36716885.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction Development Lifecycle Model
DeveIopment of a Comprehensive Software Engineering Environment Thomas C. Hartrum Gary B. Lamont Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering School of Engineering School of Engineering Air Force Institute of Technology Air Force Institute of Technology Wright-Patterson AFB, Dayton, Ohio, 45433 Wright-Patterson AFB, Dayton, Ohio, 45433 Abstract The concept of an integrated software development environment The generation of a set of tools for the software lifecycle is a recur- can be realized in two distinct levels. The first level deals with the ring theme in the software engineering literature. The development of access and usage mechanisms for the interactive tools, while the sec- such tools and their integration into a software development environ- ond level concerns the preservation of software development data and ment is a difficult task at best because of the magnitude (number of the relationships between the products of the different software life variables) and the complexity (combinatorics) of the software lifecycle cycle stages. The first level requires that all of the component tools process. An initial development of a global approach was initiated at be resident under one operating system and be accessible through a AFIT in 1982 as the Software Development Workbench (SDW). Also common user interface. The second level dictates the need to store de- other restricted environments have evolved emphasizing Ada and di5 velopment data (requirements specifications, designs, code, test plans tributed processing. Continuing efforts focus on tool development, and procedures, manuals, etc.) in an integrated data base that pre- tool integration, human interfacing (graphics; SADT, DFD, structure serves the relationships between the products of the different life cy- charts, ...), data dictionaries, and testing algorithms. -
Software Engineering Process Development
MACHINES, TECHNOLOGIES, MATERIALS. ISSN 1313-0226. ISSUE 11/2013 SOFTWARE ENGINEERING PROCESS DEVELOPMENT M.Sc. Ivanova Milka. Faculty of Mechanical Engineering – Technical University of Sofia, Bulgaria Abstract: A software engineering (SE) process is a set of activities that leads to the production of software product. These activities may involve the development of software from scratch in a standard program language. However new software is developed by extending and modifying existing systems and by configuring and integrating off-the-self software or systems components. In the report they have understand the concept of software engineering, software engineering process models and when these models might be used. Keywords: Software, software product, software engineering, software process, process models Many people equate the term software as a computer programs. But software engineering (CBSE) This technique assumes that parts of software is not just the programs also all associate documentation the system already exist. The system development process focuses and configuration data that is needed to make these programs on integrating these parts rather than developing them from scratch. operate correctly. A software system usually consist of a number of Some examples of the types of software process model that may separate programs, configuration files which are used to set up these be produced are: programs, system documentation witch describe the systems’ structure and user’s documentation which explains how to use the I. THE LINEAR SEQUENTIAL MODEL system and web sites for users to download recent information. Sometimes called the waterfall model, the linear sequential model Software that can be sold to the customer named a software suggests a systematic, sequential approach to software development product; There are fundamental types of software product: that begins at the system level and progresses through analysis, design, coding, testing, and support. -
Chapter 1: Introduction
Just Enough Structured Analysis Chapter 1: Introduction “The beginnings and endings of all human undertakings are untidy, the building of a house, the writing of a novel, the demolition of a bridge, and, eminently, the finish of a voyage.” — John Galsworthy Over the River, 1933 www.yourdon.com ©2006 Ed Yourdon - rev. 051406 In this chapter, you will learn: 1. Why systems analysis is interesting; 2. Why systems analysis is more difficult than programming; and 3. Why it is important to be familiar with systems analysis. Chances are that you groaned when you first picked up this book, seeing how heavy and thick it was. The prospect of reading such a long, technical book is enough to make anyone gloomy; fortunately, just as long journeys take place one day at a time, and ultimately one step at a time, so long books get read one chapter at a time, and ultimately one sentence at a time. 1.1 Why is systems analysis interesting? Long books are often dull; fortunately, the subject matter of this book — systems analysis — is interesting. In fact, systems analysis is more interesting than anything I know, with the possible exception of sex and some rare vintages of Australian wine. Without a doubt, it is more interesting than computer programming (not that programming is dull) because it involves studying the interactions of people, and disparate groups of people, and computers and organizations. As Tom DeMarco said in his delightful book, Structured Analysis and Systems Specification (DeMarco, 1978), [systems] analysis is frustrating, full of complex interpersonal relationships, indefinite, and difficult. -
Formalized Structured Analysis Specifications David L
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1991 Formalized structured analysis specifications David L. Coleman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Computer Sciences Commons, and the Mathematics Commons Recommended Citation Coleman, David L., "Formalized structured analysis specifications " (1991). Retrospective Theses and Dissertations. 9634. https://lib.dr.iastate.edu/rtd/9634 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI fUms the text directly &om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afifect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. -
Analysis of Methods TECHNICAL REPORT
