Meteor Shower Forecasting for Spacecraft Operations

Total Page:16

File Type:pdf, Size:1020Kb

Meteor Shower Forecasting for Spacecraft Operations METEOR SHOWER FORECASTING FOR SPACECRAFT OPERATIONS Althea V. Moorhead(1), William J. Cooke(1), and Margaret D. Campbell-Brown(2) (1)NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Alabama 35812, Email: althea.moorhead, william.j.cooke @nasa.gov (2)Department of Physics and Astronomy,{ The University of Western} Ontario, London N6A3K7, Canada, Email: [email protected] ABSTRACT meteor shower, for example, can double the meteoroid flux at the time of peak activity. The Leonid meteor shower does not pose much of an impact risk on a typical Although sporadic meteoroids generally pose a much year, but has occasionally produced outbursts in which greater hazard to spacecraft than shower meteoroids, me- the number of meteors is tens to thousands of times larger teor showers can significantly increase the risk of dam- than normal [4]. In such cases, operational spacecraft age over short time periods. Because showers are brief, it sometimes choose to mitigate the risk by avoiding op- is sometimes possible to mitigate the risk operationally, erations that increase the spacecraft’s vulnerability. If the which requires accurate predictions of shower activity. risk is great enough, operators may consider re-orienting NASA’s Meteoroid Environment Office (MEO) generates the spacecraft to present its least vulnerable side to the an annual meteor shower forecast that describes the vari- shower, phasing its orbit to use the Earth as a shield, or ations in the near-Earth meteoroid flux produced by me- powering down components. teor showers, and presents the shower flux both in abso- lute terms and relative to the sporadic flux. The shower All mitigation strategies have some associated cost such forecast incorporates model predictions of annual varia- as delays, reduced functionality, or fuel. Accurate shower tions in shower activity and quotes fluxes to several limit- predictions are therefore needed for informed risk assess- ing particle kinetic energies. In this work, we describe ment. The Meteoroid Environment Office (MEO) pro- our forecasting methods and present recent improve- duces annual meteor shower forecasts that can be used ments to the temporal profiles based on flux measure- to assess the increase in the particle flux due to showers. ments from the Canadian Meteor Orbit Radar (CMOR). These forecasts are designed to be used in conjunction with an existing sporadic meteoroid risk assessment; un- Key words: meteoroids. like sporadic models, however, the annual forecast pro- vides a detailed temporal profile that takes showers into account. The forecast also takes shower variability into 1. INTRODUCTION account; any unusual activity predicted by modelers [5, 6] is incorporated. Meteoroid impacts are known to cause damage to space- While modelers can often predict the level of meteor 1 craft surfaces; their high speed (12-72 km s− ) compared shower activity, we frequently rely on past observations to orbital debris means that relatively small particles can to characterize the activity profile. For many years, the be hazardous. Most of the meteoroid flux is associated MEO (and others; [7]) used a set of activity profiles with “sporadic” meteoroids, which are those not associ- that were determined from naked-eye meteor observa- ated with any meteor shower. The sporadic complex is tions [8]. Many of the activity profiles in this set are quite present throughout the year and constitutes the vast ma- noisy due to low number statistics. Furthermore, daytime jority of microgram-or-larger meteoroids. For this rea- meteor showers were of course not visible to observers son, meteoroid environment models such as NASA’s Me- and thus the MEO had to employ a default activity pro- teoroid Engineering Model (MEM) [1, 2] and ESA’s In- file for many of these showers. terplanetary Meteoroid Environment Model (IMEM) [3] focus on the sporadic complex. Although these models Meanwhile, the Canadian Meteor Orbit Radar (CMOR) include showers in the total meteoroid flux, they do not began operation in 2001 [9]. CMOR is a patrol radar model the short-duration fluctuations caused by showers. and can detect meteor echoes during the day as well as at Such fluctuations are generally not worth modeling for a night. It is located near London, Ontario and thus moni- long-duration spacecraft mission. tors the northern hemisphere, although it can detect me- teors with declinations as low as -40◦. Meteor flux mea- Over short time spans, however, meteor showers can surements from CMOR [10] are available for the years match or even exceed the sporadic flux. The Geminid 2002-2015, providing us with a data set suitable for re- Proc. 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017, published by the ESA Space Debris Office Ed. T. Flohrer & F. Schmitz, (http://spacedebris2017.sdo.esoc.esa.int, June 2017) (ZHR0), and two exponents that characterize the shape (λ0, ZHR0) B B 100 of the shower’s activity profile ( p and m). The time of peak shower activity occurs when the center of the meteoroid stream intersects the Earth’s orbit; we there- fore measure time in terms of solar longitude, λ . The zenithal hourly rate (ZHR; the rate at which meteors oc- cur when the shower radiant is directly overhead) in- ZHR 50 Bp(λ λ0) Bm(λ λ0) 10 − 10− − / / creases with time before the peak and decreases after the peak: +Bp(λ λ0) 10 − λ <λ0 ZHR = ZHR (1) 0 Bm(λ λ0) · 10− − λ >λ0 0 ⇢ 256 258 260 262 264 266 268 In some cases, such as the Perseids, the activity profile λ (◦) of a single meteor shower is constructed from two sets of parameters that describe “peak” and “base” activity. Figure 1. Sample meteor shower activity profile. The peak zenithal hourly rate is ZHR0 and the peak occurs at ZHR describes the rate at which a meteor shower pro- solar longitude λ0. On either side the activity follows an duces visible meteors. ZHR can be converted to meteor exponential function of solar longitude; the two parame- flux by taking into account observer biases and shower ters Bp and Bm are not necessarily equal. characteristics. We use the methodology of [11] to cal- culate the flux of meteoroids that have a brightness of at least magnitude 6.5: vising many shower activity profiles. 0.748 ZHR0 kavg (13.1r 16.5)(r 1.3) f6.5 = · · − − (2) This paper presents both our methodology for shower 37200 km2 forecasting (Section 2) and the improvements we’ve made to our shower activity profiles based on CMOR flux where the average perception factor, kavg, is of order measurements (Section 3). Finally, Section 4 discusses unity. The population index, r, describes the brightness the forecast and the changes in it from a spacecraft risk distribution of meteors within the shower and is also re- perspective. quired as an input for each shower. Because ZHR has 1 2 units of hr− , this equation yields flux in units of km− 1 hr− . 2. FORECASTING METHODS This magnitude-limited flux can be converted to a mass- limited (milligram or larger) flux as follows [11]: This section describes our algorithm for forecasting me- 1 f = f r9.775 log10 (29 km s− /v100) (3) teor shower fluxes. These fluxes are derived from a set mg 6.5 · of meteor shower parameters and are adjusted for an al- titude of 400 km. We also compute the appropriate spo- This equation makes use of Verniani’s relationship [12] radic meteor flux at this altitude, taking gravitational fo- between magnitude, mass, and velocity to calculate the cusing and planetary shielding into account. Finally, we meteoroid mass that produces a magnitude 6.5 meteor at compute the flux enhancement produced by these show- the shower’s speed. The shower velocity is that at the top ers over the baseline meteoroid flux. of the atmosphere. Finally, the flux can be scaled to any arbitrary limiting mass using the relation: 2.1. Shower fluxes 1 s f m − m = (4) Meteor showers do not have a well-defined duration. In- fmg 1 mg stead, peak activity occurs at a particular time each year ✓ ◆ and activity gradually increases up to the peak and de- where s =1+2.3 log10 r is the shower mass index. creases after the peak (see Fig. 1). A double exponential function has been found to be a good fit to most meteor In all annual meteor shower forecasts to date, an addi- shower activity profiles [8]. Measures of effective shower tional factor of 2 was applied to Eq. 2. This factor was duration (such as the full width at half maximum or time obtained by applying Eq. 2 to the Grun¨ interplanetary flux period over which activity exceeds a given threshold) thus [13] and comparing it with a sporadic ZHR estimate of 8. depend on the steepness of this double exponential func- A factor of 2 was found to bring them in rough agree- tion. ment. However, a separate mass-luminosity relationship was used to convert magnitude to mass in that calcula- We characterize the activity profile of each shower with tion. When Eq. 3 is used instead, the flux corresponding four parameters: peak time (λ0), peak zenithal hourly rate to a sporadic ZHR is a factor of 4 larger, obviating the we must invert the gravitational focusing effect to obtain Table 1. The four kinetic energies (KEref) to which the the slightly lower shower flux corresponding to an alti- MEO annual meteor shower forecast reports fluxes. The tude of 400 km [19]: second column lists the particle mass which, at 20 km s 1, has the listed kinetic energy. The third column lists f v 2 − 400 = 400 (6) the particle diameter which, for a bulk density of 1000 kg f v 3 100 100 m− , has the listed mass.
