TRIM29 Regulates the Assembly of DNA Repair Proteins Into Damaged Chromatin

Total Page:16

File Type:pdf, Size:1020Kb

TRIM29 Regulates the Assembly of DNA Repair Proteins Into Damaged Chromatin ARTICLE Received 4 Feb 2015 | Accepted 27 Apr 2015 | Published 22 Jun 2015 DOI: 10.1038/ncomms8299 TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin Yasushi Masuda1, Hidehisa Takahashi1, Shigeo Sato2, Chieri Tomomori-Sato2, Anita Saraf2, Michael P. Washburn2,3, Laurence Florens2, Ronald C. Conaway2,4, Joan W. Conaway2,4 & Shigetsugu Hatakeyama1 Although DNA double-strand break (DSB) repair is mediated by numerous proteins accu- mulated at DSB sites, how DNA repair proteins are assembled into damaged chromatin has not been fully elucidated. Here we show that a member of the tripartite motif protein family, TRIM29, is a histone-binding protein responsible for DNA damage response (DDR). We found that TRIM29 interacts with BRCA1-associated surveillance complex, cohesion, DNA- PKcs and components of TIP60 complex. The dynamics of the TRIM29-containing complex on H2AX nucleosomes is coordinated by a cross-talk between histone modifications. TRIM29 binds to modified histone H3 and H4 tails in the context of nucleosomes. Furthermore, chromatin binding of TRIM29 is required for the phosphorylation of H2AX and cell viability in response to ionizing radiation. Our results suggest that TRIM29 functions as a scaffold protein to assemble DNA repair proteins into chromatin followed by efficient activation of DDR. 1 Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan. 2 Stowers Institute for Medical Research, 1000 East, 50th Street, Kansas City, Missouri 64110, USA. 3 Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, Kansas 6616, USA. 4 Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA. Correspondence and requests for materials should be addressed to S. H. (email: [email protected]). NATURE COMMUNICATIONS | 6:7299 | DOI: 10.1038/ncomms8299 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8299 NA double-strand break (DSB) is a serious DNA lesion Results that is caused by various genotoxic stresses including TRIM29 forms a protein complex with DNA repair proteins. Dionizing radiation (IR), DNA replication errors and To clarify which types of cells express TRIM29, we performed alkylating reagents. Deficiency or inaccuracy of DSB repair leads western blot analysis with the lysates of several cell lines. to various diseases including cancer, neurodegeneration and Consistent with the prediction using RefExA and previous immunodeficiency1. To overcome the intense toxicity of DSBs reports26, TRIM29 was highly expressed in epithelial cancer cell and maintain genome stability, cells have developed elaborate lines including HeLa, HeLa S3 and SiHa cells but not in surveillance mechanisms to detect DNA lesions and recruit DNA HEK293T and U2OS cells (Supplementary Fig. 1a). Although repair proteins to the DSB sites2. In the first step of DDR, the exogenous TRIM29 has been shown to be localized in the MRE11-RAD50-NBS1 (MRN) complex and Ku70-Ku80 cytoplasm27, the subcellular localization of endogenous TRIM29 heterodimer bind to the DSB ends and activate ATM and remains to be elucidated. We fractionated the lysates of HeLa S3, DNA-PKcs, respectively3,4. Then histone H2AX at Ser 139 is HeLa and SiHa cells into cytoplasmic, nucleoplasmic and rapidly phosphorylated by ATM and DNA-PKcs in response to chromatin fractions as shown in Fig. 1a28 and determined the DSBs5. Following the induction of phosphorylated H2AX at Ser subcellular localization of TRIM29. Both full-length TRIM29 and 139 (gH2AX), many regulators of the DNA repair pathway a truncated variant of TRIM29 with a molecular weight of about accumulate at DSB sites and activate the DSB repair pathway6,7. 50 kDa were expressed in the chromatin fraction (Fig. 1b and In addition to these sensor factors of DSBs, various proteins Supplementary Fig. 1b). The truncated variant is likely to be an contribute to the DSB repair pathway. MSH2 and MSH6 have a amino-terminal truncated variant and to be translated from the fundamental role in promoting DNA mismatch repair (MMR) internal start codon methionine 143. Indeed, an N-terminal and are also involved in the recruitment of DSB repair factors to truncated variant that shares 99% homology with full-length the DSB sites8. Several DNA repair factors form a multiprotein TRIM29 residues Met 143 to Pro 588 has already been complex. For example, ATM, MRN complex and MSH2-MSH6 isolated29. Immunofluorescence staining of endogenous dimer