Analysis of Methods Final Report Richard J. Mayer, ed. Knowledge Based Systems Laboratory Texas A&M University March 8, 1991 w -o _0 co ! m f_ U cD C 0 Z 0 Cooperative Agreement NCC 9-16 Research Activity No. IM.06: Methodologies for Integrated 0 Information Management Systems r CDOC NASA Johnson Space Center Information Systems Directorate Information Technology Division -J • 0 _D A _OE e._ ,t C I LL -C,-- ::2" I C" m E Research Institute for Computing and Information Systems v;I _0 University of Houston-C/ear Lake TECHNICAL REPORT The RICIS Concept The University of Houston-Clear Lake established the Research lnsUtute for Computing and Information Systems (RICIS) in 1986 to encourage the NASA Johnson Space Center (JSC) and local industry to actively support research in the computing and information sciences. As part of thls endeavor. UHCL proposed a partnership with JSC to Jointly define and manage an integrated program of research in advanced data processing technology needed for JSC's main missions, including administrative, engineering and science responsi- bilities. JSC agreed and entered into a continuing cooperative agreement with UHCL beginning in May 1986, to Jointly plan and execute such research through RICIS. Additionally, under Cooperative Agreement NCC 9-16, computing and educaUonal facilities are shared by the two instituUons to conduct the research. The UHCL/RICIS mission is to conduct, coordinate, and disseminate research and professional level edueaUon in computing and information systems to serve the needs of the government, industry, community and academia. RICIS combines resources ofUHCLand Itsgateway affiliatestoresearch and develop materials, prototypes and publications on topics of mutual interest to its sponsors and researchers. -
Software Engineering Process Development
SCIENTIFIC PROCEEDINGS X INTERNATIONAL CONGRESS "MACHINES, TECHNOLОGIES, MATERIALS" 2013 ISSN 1310-3946 SOFTWARE ENGINEERING PROCESS DEVELOPMENT M.Sc. Ivanova Milka. Faculty of Mechanical Engineering – Technical University of Sofia, Bulgaria Abstract: A software engineering (SE) process is a set of activities that leads to the production of software product. These activities may involve the development of software from scratch in a standard program language. However new software is developed by extending and modifying existing systems and by configuring and integrating off-the-self software or systems components. In the report they have understand the concept of software engineering, software engineering process models and when these models might be used. Keywords: Software, software product, software engineering, software process, process models Many people equate the term software as a computer programs. But software engineering (CBSE) This technique assumes that parts of software is not just the programs also all associate documentation the system already exist. The system development process focuses and configuration data that is needed to make these programs on integrating these parts rather than developing them from scratch. operate correctly. A software system usually consist of a number of Some examples of the types of software process model that may separate programs, configuration files which are used to set up these be produced are: programs, system documentation witch describe the systems’ structure and user’s documentation which explains how to use the I. THE LINEAR SEQUENTIAL MODEL system and web sites for users to download recent information. Sometimes called the waterfall model, the linear sequential model Software that can be sold to the customer named a software suggests a systematic, sequential approach to software development product; There are fundamental types of software product: that begins at the system level and progresses through analysis, design, coding, testing, and support. -
Appendix A: a Practical Guide to Entity-Relationship Modeling
Appendix A: A Practical Guide to Entity-Relationship Modeling A Practical Guide to Entity-Relationship Modeling Il-Yeol Song and Kristin Froehlich College of Information Science and Technology Drexel University Philadelphia, PA 19104 Abstract The Entity-Relationship (ER) model and its accompanying ER diagrams are widely used for database design and Systems Analysis. Many books and articles just provide a definition of each modeling component and give examples of pre-built ER diagrams. Beginners in data modeling have a great deal of difficulty learning how to approach a given problem, what questions to ask in order to build a model, what rules to use while constructing an ER diagram, and why one diagram is better than another. In this paper, therefore, we present step-by-step guidelines, a set of decision rules proven to be useful in building ER diagrams, and a case study problem with a preferred answer as well as a set of incorrect diagrams for the problem. The guidelines and decision rules have been successfully used in our beginning Database Management Systems course for the last eight years. The case study will provide readers with a detailed approach to the modeling process and a deeper understanding of data modeling. Introduction Entity relationship diagrams (ERD) are widely used in database design and systems analysis to represent systems or problem domains. The ERD was introduced by Chen (1976) in early 1976. Teorey, Yang, and Fry (1986) present an extended ER model for relational database design. The ERD models a given problem in terms of its essential elements and the interactions between those elements in a problem domain. -
A Comparative Analysis of Entity-Relationship Diagrams1
Journal of Computer and Software Engineering, Vol. 3, No.4 (1995), pp. 427-459 A Comparative Analysis of Entity-Relationship Diagrams1 Il-Yeol Song Drexel University Mary Evans USConnect E.K. Park U.S. Naval Academy The purpose of this article is to collect widely used entity-relationship diagram (ERD) notations and so their features can be easily compared, understood, and converted from one notation to another. We collected ten different ERD notations from text books and CASE tools. Each notation is depicted using a common problem and includes a discussion of each characteristic and notation. According to our investigation, we have found that ERD features and notations are different in seven features: whether they allow n-ary relationships, whether they allow attributes in a relationship, how they represent cardinality and participation constraints, the place where they specify constraints, whether they depict overlapping and disjoint subclass entity-types, whether they show total/partial specialization, and whether they model the foreign key at the ERD level. We conclude that many of the ER diagrams we studied are different in how they depict the criteria listed above. In order to convert one diagram to another, some notations must be extended and carefully converted from one notation into another. We also discuss the limitations of existing CASE tools in terms of modeling capabilities and supporting diagrams. Keywords: Entity-Relationship Diagrams, ERD, design, modeling, CASE 1Correspondence should be addressed to Il-Yeol Song, College of Information Science and Technology, Drexel University, 32nd and Chestnut Streets, Philadelphia, PA 19104. Email: [email protected] 1 Journal of Computer and Software Engineering, Vol. -
