Nitric Oxide Synthesis Inhibition Does Not Impair Water Immersion-Induced Renal Vasodilation in Humans

Total Page:16

File Type:pdf, Size:1020Kb

Nitric Oxide Synthesis Inhibition Does Not Impair Water Immersion-Induced Renal Vasodilation in Humans J Am Soc Nephrol 11: 1293–1302, 2000 Nitric Oxide Synthesis Inhibition Does Not Impair Water Immersion-Induced Renal Vasodilation in Humans LIOE-TING DIJKHORST-OEI, PETER BOER, TON J. RABELINK, and HEIN A. KOOMANS Department of Nephrology and Hypertension, University Hospital Utrecht, The Netherlands. Abstract. Nitric oxide (NO) is tonically released in the kidney increased sodium excretion (UNaV) from 110 Ϯ 27 to 195 Ϯ to maintain renal perfusion and adequate sodium and water 29 ␮mol/min and flow (UV) from 14.4 Ϯ 1.4 to 15.8 Ϯ 1.4 clearance. Little is known about the role of NO in the renal ml/min. L-NMMA caused profound and sustained increases in adaptation to an acute volume challenge. This is important for MAP and RVR and decreases in UNaV and UV. HOI super- our understanding of pathophysiologic conditions associated imposed on L-NMMA infusion decreased the elevated MAP with impaired NO activity. This study examined the effects of from 93 Ϯ 4to83Ϯ 2 mmHg and RVR from 111 Ϯ 9to95Ϯ NO synthesis inhibition on neurohumoral, renal hemodynamic, 7 mmHg ⅐ min/L, and increased UNaV from 41 Ϯ 8to95Ϯ and excretory responses to head-out immersion (HOI). Seven 15 ␮mol/min and UV from 10.0 Ϯ 1.1 to 12.7 Ϯ 1.4 ml/min. healthy men underwent four 7-h clearance studies. One study The relative changes were not significantly different from the served as a time control study (placebo infusion), and in one effects of HOI without L-NMMA infusion. HOI decreased G study N -monomethyl-L-arginine (L-NMMA; 3 mg/kg priming plasma renin activity and aldosterone and increased plasma dose ϩ 3 mg/kg per h) was infused during hours 2 to 5. In a atrial natriuretic peptide and urinary cGMP. L-NMMA de- third and fourth clearance study, HOI was applied from hours creased urinary cGMP, but did not affect the plasma hormones 15 3 to 5, during infusion of either placebo or L-NMMA. To assess or the changes induced by HOI. L-NMMA decreased the [ N]- 15 the degree of NO synthesis inhibition, the effect of L-NMMA arginine-to-[ N]-citrulline conversion rate to one-third of on [15N]-arginine-to-[15N]-citrulline conversion rate was stud- baseline. The results indicate that in a state of NO deficiency in ied in four others. HOI decreased mean arterial pressure humans, the kidney can still respond to an acute volume (MAP) from 87 Ϯ 3to76Ϯ 2 mmHg and renal vascular challenge with vasorelaxation, diuresis, and natriuresis. resistance (RVR) from 82 Ϯ 6to70Ϯ 7 mmHg ⅐ min/L, and Head-out immersion (HOI) is a model of acute central blood of NO synthesis, for instance by bradykinin, induces marked volume expansion. The renal response to this maneuver con- vasodilation natriuresis and diuresis (5). That NO plays a role sists of renal vasorelaxation and diuresis and natriuresis (1). in the physiologic response to HOI is therefore conceivable. Thus, HOI can be used to study the factors that play a role in However, because many other mediators are involved, the role acute modulation of renal hemodynamics and excretory func- of NO could be purely a modulating one rather than a medi- tion. Among these are suppression of the renin-angiotensin ating one. system and sympathetic tone, and stimulation of atrial natri- Apart from being relevant for normal physiology, this issue uretic peptide (ANP) and renal vasodilatory prostaglandins (1). is relevant for our understanding of essential hypertension. Whether intact nitric oxide (NO) availability is essential for This condition has been associated with impaired availability a normal renal response to HOI has not been investigated. of NO (6–8). Patients with essential hypertension display an Blockade of NO synthesis in animals (2) and humans (3,4) impaired renal vasodilatory response to L-arginine infusion (9). induces strong renal vasoconstriction, accompanied by sodium This is particularly the case in patients with salt-sensitive and water retention, which underscores the importance of NO hypertension (10), a condition that may be specifically related in keeping the kidney tonically in a vasodilated state and to impaired NO activity (11,12). Nonetheless, the renal vaso- permitting adequate sodium and water excretion. Stimulation dilatory and natriuretic response to an acute volume challenge is normal or paradoxically increased (13–16). We therefore studied the acute renal responses to HOI in Received September 17, 1998. Accepted October 9, 1999. healthy humans with and without NO synthesis inhibition G Correspondence to Dr. Hein A. Koomans, Department of Nephrology and induced by infusion of N -monomethyl-L-arginine (L- Hypertension, University Hospital Utrecht, Room F03.226, P.O. Box 85500, NMMA). This NO synthesis inhibitor was infused for several 3508 GA Utrecht, The Netherlands. Phone: ϩ31 30 2507329; Fax: ϩ31 30 2543492; E-mail: [email protected] hours to induce steady-state conditions. The magnitude of NO synthesis inhibition was assessed from the effect of L-NMMA 1046-6673/1106-1293 15 15 Journal of the American Society of Nephrology on the [ N]-arginine-to-[ N]-citrulline conversion rate. De- Copyright © 2000 by the American Society of Nephrology tails of this technique were published recently (17). 1294 Journal of the American Society of Nephrology J Am Soc Nephrol 11: 1293–1302, 2000 Materials and Methods Clearances were calculated according to standard formula. Mean Water Immersion Experiments arterial pressure (MAP) was calculated as the sum of one-third of Studies were carried out in seven healthy men (age range, 20 to 25 systolic pressure and two-thirds of diastolic pressure. Renal blood yr). Their health status was assessed by medical history, physical flow was calculated by dividing ERPF by (1-packed cell volume). MAP was divided by renal blood flow to estimate renal vascular examination, and routine laboratory investigation. All participants resistance. The changes induced by HOI were corrected for the gave written informed consent after extensive explanation of the changes found during the control studies. For this purpose, the ratios protocol. The study protocol was approved by the University Hospital of the individual values during the HOI study and the corresponding Ethical Committee for Studies in Humans. control study were calculated for each urine collection period. Each subject underwent two clearance experiments while remain- ing seated in air (air temperature 26.0 Ϯ 1.0°C), and two clearance experiments while undergoing HOI for 3 h. In either two conditions, [15N]-Arginine-to-[15N]-Citrulline Conversion Rate one experiment was performed during L-NMMA infusion to inhibit Experiments NO synthesis and the other during placebo (vehicle) infusion. Infusion As a measure of whole-body NO synthesis before and during the of either L-NMMA or placebo was started after completion of the 1-h NO synthase (NOS) blockade, the [15N]-arginine-to-[15N]-citrulline baseline collections. L-NMMA (Institut fu¨r Pharmazie, Universita¨t conversion rate was determined in four healthy volunteers (3 male, 1 Leipzig, Germany) was dissolved in normal saline (5 mg/ml) and female, age range 22 to 28 yr) at baseline and until 2 h after the start infused as a priming dose of 3 mg/kg body wt, followed by mainte- of L-NMMA infusion, using the same protocol as in the clearance nance infusion of 3 mg/kg per h during 4 h, from hours 2 to 5. This studies (3 mg/kg priming dose, followed by 3 mg/kg per h). The scheme was chosen to achieve a period of steady state, such as is protocol was approved by the University Hospital Ethical Committee desired for studies using clearance techniques. The average volume for Studies in Humans, and subjects provided written informed con- infused was 220 ml over 4 h. In the two HOI studies, after1hof sent after explanation of the protocol. Ϯ infusion subjects were immersed in thermoneutral water (35.5 Two hours before L-NMMA infusion was started, two blood sam- 0.5°C) up to the sternoclavicular notch. Immersion was thus applied ples were obtained for determination of (natural) background isotope from hour 3 to hour 5, with only brief interruptions for urine collec- ratios. Then subjects received a priming dose of 12 ␮mol L-[gua- tion, and ended at the same time as the infusion period. After cessation 15 Ͼ nidino- N2O]-arginine (purity 98% atom percent excess (APE); of the infusion period, recovery was observed for 2 more hours. Mass Trace, Woburn, MA) per kilogram body weight in 2 min, The 7-h clearance studies were carried out on separate days at least followed by a constant infusion of 11.2 ␮mol/kg per h. After 1 h, three 3 d apart. The order of the studies was randomized. The studies were blood samples for measurement of steady-state baseline enrichments performed after5dofadiet containing 200 mmol sodium. Adherence were collected at 30-min intervals. Subsequently, L-NMMA adminis- to the diet was monitored by 24-h urine collections on the day before tration was started and blood sampling at 30-min intervals was con- each clearance experiment. tinued for another 2 h. On the eve of each clearance study, 400 mg of lithium carbonate Arginine and citrulline 15N enrichment in plasma was determined was ingested at 10 p.m. The experiments were started by subjects by electrospray ionization mass spectrography with a VG Platform receiving an oral water load of 25 ml/kg between 7:30 a.m. and single quadrupole instrument after separation using a Pharmacia 8.30 a.m. Additional water-matching urine output was supplied Smart System, equipped with a 4 ϫ 250 mm Sephasil C18 column, a throughout the clearance study.
Recommended publications
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Suppression of Antidiuretic Hormone Secretion by Clonidine in the Anesthetized Dog
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 7 (1975), p. 405—412. Suppression of antidiuretic hormone secretion by clonidine in the anesthetized dog MICHAEL H. HUMPHREYS and IAN A. REID with the technical assistance of LANCE YA NAN CHOU University of California Renal Center, San Francisco General Hospital, and the Departments of Medicine and Physiology, University of California Medical Center, San Francisco, California Suppression of antidiuretic hormone secretion by clonidine in l'augmentation initiale de Ia pression artérielle par une constric- the anesthetized dog. 5tudies were performed to determine the tion aortique sus-rénale. Au contraire, V, Tc2o et Vosm ne sont mechanism by which the antihypertensive agent clonidine pas modifies par Ia clonidine administrée a sept chiens hypo- increases urine flow (V). In 11 anesthetized, hydropenic dogs, i.v. physectomisés qui recoivent une perfusion constante d'ADH administration of clonidine (30 gJkg) increased arterial pressure (80 1LU/kg/min), malgré des modifications hémodynamiques from 128±4 to 142±3 mm Hg and slowed heart rate from semblables. Les résultats suggCrent que Ia clonidine augmente V 138±7 to 95±7 beats/mm within 30 mm of injection; blood par l'inhibition de Ia liberation d'ADH, peut-être par une voie pressure then fell to 121 5 mm Hg 30 to 60 mm after injection, indirecte empruntant les affets alpha adrCnergiques de Ia and 112 5 mm Hg in the next 30-mm period. V increased from drogue sur Ia circulation. 0.36±0.09 to 0.93±0.13 mI/mm and urine osmolality (Uo,m) decreased from 1378±140 to 488±82 mOsm/kg of H20 30 to 60 mm following injection (P<0.001).
    [Show full text]
  • Studies in Para-Aminohippuric Acid Synthesis in the Human: Its Application As a Liver Function Test
    STUDIES IN PARA-AMINOHIPPURIC ACID SYNTHESIS IN THE HUMAN: ITS APPLICATION AS A LIVER FUNCTION TEST William P. Deiss, Philip P. Cohen J Clin Invest. 1950;29(8):1014-1020. https://doi.org/10.1172/JCI102332. Research Article Find the latest version: https://jci.me/102332/pdf STUDIES IN PARA-AMINOHIPPURIC ACID SYNTHESIS IN THE HUMAN: ITS APPLICATION AS A LIVER FUNCTION TEST By WILLIAM P. DEISS AND PHILIP P. COHEN (From the Departments of Medicine and Physiological Chemistry, University of Wisconsin Medical School, Madison, Wisconsin) (Submitted for publication February 24, 1950; accepted, April 17, 1950) Synthesis of p-aminohippuric acid (PAH) from All the subjects received 3 g. of sodium PAB (in the p-aminobenzoic acid (PAB) in animal liver slices commercial tablet form with a starch filler) orally at and homogenates has been shown to resemble least two hours after a light breakfast. On separate occasions 14 subjects, eight of the normal group and closely, both chemically and thermodynamically, six of the liver impairment group, were given 25 ml. the synthesis of peptides (1-3). This reaction of a 20% solution of Glycine, N.F. in addition to the has been utilized in the hippuric acid synthesis oral sodium PAB. One normal subject was given 0.8 g. test for liver function since 1933 (4) and has found of sodium benzoate intravenously ten minutes before the oral dose of sodium PAB. wide clinical application (5-7). Hippuric acid, Five ml. blood samples were withdrawn at regular however, must be determined in the urine and, intervals after administration of sodium PAB and in two consequently, relatively normal renal excretion is normal subjects four hourly total urine specimens were necessary.
    [Show full text]
  • Conjugation Reactions in the Newborn Infant: the Metabolism of Para-Aminobenzoic Acid
    Arch Dis Child: first published as 10.1136/adc.40.209.97 on 1 February 1965. Downloaded from Arch. Dis. Childh., 1965, 40, 97. CONJUGATION REACTIONS IN THE NEWBORN INFANT: THE METABOLISM OF PARA-AMINOBENZOIC ACID BY MARKUS F. VEST* and RENI2 SALZBERG From the Children's Hospital, University of Basel, Switzerland (RECEIVED FOR PUBLICATION JULY 8, 1964) It has been shown that the liver of the newborn The method of Deiss and Cohen (1950) was uscd for infant has a limited capacity to perform certain the estimation of PAB and para-aminohippuric acid transformation or conjugation reactions when (PAH). PAH was estimated after extraction of PAB compared to older subjects (Driscoll and Hsia, 1958; with ether. After extracting mixtures of known composi- tion, on the average I % PAB and 98 % PAH remained. Kretchmer, Levine, McNamara, and Barnett, 1956). For the estimation of acetylated PAB and PAH (aceta- This limitation is evident in the formation of mido-benzoic and acetamido-hippuric acid') in the serum glucuronides (Brown and Zuelzer, 1958; Vest, 1958) aliquots ofthe deproteinized supematant were hydrolysed and plays an important role in the genesis of by boiling with 0 * 05 volume of 4 N HC1 for 20 minutes. neonatal jaundice. There are indications that other In the case of urine better results were obtained by conjugation or detoxification mechanisms are also hydrolysing for 45 minutes. In some experiments the carried out in a different way from that of later life. hydrolysis of acetylated compounds was carried out by The observation that after administration of sodium heating at 96° C.
    [Show full text]
  • The Effects of Losartan on Renal Function in the Newborn Rabbit
    0031-3998/02/5106-0728 PEDIATRIC RESEARCH Vol. 51, No. 6, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. The Effects of Losartan on Renal Function in the Newborn Rabbit ANNE PRÉVOT, DOLORES MOSIG, AND JEAN-PIERRE GUIGNARD Division of Pediatric Nephrology, Department of Pediatrics, Lausanne University Medical Center, CH 1011 Lausanne, Switzerland ABSTRACT The low GFR of newborns is maintained by various factors dose can be considered as reflex vasoconstriction of afferent and including the renin-angiotensin system. We previously estab- efferent arterioles, rather than specific receptor antagonism. We lished the importance of angiotensin II in the newborn kidney, conclude that under physiologic conditions, the renin- using the angiotensin-converting enzyme inhibitor perindoprilat. angiotensin is critically involved in the maintenance of GFR in The present study was designed to complement these observa- the immature kidney. (Pediatr Res 51: 728–732, 2002) tions by evaluating the role of angiotensin-type 1 (AT1) recep- tors, using losartan, a specific AT1-receptor blocker. Increasing doses of losartan were infused into anesthetized, ventilated, Abbreviations newborn rabbits. Renal function and hemodynamic variables AII, angiotensin II were assessed using inulin and para-aminohippuric acid clear- ACE, angiotensin-converting enzyme ances as markers of GFR and renal plasma flow, respectively. ARI, acute renal insufficiency Losartan 0.1 mg/kg slightly decreased mean blood pressure AT1, angiotensin type 1 receptor Ϫ ϩ ( 11%) and increased diuresis ( 22%). These changes can be AT2, angiotensin type 2 receptor explained by inhibition of the AT1-mediated vasoconstrictive BK, bradykinin and antidiuretic effects of angiotensin, and activation of vasodi- BW, body weight lating and diuretic AT2 receptors widely expressed in the neo- EFP, effective filtration pressure natal period.
    [Show full text]
  • Emerging Kidney Models to Investigate Metabolism, Transport and Toxicity of Drugs and Xenobiotics
    DMD Fast Forward. Published on August 3, 2018 as DOI: 10.1124/dmd.118.082958 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 82958 1. Title page Emerging Kidney Models to Investigate Metabolism, Transport and Toxicity of Drugs and Xenobiotics Piyush Bajaj, Swapan K. Chowdhury, Robert Yucha, Edward J. Kelly, Guangqing Xiao Drug Safety Research and Evaluation, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (P.B.); Drug Metabolism and Pharmacokinetics Department, Takeda Pharmaceutical International Co., Cambridge, Massachusetts (S.K.C., R.Y., G. X.); Department of Pharmaceutics, University of Washington, Seattle, Washington (E.J.K.) Downloaded from dmd.aspetjournals.org at ASPET Journals on September 26, 2021 1 DMD Fast Forward. Published on August 3, 2018 as DOI: 10.1124/dmd.118.082958 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 82958 2. Running title page Running title: Emerging kidney models for investigating transport and toxicity Corresponding Author: Piyush Bajaj, PhD Global Investigative Toxicology Downloaded from Drug Safety Research and Evaluation 35 Landsdowne Street, Cambridge, MA 02139 USA Phone: 617-679-7287 Email: [email protected] dmd.aspetjournals.org Document Statistics: at ASPET Journals on September 26, 2021 Number of text pages: 27 Number of tables: 2 Number of figures: 2 Number of references: 114 Number of words in Abstract: 227 Number of words in Introduction: 665 Nonstandard abbreviations used in the paper: 3,4,5-trichloroaniline (TCA) American Type Culture Collection (ATCC) Aminopeptidase N (CD13) Aquaporin 1 (AQP-1) Area under the receiver operating characteristic curve (AUC-ROC) Aristolochic acid (AA) ATP-binding cassette (ABC) Breast cancer resistance protein (BCRP) Chinese Hamster Ovary (CHO) Conditionally immortalized proximal tubule epithelial cells (ciPTEC) Conditionally immortalized proximal tubule epithelial cells overexpressing OAT-1 (ciPTEC - OAT1) 2 DMD Fast Forward.
    [Show full text]
  • Renal and Vascular Effects of Uric Acid Lowering in Normouricemic Patients with Uncomplicated Type 1 Diabetes
    Diabetes Volume 66, July 2017 1939 Renal and Vascular Effects of Uric Acid Lowering in Normouricemic Patients With Uncomplicated Type 1 Diabetes Yuliya Lytvyn,1,2 Ronnie Har,1 Amy Locke,1 Vesta Lai,1 Derek Fong,1 Andrew Advani,3 Bruce A. Perkins,4 and David Z.I. Cherney1 Diabetes 2017;66:1939–1949 | https://doi.org/10.2337/db17-0168 Higher plasma uric acid (PUA) levels are associated with at the efferent arteriole. Ongoing outcome trials will de- lower glomerular filtration rate (GFR) and higher blood termine cardiorenal outcomes of PUA lowering in patients pressure (BP) in patients with type 1 diabetes (T1D). Our with T1D. aim was to determine the impact of PUA lowering on renal and vascular function in patients with uncomplicated T1D. T1D patients (n = 49) were studied under euglycemic and Plasma uric acid (PUA) levels are associated with the PATHOPHYSIOLOGY hyperglycemic conditions at baseline and after PUA low- pathogenesis of diabetic complications, including cardiovas- ering with febuxostat (FBX) for 8 weeks. Healthy control cular disease and kidney injury (1). Interestingly, extracellu- subjects were studied under normoglycemic conditions lar PUA levels are lower in young adults and adolescents (n = 24). PUA, GFR (inulin), effective renal plasma flow with type 1 diabetes (T1D) compared with healthy control (para-aminohippurate), BP, and hemodynamic responses subjects (HCs) (2–4), likely due to a stimulatory effect of to an infusion of angiotensin II (assessment of intrarenal urinary glucose on the proximal tubular GLUT9 transporter, renin-angiotensin-aldosterone system [RAAS]) were mea- which induces uricosuria (2). Thus, PUA-mediated target sured before and after FBX treatment.
    [Show full text]
  • The Renal Tubular Handling of Aldosterone and Its Acid-Labile Conjugate
    The Renal Tubular Handling of Aldosterone and Its Acid-Labile Conjugate MuRPHY T. ScuRRY, LERoy SHEAR, and KEVIN G. BARRY From the Department of Metabolism, Walter Reed Army Institute of Research, Washington, D. C. A B S T R A C T Stop-flow studies using infusions for interpretation of clinical assay data and data of aldosterone-3H or its 3H acid-labile conjugate concerning the metabolism of the hormone. Renal were done on five rhesus monkeys. The aldos- clearance studies in man (4, 5) have shown that terone-3H urine-to-plasma (U/P) ratio decreased 72-90% of filtered nonprotein-bound aldosterone in the same distal urine samples as sodium. The is reabsorbed. The site of reabsorption in the dog 3H acid-labile conjugate U/P-to-inulin U/P ratio is the distal tubule (6). The renal clearance of the increased in the more proximal samples either with acid-labile conjugate was found to exceed glomeril- conjugate formed endogenously during aldos- lar filtration rate by 2- to 13-fold, indicating tubu- terone-3H infusions or with labeled conjugate in- lar secretion. The kidney has been shown to be a fused alone. Aldosterone reabsorption occurred at site of formation of this conjugate (7-9). The site a distal site in the renal tubule, and secretion of its of conjugate formation within the kidney and the acid-labile conjugate occurred at a proximal site. relationships between formation and secretion of acid-labile conjugate are not known. INTRODUCTION In this investigation, stop-flow studies with tritium-labeled aldosterone and acid-labile conju- The urinary excretion of aldosterone and its me- gate have been done to determine the site of aldos- tabolites is widely used to assess aldosterone me- terone reabsorption and acid-labile conjugate tabolism for clinical purposes.
    [Show full text]
  • Evaluation of P-Aminohippurate As a Marker for Blood-Flow Determinations in Cattle Denis Jay Meerdink Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 Evaluation of p-aminohippurate as a marker for blood-flow determinations in cattle Denis Jay Meerdink Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, Physiology Commons, and the Veterinary Physiology Commons Recommended Citation Meerdink, Denis Jay, "Evaluation of p-aminohippurate as a marker for blood-flow determinations in cattle " (1981). Retrospective Theses and Dissertations. 7448. https://lib.dr.iastate.edu/rtd/7448 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.
    [Show full text]
  • Atrial Natriuretic Peptide in Kidney of Renal Disease Patients and Healthy Persons
    Endocrinol. Japon. 1988, 35(4), 523-529 Atrial Natriuretic Peptide in Kidney of Renal Disease Patients and Healthy Persons FUMIAKI MARUMO, HISATO SAKAMOTO#, NAOKI UMETANI# AND MICHIHITO OKUBO# Second Department of Internal Medicine, Tokyo Medical and Dental University, Yushima, Tokyo, and #Department of Medicine,Kitasato University School of Medicine, Sagamihara,Kanagawa Japan Abstract Regulation of renal excretion of atrial natriuretic peptide (ANP) was studied in kidney disease patients and healthy kidney donors. The measured ANP concentration in the patient's plasma did not correlate with their creatinine clearance (Ccr), while the fractional excretion of ANP (FEANP) significantly correlated with Ccr. FEANP in healthy persons is less than 1%. In the healthy donors of kidneys for transplantation, approximately 80% of the plasma ANP from the renal artery appeared in the renal vein. From these results, this high recovery of ANP in the veins does not appear to be adequately explained by its degradation in the renal arterioles and nephrons. The FEANP from kidney disease patients significantly correlated with FENa, FEK and FEp, but not with FEca and FEMg. The manner of ANP handling in the nephron may possibly differ from that of Ca or Mg. Although atrial natriuretic peptide (Marumo et al., 1986). (ANP) is known to cause natriuresis and The plasma ANP entering from the diuresis, it has not been established whether renal artery into the kidney may be 1) ANP is reabsorbed or degradated in the consumed by the receptors and/or degraded human kidney. Some human polypeptide by peptidase in the vasculature and tubules, hormones are excreted into the urine, like 2) reabsorbed from the nephron after being vasopressine, for example, while others filteredby the glomeruli,or 3)excreted into including insulin are not.
    [Show full text]
  • Mechanism of the Antidiuretic Effect Associated with Interruption of Parasympathetic Pathways
    Mechanism of the Antidiuretic Effect Associated with Interruption of Parasympathetic Pathways Robert W. Schrier, … , Tomas Berl, Judith A. Harbottle J Clin Invest. 1972;51(10):2613-2620. https://doi.org/10.1172/JCI107079. Research Article The present experiments were undertaken to investigate the mechanism whereby the parasympathetic nervous system may be involved in the renal regulation of solute-free water excretion. The effects of interruption of parasympathetic pathways by bilateral cervical vagotomy were examined in eight normal and seven hypophysectomized anesthetized dogs undergoing a water diuresis. In the normal animals cervical vagotomy decreased free-water clearance (C ) from H2O 2.59±0.4 se to −0.26±0.1 ml/min (P < 0.001), and urinary osmolality (Uosm) increased from 86±7 to 396±60 mOsm/kg (P < 0.001). This antidiuretic effect was not associated with changes in cardiac output, renal perfusion pressure, glomerular filtration rate, renal vascular resistance, or filtration fraction and was not affected by renal denervation. A small but significant increase in urinary sodium and potassium excretion was observed after vagotomy in these normal animals. Pharmacological blockade of parasympathetic efferent pathways with atropine, curare, or both was not associated with an alteration in either renal hemodynamics or renal diluting capacity. In contrast to the results in normal animals, cervical vagotomy was not associated with an antidiuretic effect in hypophysectomized animals. C was 2.29±0.26 ml/min H2O before and 2.41±0.3 ml/min after vagotomy, and Uosm was 88±9.5 mOsm/kg before vagotomy and 78±8.6 mOsm/kg after vagotomy in the hypophysectomized animals.
    [Show full text]
  • Maturation of P-Aminohippuric Acid Transport in the Developing Rabbit Kidney: Interrelationships of the Individual Components
    Pediat. Res. 12: 992-997 (1978) p-Aminohippuric acid organic acid transport developmental physiology proximal tubules kidney Maturation of p-Aminohippuric Acid Transport in the Developing Rabbit Kidney: Interrelationships of the Individual Components BARBARA R. COLE, 1291 J. TREVOR BROCKLEBANK, ROBERT G. CAPPS, BRENDAN. MURRAY, AND ALAN M. ROBSON The Edward Mallinckrodt Department of Pediatrics, Washington University, and the Renal Division, St. Louis Children's Hospital, St. Louis, Missouri, USA Summary and in immature animals ( 11 ), and in vitro studies of intracellular PAH accumulation by proximal renal tubular cells have supported The excretion of both endogenous organic (aryl) acids, such as the in vivo observations (10, 12). benzoic acid, and exogenous ones, such as p-aminohippuric acid Since aryl acids are excreted by the kidney in part by glomerular (PAH), penicillin, and furosemide, is reduced in the human neonate filtration, the decreased glomerular filtration rates in the neonate and other immature animals. The unique developmental pattern of (2) will contribute to the decreased excretion of these acids. aryl acid transport in immature rabbit kidney cortex slices is However, the principal route for excretion of these aryl acids is by produced by the interrelationships of P AH uptake, efflux, and active transport in the proximal renal tubule (22). This involves amount of intracellular binding protein, all of which reach mature active transport across the basolateral membranes into the proxi­ levels at different ages. mal tubular
    [Show full text]