Recommended publications
  • Major Meteor Showers Throughout the Year
    Major Meteor Showers Throughout the Year Courtesy of The Catawba Valley Astronomy Club - www.catawbasky.org Information taken from http://www.amsmeteors.org/showers.html The meteor showers discussed below recur each year; in some cases they have been recognized for hundreds of years. The name of the shower in most cases indicates the constellation from which the meteors appear. Sporadic meteors are those random meteors not associated with a particular shower; they are the random detritus left over from the creation of the solar system or are old dispersed debris not recognizable today as shower meteors. For meteor observers, those located in the northern hemisphere have a distinct advantage as shower activity is stronger there than that seen by observers located south of the equator. The reason for this is that most of the major showers have meteors that strike the Earth in areas located far above the equator. As seen from the northern hemisphere these meteors would appear to rain down from high in the sky in all directions. The year begins with the intense but brief Quadrantid maximum (January 3/4). Its brevity combined with typically poor winter weather hampers observation. January overall has good meteor rates restricted to the last third of the night. Rates to 20/hour can be obtained. A large number of radiants spread along the ecliptic from Cancer to Virgo. This activity diminishes somewhat in February with the same areas active. Late-night rates are fair in the first half of March, but become poor rather suddenly after mid-March. The very poor rates, seldom reaching 10/hour, continue into early June.
    [Show full text]
  • Geminid Meteor Shower Activity Should Increase
    EPSC Abstracts Vol. 12, EPSC2018-397, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Geminid meteor shower activity should increase Galina O. Ryabova (1), Jurgen Rendtel (2) (1) Research Institute of Applied Mathematics and Mechanics of Tomsk State University, Tomsk, Russian Federation ([email protected]), (2) Leibniz-Institut fur Astrophysik Potsdam (AIP), Germany Abstract 2. Model Mathematical modelling has shown that activity of We used one a model with meteoroids of the ‘visual’ the Geminid meteor shower should rise with time, mass of 0.02 g from [6] and extended it until 2025 and that was confirmed by analysis of visual January 1. The model consists of 30 000 meteoroids observations 1985–2017. generated around starting epoch JD 1720165.2248 (perihelion passage) using, as we mentioned, the cometary scenario of ejection. For details of the 1. Introduction model, method, and references, see [6]. The Geminid meteor shower is an annual major shower with the maximum activity on December 14. Why activity should increase? The answer is clear In 2017, asteroid (3200) Phaethon, recognised parent from Fig. 1. Phaethon’s node and the mean orbit of body of the stream, had a close encounter with the the stream (i.e. the densest part of the stream) Earth on December 16. When the Earth passes closer gradually approach the Earth’s orbit. So the Geminid to a parent body orbit of a meteoroid stream, an shower activity should increase slowly. Why we increased activity of the shower is expected. We should not expect an outburst? Because the Geminid elaborated the model to see, if it is the case, and stream had no replenishment after the initial made a comparison with visual and video catastrophic generation [2, 6].
    [Show full text]
  • Geminids 2012-2015
    Short paper Geminids 2012−−−2015: multi-year meteor videographyyy Alex Pratt, William Stewart, Allan Carter, Denis Buczynski, David Anderson, Nick James, Michael O’Connell, Graham Roche, Gordon Reinicke, Michael Morris, Jeremy Shears, Mike Foylan, David Dunn, Ray Taylor, Frank Johns, Nick Quinn, Steve & Peta Bosley, Steve Johnston NEMETODE, a network of low-light video cameras in and around the British Isles, operated in conjunction with the BAA Meteor Section and other groups, monitors the activity of meteors, enabling the precise measurement of radiant positions, of the altitudes and geocentric velocities of meteoroids and the determination of their former solar system orbits. The results from multi-year observations of the Geminid meteor shower are presented and discussed. Equipment and methods The NEMETODE team employed the equipment and methods de- scribed in previous papers1,2 and on their website.3 These included Genwac, KPF and Watec video cameras equipped with fixed and variable focal length lenses ranging from 2.6mm semi fish-eye mod- els to 12mm narrow field systems. The Geminid meteor stream The Geminids (IAU MDC 004 GEM) are relatively slow meteors with geocentric velocities of 34 km/s, about half the speed of Perseids and Leonids. Although only apparent to visual observers for about Figure 1. Magnitude distribution of the 2012–2015 Geminid meteors and contemporaneous sporadics. 10 days in December, Geminids can be identified via imaging and triangulation from late November to early January. They are cur- Whereas most meteor showers originate from comets, the Geminid rently the most active and reliable annual shower, producing a ZHR parent body is the Apollo asteroid (3200) Phaethon.
    [Show full text]
  • Metal Species and Meteor Activity 5 Discussion J
    Atmos. Chem. Phys. Discuss., 9, 18705–18726, 2009 Atmospheric www.atmos-chem-phys-discuss.net/9/18705/2009/ Chemistry ACPD © Author(s) 2009. This work is distributed under and Physics 9, 18705–18726, 2009 the Creative Commons Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry Metal species and and Physics (ACP). Please refer to the corresponding final paper in ACP if available. meteor activity J. Correira et al. Title Page Metal concentrations in the upper Abstract Introduction atmosphere during meteor showers Conclusions References J. Correira1,*, A. C. Aikin1, J. M. Grebowsky2, and J. P. Burrows3 Tables Figures 1 The Catholic University of America, Institute for Astrophysics and Computational Sciences J I Department of Physics, Washington, DC 20064, USA 2 NASA Goddard Space Flight Center, Code 695, Greenbelt, MD 20771, USA J I 3Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany Back Close *now at: Computational Physics, Inc., Springfield, Virginia, USA Full Screen / Esc Received: 30 June 2009 – Accepted: 10 August 2009 – Published: 10 September 2009 Correspondence to: J. Correira ([email protected]) Printer-friendly Version Published by Copernicus Publications on behalf of the European Geosciences Union. Interactive Discussion 18705 Abstract ACPD Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spec- trometer on the ERS-2 satellite, we investigate short term variations in the vertical mag- 9, 18705–18726, 2009 nesium column densities in the atmosphere and any connection to possible enhanced 5 mass deposition during a meteor shower. Time-dependent mass influx rates are de- Metal species and rived for all the major meteor showers using published estimates of mass density and meteor activity temporal profiles of meteor showers.
    [Show full text]
  • Download This Article in PDF Format
    A&A 598, A40 (2017) Astronomy DOI: 10.1051/0004-6361/201629659 & c ESO 2017 Astrophysics Separation and confirmation of showers? L. Neslušan1 and M. Hajduková, Jr.2 1 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranska Lomnica, Slovak Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84504 Bratislava, Slovak Republic e-mail: [email protected] Received 6 September 2016 / Accepted 30 October 2016 ABSTRACT Aims. Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers. Methods. To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. Results. We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance.
    [Show full text]
  • Assessing Risk from Dangerous Meteoroids in Main Meteor Showers Andrey Murtazov
    Proceedings of the IMC, Mistelbach, 2015 155 Assessing risk from dangerous meteoroids in main meteor showers Andrey Murtazov Astronomical observatory, Ryazan State University, Ryazan, Russia [email protected] The risk from dangerous meteoroids in main meteor showers is calculated. The showers were: Quadrantids–2014; Eta Aquariids–2013, Perseids–2014 and Geminids–2014. The computed results for the risks during the shower periods of activity and near the maximum are provided. 1 Introduction The activity periods of these showers (IMO) are: Quadrantids–2014; 1d; Eta Aquariids–2013; 10d, Bright meteors are of serious hazard for space vehicles. Perseids–2014; 14d and Geminids–2014; 4d. A lot of attention has been recently paid to meteor Our calculations have shown that the average collisions N investigations in the context of the different types of of dangerous meteoroids for these showers in their hazards caused by comparatively small meteoroids. activity periods are: Furthermore, the investigation of risk distribution related Quadrantids–2014: N = (2.6 ± 0.5)10-2 km-2; to collisions of meteoroids over 1 mm in diameter with Eta Aquariids–2013: N = (2.8)10-1 km-2; space vehicles is quite important for the long-term Perseids–2014: N = (8.4 ± 0.8)10-2 km-2; forecast regarding the development of space research and Geminids–2014: N = (4.8 ± 0.8)10-2 km-2. circumterrestrial ecology problems (Beech, et al., 1997; Wiegert, Vaubaillon, 2009). Consequently, the average value of collision risk was: Considered hazardous are the meteoroids that create -2 -1 Quadrantids–2014: R = 0.03 km day ; meteors brighter than magnitude 0.
    [Show full text]
  • 17. a Working List of Meteor Streams
    PRECEDING PAGE BLANK NOT FILMED. 17. A Working List of Meteor Streams ALLAN F. COOK Smithsonian Astrophysical Observatory Cambridge, Massachusetts HIS WORKING LIST which starts on the next is convinced do exist. It is perhaps still too corn- page has been compiled from the following prehensive in that there arc six streams with sources: activity near the threshold of detection by pho- tography not related to any known comet and (1) A selection by myself (Cook, 1973) from not sho_m to be active for as long as a decade. a list by Lindblad (1971a), which he found Unless activity can be confirmed in earlier or from a computer search among 2401 orbits of later years or unless an associated comet ap- meteors photographed by the Harvard Super- pears, these streams should probably be dropped Sehmidt cameras in New Mexico (McCrosky and from a later version of this list. The author will Posen, 1961) be much more receptive to suggestions for dele- (2) Five additional radiants found by tions from this list than he will be to suggestions McCrosky and Posen (1959) by a visual search for additions I;o it. Clear evidence that the thresh- among the radiants and velocities of the same old for visual detection of a stream has been 2401 meteors passed (as in the case of the June Lyrids) should (3) A further visual search among these qualify it for permanent inclusion. radiants and velocities by Cook, Lindblad, A comment on the matching sets of orbits is Marsden, McCrosky, and Posen (1973) in order. It is the directions of perihelion that (4) A computer search
    [Show full text]
  • Meteor Shower Detection with Density-Based Clustering
    Meteor Shower Detection with Density-Based Clustering Glenn Sugar1*, Althea Moorhead2, Peter Brown3, and William Cooke2 1Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305 2NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, AL, 35812 3Department of Physics and Astronomy, The University of Western Ontario, London N6A3K7, Canada *Corresponding author, E-mail: [email protected] Abstract We present a new method to detect meteor showers using the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN; Ester et al. 1996). DBSCAN is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all-sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large datasets. We apply this shower detection algorithm on a dataset that contains 25,885 meteor trajectories and orbits obtained from the NASA All-Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun-centered ecliptic radiant, we find 25 strong cluster detections and 6 weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false positive/negative analysis and with a comparison to an established shower detection algorithm. 1. Introduction A meteor shower and its stream is implicitly defined to be a group of meteoroids moving in similar orbits sharing a common parentage.
    [Show full text]
  • EPSC2015-482, 2015 European Planetary Science Congress 2015 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2015
    EPSC Abstracts Vol. 10, EPSC2015-482, 2015 European Planetary Science Congress 2015 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2015 Recent meteor showers – models and observations P. Koten (1) and J. Vaubaillon (2) (1) Astronomical Institute of ACSR, Ond řejov, Czech Republic, (2) Institut de mecanique Celeste et de Calcul des Ephemerides, Paris, France ([email protected] / Fax: +420-323-620263) Abstract 3. Meteor showers A number of meteor shower outbursts and storms Among the most studied meteor showers is the occurred in recent years starting with several Leonid Leonids due to recent return of their parent comet. storms around 2000 [1]. The methods of modeling Outbursts and storms between 1998 and 2002 and meteoroid streams became better and more precise. also another event in 2009 were observed and An increasing number of observing systems enabled analyzed. The Draconid outbursts in 2005 and 2011 better coverage of such events. The observers were also covered. Especially the latter was observed provide modelers with an important feedback on intensively using different instruments onboard two precision of their models. Here we present aircraft [4]. comparison of several observational results with the model predictions. 1. Introduction The double station observations using video technique are carried out by the Ondrejov observatory team for many years [2]. Besides the regular observations of the meteor showers the campaigns are also dedicated to predicted meteor storms and outbursts. The team participated to several international campaigns during recent Leonid meteor shower return as well as on the Draconid airborne campaign in 2011. The main goal of this experiment is the determination of the meteor trajectories and orbits and the meteor shower activity is also measured and compared with predictions.
    [Show full text]
  • Meteor Showers # 11.Pptx
    20-05-31 Meteor Showers Adolf Vollmy Sources of Meteors • Comets • Asteroids • Reentering debris C/2019 Y4 Atlas Brett Hardy 1 20-05-31 Terminology • Meteoroid • Meteor • Meteorite • Fireball • Bolide • Sporadic • Meteor Shower • Meteor Storm Meteors in Our Atmosphere • Mesosphere • Atmospheric heating • Radiant • Zenithal Hourly Rate (ZHR) 2 20-05-31 Equipment Lounge chair Blanket or sleeping bag Hot beverage Bug repellant - ThermaCELL Camera & tripod Tracking Viewing Considerations • Preparation ! Locate constellation ! Take a nap and set alarm ! Practice photography • Location: dark & unobstructed • Time: midnight to dawn https://earthsky.org/astronomy- essentials/earthskys-meteor-shower- guide https://www.amsmeteors.org/meteor- showers/meteor-shower-calendar/ • Where to look: 50° up & 45-60° from radiant • Challenges: fatigue, cold, insects, Moon • Recording observations ! Sky map, pen, red light & clipboard ! Time, position & location ! Recording device & time piece • Binoculars Getty 3 20-05-31 Meteor Showers • 112 confirmed meteor showers • 695 awaiting confirmation • Naming Convention ! C/2019 Y4 (Atlas) ! (3200) Phaethon June Tau Herculids (m) Parent body: 73P/Schwassmann-Wachmann Peak: June 2 – ZHR = 3 Slow moving – 15 km/s Moon: Waning Gibbous June Bootids (m) Parent body: 7p/Pons-Winnecke Peak: June 27– ZHR = variable Slow moving – 14 km/s Moon: Waxing Crescent Perseid by Brian Colville 4 20-05-31 July Delta Aquarids Parent body: 96P/Machholz Peak: July 28 – ZHR = 20 Intermediate moving – 41 km/s Moon: Waxing Gibbous Alpha
    [Show full text]
  • 7 X 11 Long.P65
    Cambridge University Press 978-0-521-85349-1 - Meteor Showers and their Parent Comets Peter Jenniskens Index More information Index a – semimajor axis 58 twin shower 440 A – albedo 111, 586 fragmentation index 444 A1 – radial nongravitational force 15 meteoroid density 444 A2 – transverse, in plane, nongravitational force 15 potential parent bodies 448–453 A3 – transverse, out of plane, nongravitational a-Centaurids 347–348 force 15 1980 outburst 348 A2 – effect 239 a-Circinids (1977) 198 ablation 595 predictions 617 ablation coefficient 595 a-Lyncids (1971) 198 carbonaceous chondrite 521 predictions 617 cometary matter 521 a-Monocerotids 183 ordinary chondrite 521 1925 outburst 183 absolute magnitude 592 1935 outburst 183 accretion 86 1985 outburst 183 hierarchical 86 1995 peak rate 188 activity comets, decrease with distance from Sun 1995 activity profile 188 Halley-type comets 100 activity 186 Jupiter-family comets 100 w 186 activity curve meteor shower 236, 567 dust trail width 188 air density at meteor layer 43 lack of sodium 190 airborne astronomy 161 meteoroid density 190 1899 Leonids 161 orbital period 188 1933 Leonids 162 predictions 617 1946 Draconids 165 upper mass cut-off 188 1972 Draconids 167 a-Pyxidids (1979) 199 1976 Quadrantids 167 predictions 617 1998 Leonids 221–227 a-Scorpiids 511 1999 Leonids 233–236 a-Virginids 503 2000 Leonids 240 particle density 503 2001 Leonids 244 amorphous water ice 22 2002 Leonids 248 Andromedids 153–155, 380–384 airglow 45 1872 storm 380–384 albedo (A) 16, 586 1885 storm 380–384 comet 16 1899
    [Show full text]
  • Lunar Meteor Schedule and Observing Plan for 2020
    Lunar Meteor Schedule and Observing Plan for 2020 This form outlines the plan to monitor the moon on a regular basis both inside and outside normal annual showers. Each month, for a total of up to 14 days per month, we are coordinating observations of the Earthshine portion of the moon for background (including the minor showers when they fall during this time) meteor impact flux. A typical run of observations starts three days after New Moon and continues until two days past First Quarter. The run resumes a two days before Last Quarter and continues until three days prior to New Moon. The actual interval will depend on the lunar elevation and elongation as well as the ability of the observer to control stray light in one’s system. Shower Activity Maximum Radiant V∞ r ZHR Date λ⊙ α δ km/s Mar-Apr, late May, Antihelion Source (ANT) Dec 10 – Sep 10 30 3.0 4 late June Quadrantids (QUA) Dec 28 - Jan 12 Jan 04 283.15° 230° +49° 41 2.1 110 γ-Ursae Minorids (GUM) Jan 10 - Jan 22 Jan 19 298° 228° +67° 31 3.0 3 α-Centaurids (ACE) Jan 31 - Feb 20 Feb 08 319.2° 210° -59° 58 2.0 6 γ-Normids (GNO) Feb 25 - Mar 28 Mar 14 354° 239° -50° 56 2.4 6 Lyrids (LYR) Apr 14 - Apr 30 Apr 22 32.32° 271° +34° 49 2.1 18 π-Puppids (PPU) Apr 15 – Apr 28 Apr 23 33.5° 110° -45° 18 2.0 Var η-Aquariids (ETA) Apr 19 - May 28 May 05 45.5° 338° -01° 66 2.4 50 η-Lyrids (ELY) May 03 - May 14 May 08 48.0° 287° +44° 43 3.0 3 June Bootids (JBO) Jun 22 - Jul 02 Jun 27 95.7° 224° +48° 18 2.2 Var Piscis Austrinids (PAU) Jul 15 - Aug 10 Jul 27 125° 341° -30° 35 3.2 5 South.
    [Show full text]