are components of the BRCA1-associated surveillance TRIM29 revealed that the distribution of TRIM29 overlapped complex (BASC)9. Cooperative assembly of DNA repair proteins with the 4,6-diamidino-2-phenylindole (DAPI)-stained region of into chromatin plays a critical role in the maintenance of chromatin in HeLa S3 cells (Fig. 1c). TRIM29 knockdown in chromatin integrity. HeLa S3, HeLa and SiHa cells decreased immunofluorescence Accumulating evidence indicates that a variety of histone signals of TRIM29 in the DAPI-stained region (Supplementary modifications function as a molecular switch in the recruitment Fig. 1c,d). Next, we generated HeLa S3 and U2OS cells stably of DSB repair proteins to the DSB sites10,11. Dimethylated H4 at expressing carboxy-terminal enhanced green fluorescent protein Lys 20 (H4K20me2) facilitates the accumulation of 53BP1 at (EGFP)-tagged TRIM29 and investigated whether it is located on the DSB sites12,13. Conversely, acetylation of H4 at Lys 16 chromatin. The distribution of TRIM29-EGFP was overlapped (H4K16Ac) by TIP60 promotes the accumulation of BRCA1 by with the DAPI-stained region in HeLa S3 cells but not in U2OS inhibiting the recruitment of 53BP1 to the DSB sites13. cells (Supplementary Fig. 1e). These findings indicate that Dimethylated H3 at Lys 36 (H3K36me2) recruits NBS1 and TRIM29 is located on chromatin in epithelial cancer cells. Ku70 at the DSB sites14. SETD2-dependent trimethylated H3K36 To understand the function of TRIM29 in chromatin, we (H3K36me3) plays an important role in both DSB repair and generated HeLa S3 cells stably expressing FLAG-TRIM29, the MMR pathway15–17. The assembly of DNA repair proteins prepared nuclear extracts from the cells by Dignam’s method into chromatin is coordinated by a cross-talk between and then immunopurified FLAG-TRIM29 and TRIM29-asso- posttranslational modifications (PTMs) of histones. ciated proteins from the nuclear extracts (Fig. 1d). We identified The gene encoding ATM is responsible for ataxia telangiectasia many of TRIM29-binding proteins by multidimensional protein (AT), which is an autosomal recessive disorder with pleiotropic identification technology (MudPIT) mass spectrometry. The phenotypes, including neuronal degeneration, immune dysfunc- relative abundance of a particular protein was assessed by means tion, premature ageing and increased cancer risk18. Tripartite of a normalized spectral abundance factor, or NSAF30. MudPIT motif protein 29 (TRIM29) was identified as an AT group analysis revealed that TRIM29 formed a multiprotein complex D-complementing gene in a functional complementation study with DSB repair proteins (Fig. 1e and Supplementary Table 1). with an AT cell line by transfection with a human cosmid Many of these proteins have DNA-binding activity, raising the library19. The TRIM protein family is characterized by the possibility that formation of the TRIM29 complex is dependent presence of a tripartite motif composed of a RING finger domain, on DNA derived from nuclear extracts. To exclude this one or two B-box domains and a coiled-coil domain20. possibility, we treated nuclear extracts with benzonase, Knockdown of TRIM29 in SiHa, Panc1 and BxPC3 cell lines immunopurified TRIM29-binding proteins and then analysed increased radiosensitivity21,22. Moreover, phosphorylation of TRIM29-associated proteins. Agarose gel electrophoresis of the TRIM29 by ATM and MAPKAP kinase 2 (MK2) contributes to nuclear extracts revealed that nuclear extracts did not contain the radioresistance of cells22. Although TRIM29 has been shown DNA (Fig. 1f). Western blotting and silver staining showed that to interact with several proteins including protein kinase C the TRIM29 complex can be formed independently of DNA substrate, disheveled-2, p53 and TIP60 (refs 21,23–25), little is (Fig. 1g and Supplementary Fig. 2a). We also found that TRIM29 known about how TRIM29 enhances the radioresistance of cells. was copurified with ATM (Fig. 1g). BASC, DNA-PKcs, cohesin Here we show that TRIM29 is a histone-binding protein and TIP60 complex play an important role in DDR5,10,31,32, involved in the regulation of DDR. Our biochemical studies suggesting that formation of the TRIM29 complex is dependent reveal that TRIM29 forms a multiprotein complex with BASC on genotoxic stress. To address this possibility, we purified the components, cohesion, DNA-PKcs and TIP60 complex. The TRIM29 complex from nuclear extracts of cells treated with or dynamics of the TRIM29 complex on nucleosomes containing without IR and analysed TRIM29-associated proteins. There was H2AX are coordinated by H3K36me2/3, H4K16Ac and no significant difference in composition of the TRIM29 complex H4K20me2. Chromatin binding of TRIM29 is also required to after IR treatment (Supplementary Fig. 2b,c). promote DDR. We propose that TRIM29 functions as a scaffold protein incorporating DNA repair proteins into
Recommended publications
  • Combinatorial Genetic Control of Rpd3s Through Histone H3K4 and H3K36 Methylation
    bioRxiv preprint doi: https://doi.org/10.1101/376046; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Combinatorial Genetic Control of Rpd3S through histone H3K4 and H3K36 Methylation 2 in Budding Yeast 3 4 Kwan Yin Lee*, Mathieu Ranger*, and Marc D. Meneghini* 5 *Department of Molecular Genetics, University of Toronto, ON, M5S 1A8, Canada 6 Running title: Rpd3S control by H3K4me and H3K36me 7 Keywords: Rpd3S; histone methylation; SET1; JHD2; RPH1; SET2 8 Corresponding author mailing addresses: 9 Marc Meneghini 10 Dept. of Molecular Genetics University of Toronto 11 MaRS2 1532 12 661 University Avenue 13 Toronto, ON M5G 1M1 14 Office: 416-978-7578 15 Fax: 416-978-6885 16 email: [email protected] 17 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/376046; this version posted July 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Much of euchromatin regulation occurs through reversible methylation of histone H3 3 lysine-4 and lysine-36 (H3K4me and H3K36me). Using the budding yeast Saccharomyces 4 cerevisiae, we previously found that levels of H3K4me modulated temperature sensitive alleles 5 of the transcriptional elongation complex Spt6-Spn1 through an unknown H3K4me effector 6 pathway. Here we identify the Rpd3S histone deacetylase complex as the H3K4me effector 7 underlying these Spt6-Spn1 genetic interactions.
    [Show full text]
  • Recognition of Cancer Mutations in Histone H3K36 by Epigenetic Writers and Readers Brianna J
    EPIGENETICS https://doi.org/10.1080/15592294.2018.1503491 REVIEW Recognition of cancer mutations in histone H3K36 by epigenetic writers and readers Brianna J. Kleina, Krzysztof Krajewski b, Susana Restrepoa, Peter W. Lewis c, Brian D. Strahlb, and Tatiana G. Kutateladzea aDepartment of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; bDepartment of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, USA; cWisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA ABSTRACT ARTICLE HISTORY Histone posttranslational modifications control the organization and function of chromatin. In Received 30 May 2018 particular, methylation of lysine 36 in histone H3 (H3K36me) has been shown to mediate gene Revised 1 July 2018 transcription, DNA repair, cell cycle regulation, and pre-mRNA splicing. Notably, mutations at or Accepted 12 July 2018 near this residue have been causally linked to the development of several human cancers. These KEYWORDS observations have helped to illuminate the role of histones themselves in disease and to clarify Histone; H3K36M; cancer; the mechanisms by which they acquire oncogenic properties. This perspective focuses on recent PTM; methylation advances in discovery and characterization of histone H3 mutations that impact H3K36 methyla- tion. We also highlight findings that the common cancer-related substitution of H3K36 to methionine (H3K36M) disturbs functions of not only H3K36me-writing enzymes but also H3K36me-specific readers. The latter case suggests that the oncogenic effects could also be linked to the inability of readers to engage H3K36M. Introduction from yeast to humans and has been shown to have a variety of functions that range from the control Histone proteins are main components of the of gene transcription and DNA repair, to cell cycle nucleosome, the fundamental building block of regulation and nutrient stress response [8].
    [Show full text]
  • Automethylation of PRC2 Promotes H3K27 Methylation and Is Impaired in H3K27M Pediatric Glioma
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma Chul-Hwan Lee,1,2,7 Jia-Ray Yu,1,2,7 Jeffrey Granat,1,2,7 Ricardo Saldaña-Meyer,1,2 Joshua Andrade,3 Gary LeRoy,1,2 Ying Jin,4 Peder Lund,5 James M. Stafford,1,2,6 Benjamin A. Garcia,5 Beatrix Ueberheide,3 and Danny Reinberg1,2 1Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 3Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA; 4Shared Bioinformatics Core, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 5Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/ EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring inde- pendently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2.
    [Show full text]
  • Screening for Genes That Accelerate the Epigenetic Aging Clock in Humans Reveals a Role for the H3K36 Methyltransferase NSD1 Daniel E
    Martin-Herranz et al. Genome Biology (2019) 20:146 https://doi.org/10.1186/s13059-019-1753-9 RESEARCH Open Access Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1 Daniel E. Martin-Herranz1,2* , Erfan Aref-Eshghi3,4, Marc Jan Bonder1,5, Thomas M. Stubbs2, Sanaa Choufani6, Rosanna Weksberg6, Oliver Stegle1,5,7, Bekim Sadikovic3,4, Wolf Reik8,9,10*† and Janet M. Thornton1*† Abstract Background: Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery. Results: Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the normal aging process and Sotos syndrome share methylation changes and the genomic context in which they occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients. Conclusions: These results suggest that the H3K36 methylation machinery is a key component of the epigenetic maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in model organisms.
    [Show full text]
  • Mechanism for Epigenetic Variegation of Gene Expression at Yeast Telomeric Heterochromatin
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Mechanism for epigenetic variegation of gene expression at yeast telomeric heterochromatin Tasuku Kitada,1,2 Benjamin G. Kuryan,1,2 Nancy Nga Huynh Tran,1,2 Chunying Song,1,2 Yong Xue,1,2 Michael Carey,1,2 and Michael Grunstein1,2,3 1Department of Biological Chemistry, David Geffen School of Medicine, 2the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA Yeast contains heterochromatin at telomeres and the silent mating-type loci (HML/HMR). Genes positioned within the telomeric heterochromatin of Saccharomyces cerevisiae switch stochastically between epigenetically bistable ON and OFF expression states. Important aspects of the mechanism of variegated gene expression, including the chromatin structure of the natural ON state and the mechanism by which it is maintained, are unknown. To address this issue, we developed approaches to select cells in the ON and OFF states. We found by chromatin immunoprecipitation (ChIP) that natural ON telomeres are associated with Rap1 binding and, surprisingly, also contain known characteristics of OFF telomeres, including significant amounts of Sir3 and H4K16 deacetylated nucleosomes. Moreover, we found that H3K79 methylation (H3K79me), H3K4me, and H3K36me, which are depleted from OFF telomeres, are enriched at ON telomeres. We demonstrate in vitro that H3K79me, but not H3K4me or H3K36me, disrupts transcriptional silencing. Importantly, H3K79me does not significantly reduce Sir complex binding in vivo or in vitro. Finally, we show that maintenance of H3K79me at ON telomeres is dependent on transcription. Therefore, although Sir proteins are required for silencing, we propose that epigenetic variegation of telomeric gene expression is due to the bistable enrichment/depletion of H3K79me and not the fluctuation in the amount of Sir protein binding to nucleosomes.
    [Show full text]
  • Transcription Shapes Genome-Wide Histone Acetylation Patterns
    ARTICLE https://doi.org/10.1038/s41467-020-20543-z OPEN Transcription shapes genome-wide histone acetylation patterns Benjamin J. E. Martin 1, Julie Brind’Amour 2, Anastasia Kuzmin1, Kristoffer N. Jensen2, Zhen Cheng Liu1, ✉ Matthew Lorincz 2 & LeAnn J. Howe 1 Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. 1234567890():,; Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post- recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases. 1 Department of Biochemistry and Molecular Biology, Life Sciences Institute, Molecular
    [Show full text]
  • Deregulation of Histone H3 Lysine 27 Methylation in Cancer—Different Paths, Same Destination
    Published OnlineFirst July 1, 2014; DOI: 10.1158/1078-0432.CCR-13-2499 Clinical Cancer Molecular Pathways Research Molecular Pathways: Deregulation of Histone H3 Lysine 27 Methylation in Cancer—Different Paths, Same Destination Teresa Ezponda and Jonathan D. Licht Abstract Methylation of lysine 27 on histone H3 (H3K27me), a modification associated with gene repression, plays a critical role in regulating the expression of genes that determine the balance between cell differentiation and proliferation. Alteration of the level of this histone modification has emerged as a recurrent theme in many types of cancer, demonstrating that either excess or lack of H3K27 methylation can have oncogenic effects. Cancer genome sequencing has revealed the genetic basis of H3K27me deregulation, including mutations of the components of the H3K27 methyltransferase complex PRC2 and accessory proteins, and deletions and inactivating mutations of the H3K27 demethylase UTX in a wide variety of neoplasms. More recently, mutations of lysine 27 on histone H3 itself were shown to prevent H3K27me in pediatric glioblastomas. Aberrant expression or mutations in proteins that recognize H3K27me3 also occur in cancer and may result in misinterpretation of this mark. In addition, due to the cross-talk between different epigenetic modifications, alterations of chromatin modifiers controlling H3K36me, or even mutations of this residue, can ultimately regulate H3K27me levels and distribution across the genome. The significance of mutations altering H3K27me is underscored by the fact that many tumors harboring such lesions often have a poor clinical outcome. New therapeutic approaches targeting aberrant H3K27 methylation include small molecules that block the action of mutant EZH2 in germinal center-derived lymphoma.
    [Show full text]
  • Corrections and Retraction
    Corrections and Retraction CORRECTIONS RETRACTION CELL BIOLOGY MEDICAL SCIENCES Correction for “A small molecule accelerates neuronal differ- Retraction for “Wnt-5a signaling restores tamoxifen sensitivity in entiation in the adult rat,” by Heiko Wurdak, Shoutian Zhu, estrogen receptor-negative breast cancer cells,” by Caroline E. Kyung Hoon Min, Lindsey Aimone, Luke L. Lairson, James Ford, Elin J. Ekström, and Tommy Andersson, which appeared Watson, Gregory Chopiuk, James Demas, Bradley Charette, in issue 10, March 10, 2009, of Proc Natl Acad Sci USA Eranthie Weerapana, Benjamin F. Cravatt, Hollis T. Cline, Eric (106:3919–3924; first published February 23, 2009; 10.1073/ C. Peters, Jay Zhang, John R. Walker, Chunlei Wu, Jonathan pnas.0809516106). Chang, Tove Tuntland, Charles Y. Cho, and Peter G. Schultz, The authors wish to note the following: “During efforts to which appeared in issue 38, September 21, 2010, of Proc Natl extend this work, we re-examined the laboratory records for all Acad Sci USA (107:16542–16547; first published September 7, figures and found that the Excel files on which Fig. 4C was based 2010; 10.1073/pnas.1010300107). contained serious calculation errors; the first author of the paper The authors note that Rajkumar Halder should be added takes full responsibility for these inaccuracies. Considering the to the author line between Bradley Charette and Eranthie importance of this figure for the conclusions drawn, the authors Weerapana. Rajkumar Halder should be credited with contrib- hereby retract the work. We apologize for any inconvenience this uting new reagents/analytic tools. The online version has been may have caused.” corrected.
    [Show full text]
  • Targeted Demethylation of H3k9me3 and H3k36me3 Improves Somatic Cell Reprogramming
    bioRxiv preprint doi: https://doi.org/10.1101/699181; this version posted July 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Targeted demethylation of H3K9me3 and H3K36me3 improves somatic cell reprogramming 2 into cloned preimplantation but not postimplantation bovine concepti 3 4 Running title: KDM4B expression improves bovine somatic cell reprogramming in vitro but not in 5 vivo 6 7 Authors: Fanli Meng1, Kathrin Stamms1,2, Romina Bennewitz1,3, Andria Green1, Fleur Oback1, 8 Pavla Turner1, Jingwei Wei1,4 and Björn Oback1,3# 9 10 Author affiliations: 11 1AgResearch Ruakura Research Centre, Hamilton, New Zealand 12 2Present address: Institute of Nutrition, University Jena, Jena, Germany. 13 3Present address: Institute of Neurology, University Hospital Frankfurt, Frankfurt, Germany. 14 15 4Animal Science Institute, Guangxi University, Nanning, P.R China 16 5School of Medical Sciences, University of Auckland, Auckland, New Zealand 17 18 19 Key words: histone methylation, H3K9me3, H3K36me3, KDM4B, epigenetic reprogramming, 20 somatic cell transfer, embryo, totipotency, cattle, cloning efficiency, quiescence 21 22 #Corresponding Author: Björn Oback 23 AgResearch Ruakura Research Centre, Hamilton, New Zealand 24 Tel +64 7 838 5542, Fax +64 7 838 5536 25 E-mail [email protected] 26 1 bioRxiv preprint doi: https://doi.org/10.1101/699181; this version posted July 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 ABSTRACT 28 Correct reprogramming of epigenetic marks in the donor nuclei is a prerequisite for successful 29 cloning by somatic cell transfer.
    [Show full text]
  • Histone Methylation Regulation in Neurodegenerative Disorders
    International Journal of Molecular Sciences Review Histone Methylation Regulation in Neurodegenerative Disorders Balapal S. Basavarajappa 1,2,3,4,* and Shivakumar Subbanna 1 1 Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; [email protected] 2 New York State Psychiatric Institute, New York, NY 10032, USA 3 Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA 4 New York University Langone Medical Center, Department of Psychiatry, New York, NY 10016, USA * Correspondence: [email protected]; Tel.: +1-845-398-3234; Fax: +1-845-398-5451 Abstract: Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttransla- tional modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation- mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disor- ders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific Citation: Basavarajappa, B.S.; Subbanna, S.
    [Show full text]
  • Chip Validated H4k12ac (Clone RM202) Antibody with Positive and Negative Primer Sets
    www.chromatrap.com Clywedog Rd South Wrexham Industrial Estate Wrexham LL13 9XS, United Kingdom Tel: +44 (0) 1978 666239/40 Email: [email protected] ChIP Validated H4K12ac (Clone RM202) Antibody with Positive and Negative Primer Sets Catalogue no: 900025 Chromatrap®’s ChIP Validated H4K12ac Antibody with Positive and Negative Primer Set provides a complete set of tools to assist with a successful ChIP assay. Including: H4K12ac antibody, control rabbit IgG, positive and negative primer sets. The ChIP Validated H4K12ac Antibody with Positive and Negative Primer Sets is not suitable for use with non-human species. Background: Histone 4 (H4) is one of the core histone proteins, comprising the protein component of chromatin. H4 is ubiquitous within chromosomes and can be found bound to most gene sequences throughout the genome. Lysine 12 on histone 4 (H4K12) can only be acetylated and is not associated with methylation. The histone modification H4K12ac is associated with active promoter regions and has roles in activating the transcription of genes, in particular genes with roles in memory and learning. H4K12ac can have an influence on paternal inheritance in the zygote, indicating the importance of this mark for embryo development. A rabbit IgG is included in this Antibody Primer Set as a negative control for the ChIP experiment. The H4K12ac positive primer set recognises the GREB1 gene. The negative primer set recognises the SAT2 gene. Suggested Usage: Component Suggested Dilution Figure H4K12ac 2:1 (antibody: chromatin) 1 Rabbit IgG 2:1 (antibody: chromatin) 1 Positive Primer Set Dilute from 4M (provided) to 1M working concentration Negative Primer Set Dilute from 4M (provided) to 1M working concentration Please note: Optimal dilutions should be determined by the user.
    [Show full text]
  • H4k12ac Is Regulated by Estrogen Receptor-Alpha and Is Associated with BRD4 Function and Inducible Transcription
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 9 H4K12ac is regulated by estrogen receptor-alpha and is associated with BRD4 function and inducible transcription Sankari Nagarajan1, Eva Benito2, Andre Fischer2,3 and Steven A. Johnsen1 1 Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany 2 Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany 3 Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany Correspondence to: Steven A. Johnsen, email: [email protected] Keywords: Histone acetylation, bromodomain, estrogen, epigenetics, chromatin Received: December 04, 2014 Accepted: January 28, 2015 Published: January 31, 2015 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Hormone-dependent gene expression requires dynamic and coordinated epigenetic changes. Estrogen receptor-positive (ER+) breast cancer is particularly dependent upon extensive chromatin remodeling and changes in histone modifications for the induction of hormone-responsive gene expression. Our previous studies established an important role of bromodomain-containing protein-4 (BRD4) in promoting estrogen-regulated transcription and proliferation of ER+ breast cancer cells. Here, we investigated the association between genome-wide occupancy of histone H4 acetylation at lysine 12 (H4K12ac) and BRD4 in the context of estrogen- induced transcription. Similar to BRD4, we observed that H4K12ac occupancy increases near the transcription start sites (TSS) of estrogen-induced genes as well as at distal ERα binding sites in an estrogen-dependent manner.
    [Show full text]