The Use of Information Engineering As a Framework for Analyzing Records in Electronic Form
THE USE OF INFORMATION ENGINEERING AS A FRAMEWORK FOR ANALYZING RECORDS IN ELECTRONIC FORM by Jayne Bellyk B. G. S., Simon Fraser University, 1981 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARCHIVAL STUDIES in THE FACULTY OF GRADUATE STUDIES School of Library, Archival and Information Studies We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 1995 ©Jayne Bellyk, 1995 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Departmsht of Li WfrT\j\, CA^cvlyj \/4c^4 \ S^/vv^A/\ ^±Ock\C < The University of British Columbia Vancouver, Canada •ate Afy\\ 3-5-, iqq.5 DE-6 (2788) ABSTRACT This thesis examines an approach and a methodology used by information technology professionals to develop information systems. Information engineering is a methodology for developing information systems following a specific process. It does not set out to create or manage records, yet it does have significance to archivists as a framework for analyzing information and records in electronic form. The framework that information engineering extends to archivists is one that links administrative goals and business functions to individual activities and acts. -
Structured Analysis and Design
Structured Analysis and Design Rajib Mall CSE Department IIT KHARAGPUR 1 Introduction • Structured analysis is a top-down decomposition technique: – DFD (Data Flow Diagram) is the modelling technique used – Functional requirements are modelled and decomposed. • Why model functionalities? – Functional requirements exploration and validation – Serves as the starting point for design. Function-oriented vs. Object-oriented Design • Two distinct style of design: – Function-oriented or Procedural • Top-down approach • Carried out using Structured analysis and structured design • Coded using languages such as C – Object-oriented • Bottom-up approach • Carried out using UML • Coded using languages such as Java, C++, C# Structured analysis and Structured Design • During Structured analysis: – High-level functions are successively decomposed: •Into more detailed functions. • During Structured design: – The detailed functions are mapped to a module structure. Structured Analysis • Successive decomposition of high-level functions: – Into more detailed functions. – Technically known as top-down decomposition. SA/SD (Structured Analysis/Structured Design) • SA/SD technique draws heavily from the following methodologies: – Constantine and Yourdon's methodology We largely use – Hatley and Pirbhai's methodology – Gane and Sarson's methodology – DeMarco and Yourdon's methodology • SA/SD technique results in: – high-level design. Functional Decomposition • Each function is analyzed: – Hierarchically decomposed into more detailed functions. – Simultaneous decomposition of high-level data •Into more detailed data. Structured Analysis • Textual problem description converted into a graphic model. – Done using data flow diagrams (DFDs). – DFD graphically represents the results of structured analysis. • The results of structured analysis can be easily understood even by ordinary customers: Structured – Does not require computer knowledge. Analysis – Directly represents customer’s perception of the problem. -
Process Modeling Bibliography 3.1 Page 1 Provided by Tryon and Associates Brooks, Frederick P
Process Modeling Series BIBLIOGRAPHY "The man who does not read good books has no advantage over the man who can't read them." - Mark Twain This bibliography is provided as a reference for any outside materials that were used in the development of the Tryon and Associates Process Modeling seminars. This is a partial bibliography in that we provide only the authors name, title of the work and the original date of publication. A short description of the significance of the materials is included with most of the titles. Many of the books listed are also available on cassette tape. Where that specific medium is recommended, it will be indicated with a "CASS" notice. You will also find a private rating system indicating our opinion of the title. "AAA" indicates a must-read and a book that we feel belongs in every professional's library. "AA" tells you this is an important work that should be in a corporate library for frequent reference. "A" identifies a title that should be browsed as soon as possible and read when there is time. We do not list titles below an "A" but will be happy to provide bibliographical information on any other material referenced in our seminars. You may find some of these books in your local bookstore but most of them are easier to find on the Internet. You may want to find a good source for out of print books for some of these titles. Chuck Tryon Adams, Richard. WATERSHIP DOWN, 1972. (AA – Okay, let’s start this list with something FUN. -
Data Model As an Architectural View
Data Model as an Architectural View Paulo Merson October 2009 TECHNICAL NOTE CMU/SEI-2009-TN-024 Research, Technology, and System Solutions Unlimited distribution subject to the copyright. This report was prepared for the SEI Administrative Agent ESC/XPK 5 Eglin Street Hanscom AFB, MA 01731-2100 The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of scientific and technical information exchange. This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. Department of Defense. Copyright 2009 Carnegie Mellon University. NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter- nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works. External use. This document may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission.