurance tax records on a lagged basis (Butani, mean or total. Let θξ j be a superpopulation ana- Stamas and Brick, 1997). The quarterly unemploy- logue of θj where j is the domain index. For exam- ment insurance Þles are generally transmitted Þve months after the end of the quarter by the states to The views expressed in this paper are those of the authors and do not necessarily reßect the policies of the U.S. Bureau BLS. It takes BLS an additional 3 months to process of Labor Statistics. these Þles through various edits as well as perform record linkage to previous quarters before making 12 reporting UI accounts. There are 430 industry- it available as the sampling frame (Butani, Stamas area combinations in our CES data. Each industry- and Brick, 1997). This data known as ES202 data area combination has data from January to Decem- are used annually to benchmark the CES sample es- ber of the year 2000. Hence we have 5160 industry- timates to these universe counts (Werking, 1997). area-time combinations. For the current analysis, Using the benchmark data, xia0, at the base pe- we considered data from the following six indus- riod from ES202 data, the CES program obtains tries: Mining, Construction and Mining, Construc- weighted link relative estimator,y ˆiat,toestimate tion, Manufacturing Durable Goods, Manufacturing the total employment, xiat, within the industry i, Nondurable Goods, Wholesale Trade. Consider the area a and month t, GVF model yˆiat = xia0Rˆiat log(Vˆiat)=γ0 + γ1log(xia0)+γ2log(niat) +γ3log(tia0)+e. (2) where Rˆiat is the growth ratio estimate from bench- mark month 0 to current month t. In this model, we assume that both intercepts and The CES sample design uses stratiÞed sampling of slopes are constant across the industries and areas. Unemployment Insurance (UI) accounts with strata Various modiÞed models can be considered from (2). deÞned by state, industry and employment size class For example, we may allow the intercepts to vary (BLS Handbook, 1997). CES aims primarily at across industries. Further, we may allow the inter- meeting the requirements for the national estimates. cepts and the slopes to vary across industries. As for Þner domains which are deÞned by geographic characteristics, and industrial classiÞcations, effec- 5. Residual Decomposition tive sample sizes within occupational classiÞcations become so small that the standard design based es- Suppose that a model Þtting method (e.g., ordinary timators are not precise enough to satisfy the needs least squares perhaps on a transformed scale; or non- of prospective data users (Eltinge, Fields, Fisher, linear least squares) leads to the point estimatorγ ˆj . Gershunskaya, Getz, Huff, Tiller and Waddington, This in turn leads to the estimated variances, 2001). It is necessary to have stable estimates of def ˆ ˆ V (ˆyiat)fortheÞner domains. Vpj∗ = f(θj , Xj , γˆj ) . (3) 4. Model Fitting Note that Vpj∗ is the variance estimator based on the model, which is transformed back onto original We used the direct variance estimators from the sur- variance scale. vey as the dependent variables in GVF models. In From the deÞnition of the direct variance estima- ˆ the CES survey, we have direct estimators, Vpj of tor Vpj, from Fay’s method which is a variant of the balanced half-samples replication methods. Each Vˆpj = Vpj + #j (4) replicate half-sample estimate is formed based on a Hadamard matrix. In the standard balanced half- where #j has a mean 0 and a constant variance. Re- samples replication methods, only the selected ones call the variance function model in (1), areusedtoestimatethevariance,andtheweights for the selected units are multiplied by a factor 2 to Vpj = f(θj ,Xj , γj )+qj form the weights for the replicate estimate (Wolter, 1985). However, in Fay’s method, one-half of the sample is weighted down by a factor K(0 K<1) Then the resulting residuals are and the remaining half is weighted up by a≤ compen- ˆ sating factor 2 K (Judkins, 1990). In our CES Vpj Vpj∗ − − example, K =0.5. =(Vˆpj Vpj) (V ∗ Vpj) − − pj − We assume that Vˆpj is a design unbiased estima- = #j f(θˆj , Xˆj , γˆj ) f(θj ,Xj , γj ) qj (5) tor for Vpj, i.e., Ep(Vˆpj)=Vpj . Our sample con- − { − − } = #j + qj E(qj ) + E(qj ) sists of Unemployment Insurance accounts, which re- { − } port nonzero employment for previous and current f(θˆj , Xˆj , γˆj ) f(θj ,Xj , γj ) . (6) − { − } months. Let niat be a number of responding UI ac- counts within the industry i,areaa and month t.In In the equation above, #j is a pure estimation er- this paper, we consider only domains with at least ror in the original Vˆpj estimates with E(#j )=0, qj E(qj ) is random equation error, and E(qj ) In this section, we obtain and model the condi- { − } 2 is deterministic lack-of-Þt in our model attributable tional squared error, E (Vpj∗ Vpj) Xj . Consider e.g., to omitted regressors or misspeciÞed functional { − | } ˆ ˆ ˆ 2 form. f(θj , Xj , γˆj ) f(θj ,Xj , γj ) ,thelastterm E (Vpj Vpj∗ ) Xj in (6),{ is a parameter− estimation error} attributable { − | } ˆ 2 ˆ = E (Vpj Vpj)+(Vpj Vpj∗ ) Xj . to errors (θj ,Xj , γˆj ) (θj ,Xj , γj ) . { − − } | { − } Exploratory analysis of the adequacy of our esti- ) * Recall the equation (5) mated values, Vpj∗ , may focus on the magnitude of the prediction errors, Vpj∗ Vpj , relative to the er- ˆ ˆ ˆ − Vpj Vpj∗ = #j + qj f(θj , Xj , γˆj ) f(θj ,Xj , γj ) . − − { − } rors, Vˆpj Vpj , in the original estimators Vˆpj . − ! " 2 ˆ From the variance function model in (1), and the If E(V#pj∗ Vpj) $is smaller than the variance of Vpj, − deÞnition of Vpj∗ in (3), we have then we would prefer Vpj∗ . In some cases, we may Þnd that ˆ ˆ Vpj Vpj∗ = qj f(θj , Xj , γˆj) f(θj ,Xj , γj ) . 2 − − { − } def ˆ ˆ δ(θj ,Xj , γj ) = E f(θj , Xj , γˆj ) Vpj θj ,Xj , γ We are now assuming that for all X , − | j % ( & ' E #j qj f(θj ,Xj , γj ) f(θˆj , Xˆj , γˆj ) Xj − { − } | varies across values of θj or Xj with 2 is# much) smaller than E(#j Xj*),$ and δ(θj ,Xj , γj ) << Vp(Vˆpj Vpj)onlyinsome 2 | E (Vpj V ∗ ) Xj . Generally this will be − { − pj | } cases. In this case, we might prefer Vpj∗ for some, true provided that the number of domains is but not all values of Xj .
Recommended publications
  • Generalized Linear Models and Generalized Additive Models
    00:34 Friday 27th February, 2015 Copyright ©Cosma Rohilla Shalizi; do not distribute without permission updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ Chapter 13 Generalized Linear Models and Generalized Additive Models [[TODO: Merge GLM/GAM and Logistic Regression chap- 13.1 Generalized Linear Models and Iterative Least Squares ters]] [[ATTN: Keep as separate Logistic regression is a particular instance of a broader kind of model, called a gener- chapter, or merge with logis- alized linear model (GLM). You are familiar, of course, from your regression class tic?]] with the idea of transforming the response variable, what we’ve been calling Y , and then predicting the transformed variable from X . This was not what we did in logis- tic regression. Rather, we transformed the conditional expected value, and made that a linear function of X . This seems odd, because it is odd, but it turns out to be useful. Let’s be specific. Our usual focus in regression modeling has been the condi- tional expectation function, r (x)=E[Y X = x]. In plain linear regression, we try | to approximate r (x) by β0 + x β. In logistic regression, r (x)=E[Y X = x] = · | Pr(Y = 1 X = x), and it is a transformation of r (x) which is linear. The usual nota- tion says | ⌘(x)=β0 + x β (13.1) · r (x) ⌘(x)=log (13.2) 1 r (x) − = g(r (x)) (13.3) defining the logistic link function by g(m)=log m/(1 m). The function ⌘(x) is called the linear predictor. − Now, the first impulse for estimating this model would be to apply the transfor- mation g to the response.
    [Show full text]
  • Stochastic Process - Introduction
    Stochastic Process - Introduction • Stochastic processes are processes that proceed randomly in time. • Rather than consider fixed random variables X, Y, etc. or even sequences of i.i.d random variables, we consider sequences X0, X1, X2, …. Where Xt represent some random quantity at time t. • In general, the value Xt might depend on the quantity Xt-1 at time t-1, or even the value Xs for other times s < t. • Example: simple random walk . week 2 1 Stochastic Process - Definition • A stochastic process is a family of time indexed random variables Xt where t belongs to an index set. Formal notation, { t : ∈ ItX } where I is an index set that is a subset of R. • Examples of index sets: 1) I = (-∞, ∞) or I = [0, ∞]. In this case Xt is a continuous time stochastic process. 2) I = {0, ±1, ±2, ….} or I = {0, 1, 2, …}. In this case Xt is a discrete time stochastic process. • We use uppercase letter {Xt } to describe the process. A time series, {xt } is a realization or sample function from a certain process. • We use information from a time series to estimate parameters and properties of process {Xt }. week 2 2 Probability Distribution of a Process • For any stochastic process with index set I, its probability distribution function is uniquely determined by its finite dimensional distributions. •The k dimensional distribution function of a process is defined by FXX x,..., ( 1 x,..., k ) = P( Xt ≤ 1 ,..., xt≤ X k) x t1 tk 1 k for anyt 1 ,..., t k ∈ I and any real numbers x1, …, xk .
    [Show full text]
  • Variance Function Regressions for Studying Inequality
    Variance Function Regressions for Studying Inequality The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Western, Bruce and Deirdre Bloome. 2009. Variance function regressions for studying inequality. Working paper, Department of Sociology, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2645469 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Variance Function Regressions for Studying Inequality Bruce Western1 Deirdre Bloome Harvard University January 2009 1Department of Sociology, 33 Kirkland Street, Cambridge MA 02138. E-mail: [email protected]. This research was supported by a grant from the Russell Sage Foundation. Abstract Regression-based studies of inequality model only between-group differ- ences, yet often these differences are far exceeded by residual inequality. Residual inequality is usually attributed to measurement error or the in- fluence of unobserved characteristics. We present a regression that in- cludes covariates for both the mean and variance of a dependent variable. In this model, the residual variance is treated as a target for analysis. In analyses of inequality, the residual variance might be interpreted as mea- suring risk or insecurity. Variance function regressions are illustrated in an analysis of panel data on earnings among released prisoners in the Na- tional Longitudinal Survey of Youth. We extend the model to a decomposi- tion analysis, relating the change in inequality to compositional changes in the population and changes in coefficients for the mean and variance.
    [Show full text]
  • Flexible Signal Denoising Via Flexible Empirical Bayes Shrinkage
    Journal of Machine Learning Research 22 (2021) 1-28 Submitted 1/19; Revised 9/20; Published 5/21 Flexible Signal Denoising via Flexible Empirical Bayes Shrinkage Zhengrong Xing [email protected] Department of Statistics University of Chicago Chicago, IL 60637, USA Peter Carbonetto [email protected] Research Computing Center and Department of Human Genetics University of Chicago Chicago, IL 60637, USA Matthew Stephens [email protected] Department of Statistics and Department of Human Genetics University of Chicago Chicago, IL 60637, USA Editor: Edo Airoldi Abstract Signal denoising—also known as non-parametric regression—is often performed through shrinkage estima- tion in a transformed (e.g., wavelet) domain; shrinkage in the transformed domain corresponds to smoothing in the original domain. A key question in such applications is how much to shrink, or, equivalently, how much to smooth. Empirical Bayes shrinkage methods provide an attractive solution to this problem; they use the data to estimate a distribution of underlying “effects,” hence automatically select an appropriate amount of shrinkage. However, most existing implementations of empirical Bayes shrinkage are less flexible than they could be—both in their assumptions on the underlying distribution of effects, and in their ability to han- dle heteroskedasticity—which limits their signal denoising applications. Here we address this by adopting a particularly flexible, stable and computationally convenient empirical Bayes shrinkage method and apply- ing it to several signal denoising problems. These applications include smoothing of Poisson data and het- eroskedastic Gaussian data. We show through empirical comparisons that the results are competitive with other methods, including both simple thresholding rules and purpose-built empirical Bayes procedures.
    [Show full text]
  • Variance Function Estimation in Multivariate Nonparametric Regression by T
    Variance Function Estimation in Multivariate Nonparametric Regression by T. Tony Cai, Lie Wang University of Pennsylvania Michael Levine Purdue University Technical Report #06-09 Department of Statistics Purdue University West Lafayette, IN USA October 2006 Variance Function Estimation in Multivariate Nonparametric Regression T. Tony Cail, Michael Levine* Lie Wangl October 3, 2006 Abstract Variance function estimation in multivariate nonparametric regression is consid- ered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of the variance func- tion on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference-based estimator that achieves minimax rate of convergence in one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions. Keywords: Minimax estimation, nonparametric regression, variance estimation. AMS 2000 Subject Classification: Primary: 62G08, 62G20. Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104. The research of Tony Cai was supported in part by NSF Grant DMS-0306576. 'Corresponding author. Address: 250 N. University Street, Purdue University, West Lafayette, IN 47907. Email: [email protected]. Phone: 765-496-7571. Fax: 765-494-0558 1 Introduction We consider the multivariate nonparametric regression problem where yi E R, xi E S = [0, Ild C Rd while a, are iid random variables with zero mean and unit variance and have bounded absolute fourth moments: E lail 5 p4 < m.
    [Show full text]
  • Variance Function Program
    Variance Function Program Version 15.0 (for Windows XP and later) July 2018 W.A. Sadler 71B Middleton Road Christchurch 8041 New Zealand Ph: +64 3 343 3808 e-mail: [email protected] (formerly at Nuclear Medicine Department, Christchurch Hospital) Contents Page Variance Function Program 15.0 1 Windows Vista through Windows 10 Issues 1 Program Help 1 Gestures 1 Program Structure 2 Data Type 3 Automation 3 Program Data Area 3 User Preferences File 4 Auto-processing File 4 Graph Templates 4 Decimal Separator 4 Screen Settings 4 Scrolling through Summaries and Displays 4 The Variance Function 5 Variance Function Output Examples 8 Variance Stabilisation 11 Histogram, Error and Biological Variation Plots 12 Regression Analysis 13 Limit of Blank (LoB) and Limit of Detection (LoD) 14 Bland-Altman Analysis 14 Appendix A (Program Delivery) 16 Appendix B (Program Installation) 16 Appendix C (Program Removal) 16 Appendix D (Example Data, SD and Regression Files) 16 Appendix E (Auto-processing Example Files) 17 Appendix F (History) 17 Appendix G (Changes: Version 14.0 to Version 15.0) 18 Appendix H (Version 14.0 Bug Fixes) 19 References 20 Variance Function Program 15.0 1 Variance Function Program 15.0 The variance function (the relationship between variance and the mean) has several applications in statistical analysis of medical laboratory data (eg. Ref. 1), but the single most important use is probably the construction of (im)precision profile plots (2). This program (VFP.exe) was initially aimed at immunoassay data which exhibit relatively extreme variance relationships. It was based around the “standard” 3-parameter variance function, 2 J σ = (β1 + β2U) 2 where σ denotes variance, U denotes the mean, and β1, β2 and J are the parameters (3, 4).
    [Show full text]
  • Examining Residuals
    Stat 565 Examining Residuals Jan 14 2016 Charlotte Wickham stat565.cwick.co.nz So far... xt = mt + st + zt Variable Trend Seasonality Noise measured at time t Estimate and{ subtract off Should be left with this, stationary but probably has serial correlation Residuals in Corvallis temperature series Temp - loess smooth on day of year - loess smooth on date Your turn Now I have residuals, how could I check the variance doesn't change through time (i.e. is stationary)? Is the variance stationary? Same checks as for mean except using squared residuals or absolute value of residuals. Why? var(x) = 1/n ∑ ( x - μ)2 Converts a visual comparison of spread to a visual comparison of mean. Plot squared residuals against time qplot(date, residual^2, data = corv) + geom_smooth(method = "loess") Plot squared residuals against season qplot(yday, residual^2, data = corv) + geom_smooth(method = "loess", size = 1) Fitted values against residuals Looking for mean-variance relationship qplot(temp - residual, residual^2, data = corv) + geom_smooth(method = "loess", size = 1) Non-stationary variance Just like the mean you can attempt to remove the non-stationarity in variance. However, to remove non-stationary variance you divide by an estimate of the standard deviation. Your turn For the temperature series, serial dependence (a.k.a autocorrelation) means that today's residual is dependent on yesterday's residual. Any ideas of how we could check that? Is there autocorrelation in the residuals? > corv$residual_lag1 <- c(NA, corv$residual[-nrow(corv)]) > head(corv) . residual residual_lag1 . 1.5856663 NA xt-1 = lag 1 of xt . -0.4928295 1.5856663 .
    [Show full text]
  • Estimating Variance Functions for Weighted Linear Regression
    Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 1992 - 4th Annual Conference Proceedings ESTIMATING VARIANCE FUNCTIONS FOR WEIGHTED LINEAR REGRESSION Michael S. Williams Hans T. Schreuder Timothy G. Gregoire William A. Bechtold See next page for additional authors Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Williams, Michael S.; Schreuder, Hans T.; Gregoire, Timothy G.; and Bechtold, William A. (1992). "ESTIMATING VARIANCE FUNCTIONS FOR WEIGHTED LINEAR REGRESSION," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1401 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Author Information Michael S. Williams, Hans T. Schreuder, Timothy G. Gregoire, and William A. Bechtold This is available at New Prairie Press: https://newprairiepress.org/agstatconference/1992/proceedings/13 Conference on153 Applied Statistics in Agriculture Kansas State University ESTIMATING VARIANCE FUNCTIONS FOR WEIGHTED LINEAR REGRESSION Michael S. Williams Hans T. Schreuder Multiresource Inventory Techniques Rocky Mountain Forest and Range Experiment Station USDA Forest Service Fort Collins, Colorado 80526-2098, U.S.A. Timothy G. Gregoire Department of Forestry Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061-0324, U.S.A. William A. Bechtold Research Forester Southeastern Forest Experiment Station Forest Inventory and Analysis Project USDA Forest Service Asheville, North Carolina 28802-2680, U.S.A.
    [Show full text]
  • Variance Function Regressions for Studying Inequality
    Variance Function Regressions for Studying Inequality The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Western, Bruce and Deirdre Bloome. 2009. Variance function regressions for studying inequality. Working paper, Department of Sociology, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2645469 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Variance Function Regressions for Studying Inequality Bruce Western1 Deirdre Bloome Harvard University January 2009 1Department of Sociology, 33 Kirkland Street, Cambridge MA 02138. E-mail: [email protected]. This research was supported by a grant from the Russell Sage Foundation. Abstract Regression-based studies of inequality model only between-group differ- ences, yet often these differences are far exceeded by residual inequality. Residual inequality is usually attributed to measurement error or the in- fluence of unobserved characteristics. We present a regression that in- cludes covariates for both the mean and variance of a dependent variable. In this model, the residual variance is treated as a target for analysis. In analyses of inequality, the residual variance might be interpreted as mea- suring risk or insecurity. Variance function regressions are illustrated in an analysis of panel data on earnings among released prisoners in the Na- tional Longitudinal Survey of Youth. We extend the model to a decomposi- tion analysis, relating the change in inequality to compositional changes in the population and changes in coefficients for the mean and variance.
    [Show full text]
  • Profiling Heteroscedasticity in Linear Regression Models
    358 The Canadian Journal of Statistics Vol. 43, No. 3, 2015, Pages 358–377 La revue canadienne de statistique Profiling heteroscedasticity in linear regression models Qian M. ZHOU1*, Peter X.-K. SONG2 and Mary E. THOMPSON3 1Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada 2Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A. 3Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada Key words and phrases: Heteroscedasticity; hybrid test; information ratio; linear regression models; model- based estimators; sandwich estimators; screening; weighted least squares. MSC 2010: Primary 62J05; secondary 62J20 Abstract: Diagnostics for heteroscedasticity in linear regression models have been intensively investigated in the literature. However, limited attention has been paid on how to identify covariates associated with heteroscedastic error variances. This problem is critical in correctly modelling the variance structure in weighted least squares estimation, which leads to improved estimation efficiency. We propose covariate- specific statistics based on information ratios formed as comparisons between the model-based and sandwich variance estimators. A two-step diagnostic procedure is established, first to detect heteroscedasticity in error variances, and then to identify covariates the error variance structure might depend on. This proposed method is generalized to accommodate practical complications, such as when covariates associated with the heteroscedastic variances might not be associated with the mean structure of the response variable, or when strong correlation is present amongst covariates. The performance of the proposed method is assessed via a simulation study and is illustrated through a data analysis in which we show the importance of correct identification of covariates associated with the variance structure in estimation and inference.
    [Show full text]
  • Variance Function Regressions for Studying Inequality
    9 VARIANCE FUNCTION REGRESSIONS FOR STUDYING INEQUALITY Bruce Western* Deirdre Bloome* Regression-based studies of inequality model only between-group differences, yet often these differences are far exceeded by resid- ual inequality. Residual inequality is usually attributed to mea- surement error or the influence of unobserved characteristics. We present a model, called variance function regression,thatin- cludes covariates for both the mean and variance of a dependent variable. In this model, the residual variance is treated as a target for analysis. In analyses of inequality, the residual variance might be interpreted as measuring risk or insecurity. Variance function regressions are illustrated in an analysis of panel data on earnings among released prisoners in the National Longitudinal Survey of Youth. We extend the model to a decomposition analysis, relating the change in inequality to compositional changes in the popula- tion and changes in coefficients for the mean and variance. The decomposition is applied to the trend in U.S. earnings inequality among male workers, 1970 to 2005. 1. INTRODUCTION In studying inequality, we can distinguish differences between groups from differences within groups. Sociological theory usually motivates This research was supported by a grant from the Russell Sage Foundation. Direct correspondence to Bruce Western, Department of Sociology, 33 Kirkland Street, Cambridge MA 02138; e-mail: [email protected]. *Harvard University 293 294 WESTERN AND BLOOME hypotheses about between-group inequality. For these hypotheses, in- terest focuses on differences in group averages. For example, theories of labor market discrimination predict whites earn more than blacks, and men earn more than women. Human capital theory explains why college graduates average higher earnings than high school dropouts.
    [Show full text]
  • Wavelet-Based Functional Mixed Models
    Wavelet-Based Functional Mixed Models Jeffrey S. Morris 1 The University of Texas MD Anderson Cancer Center, Houston, USA and Raymond J. Carroll Texas A&M University, College Station, USA Summary: Increasingly, scientific studies yield functional data, in which the ideal units of observation are curves and the observed data consist of sets of curves sampled on a fine grid. In this paper, we present new methodology that generalizes the linear mixed model to the functional mixed model framework, with model fitting done using a Bayesian wavelet-based approach. This method is flexible, allowing functions of arbitrary form and the full range of fixed effects structures and between-curve covariance structures available in the mixed model framework. It yields nonparametric estimates of the fixed and random effects functions as well as the various between-curve and within-curve covariance matrices. The functional fixed effects are adaptively regularized as a result of the nonlinear shrinkage prior imposed on the fixed effects’ wavelet coefficients, and the random effect functions experience a form of adaptively regularization because of the separately estimated variance components for each wavelet coefficient. Because we have posterior samples for all model quantities, we can perform pointwise or joint Bayesian inference or prediction on the quantities of the model. The adaptiveness of the method makes it especially appropriate for modeling irregular functional data characterized by numerous local features like peaks. Keywords: Bayesian methods; Functional data analysis; Mixed models; Model averaging; Non- parametric regression; Proteomics; Wavelets Short title: Wavelet-Based Functional Mixed Models 1 Introduction Technological innovations in science and medicine have resulted in a growing number of scientific studies that yield functional data.
    [Show full text]