Autonomous Spectrum Balancing for Digital Subscriber Lines

Total Page:16

File Type:pdf, Size:1020Kb

Autonomous Spectrum Balancing for Digital Subscriber Lines IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 8, AUGUST 2007 4241 Autonomous Spectrum Balancing for Digital Subscriber Lines Raphael Cendrillon, Member, IEEE, Jianwei Huang, Member, IEEE, Mung Chiang, Member, IEEE, and Marc Moonen, Fellow, IEEE Abstract—The main performance bottleneck of modern digital formance improvement in modern DSL systems remains to be subscriber line (DSL) networks is the crosstalk among different crosstalk, which is the interference generated among different lines (i.e., users). By deploying dynamic spectrum management lines in the same cable binder. The crosstalk is typically 10–20 (DSM) techniques and reducing excess crosstalk among users, a network operator can dramatically increase the data rates and ser- dB larger than the background noise, and direct crosstalk cance- vice reach of broadband access. However, current DSM algorithms lation (e.g., [1], [2]) is difficult in many cases, due to complexity suffer from either substantial suboptimality in typical deployment (both amount of computation needed and the requirements for scenarios or prohibitively high complexity due to centralized com- new chip sets) or unbundling requirement (i.e., incumbent ser- putation. This paper develops, analyzes, and simulates a new suite 1 of DSM algorithms for DSL interference-channel models called au- vice providers must rent certain lines to their competitors). tonomous spectrum balancing (ASB). The ASB algorithms utilize Recently, various dynamic spectrum management (DSM)2 al- the concept of a “reference line,” which mimics a typical victim line gorithms have been proposed to address this frequency-selec- in the interference channel. In ASB, each modem tries to minimize tive interference problem by dynamically optimizing transmis- the harm it causes to the reference line under the constraint of sion power spectra of different modems in DSL networks. DSM achieving its own target data-rate. Since the reference line is based on the statistics of the entire network, rather than any specific algorithms can significantly improve data rates over the cur- knowledge of the binder a modem operates in, ASB can be imple- rent practice of static spectrum management, which mandates mented autonomously without the need for a centralized spectrum spectrum mask or flat power backoff across all frequencies (i.e., management center. ASB has a low complexity and simulations tones). using a realistic simulator show that it achieves large performance gains over existing autonomous algorithms, coming close to the This paper develops, analyzes, and simulates a suite of DSM optimal rate region in some typical scenarios. Sufficient conditions algorithms for power allocation (or, equivalently, bit loading), for convergence of ASB are also proved. called autonomous spectrum balancing (ASB). Overcoming the Index Terms—Digital subscriber lines (DSLs), distributed al- bottlenecks in the state-of-the-art DSM algorithms, ASB is a set gorithm, dual decomposition, interference channel, multicarrier, of algorithms that, simultaneously, is autonomous (distributed power allocation, spectrum management. algorithm across the users without explicit real-time informa- tion exchange), has low complexity, is provably convergent under certain sufficient conditions, and achieves rate region I. INTRODUCTION close to the global optimum. The methods of “static pricing” A. Motivation and “frequency-selective waterfilling” developed in ASB may also be of interest to the general problems of decoupling cou- IGITAL SUBSCRIBER LINE (DSL) technologies trans- pled objective function and of multicarrier interference channel. Dform traditional voice-band copper channels into broad- band access systems, which are typically capable of delivering B. Related Work on DSM Algorithms data rates of several Mb/s per twisted-pair over a distance of 10 One of the first DSM algorithms is the Iterative Water-filling kft in the basic asymmetric DSL (ADSL). Despite over 160 mil- (IW) algorithm [3], where each line maximizes its own data rate lion DSL lines worldwide as of 2006, the major obstacle for per- by waterfilling over the noise and interference from other lines. The IW algorithm is autonomous, has a linear complexity in the Manuscript received September 1, 2006; revised November 30, 2006. The number of users and number of frequency tones, and has been associate editor coordinating the review of this manuscript and approving it for shown to converge in typical DSL deployments, e.g., [3], [4]. publication was Prof. Brian L. Evans. This work was supported in part by Al- catel-Bell and by the US NSF Grant CNS-0427677 and CCF-0448012. A por- Although IW can achieve near optimal performance in weak in- tion of this paper was has appeared in the IEEE Proceedings of the International terference channels, it is highly-suboptimal in the widely-en- Symposium of Information Theory, July 2006. countered near–far scenarios (which will be described in detail R. Cendrillon is with Marvell Hong Kong, Ltd., Mongkok, Hong Kong (e-mail: [email protected]; [email protected]). in Section II), such as mixed central office and remote terminal J. Huang and M. Chiang are with Department of Electrical Engi- neering, Princeton University, Princeton, NJ 08544 USA (e-mail: jianweih@ 1Although in an unbundled network DSM can be applied to in-domain lines, princeton.edu; [email protected]). in many cases out-of-domain lines cannot be coordinated, leading to some sub- M. Moonen is with the Department of Electrical Engineering, Katholieke optimality. Similarly the network management center can be used to coordinate Universiteit Leuven (K.U. Leuven,), ESAT/SISTA, B-3001 Leuven-Heverlee, lines in a centralized fashion, however such a network management center would Belgium (e-mail: [email protected]; [email protected]. require full knowledge of the network topology, which is often difficult to im- be). plement in practice. Further discussion can be found in Section I-B. Color versions of one or more of the figures in this paper are available online 2The DSM algorithms discussed in this paper are different from the “dynamic at http://ieeexplore.ieee.org. spectrum sharing” algorithms, which are used to refer to opportunistic sharing Digital Object Identifier 10.1109/TSP.2007.895989 of the spectrum resources in wireless communications. 1053-587X/$25.00 © 2007 IEEE 4242 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 8, AUGUST 2007 TABLE I COMPARISON OF VARIOUS DSM ALGORITHMS deployments of ADSL and upstream VDSL. This is in part due While the band preference method calculates the bitloading in to the greedy and selfish nature of the algorithm. a distributed fashion, the band-preference coefficients (which Recently two optimal but centralized DSM algorithms were correspond to a spectral mask imposed on the waterfilling al- proposed, the Optimal Spectrum Balancing (OSB) algorithm gorithm) need to be calculated in some way, centralized or dis- [5] and the Iterative Spectrum Balancing (ISB) algorithm [6], tributed. This often requires the use of a centralized spectrum [7]. The OSB algorithm addresses the spectrum management management center. The performance of the band preference problem through the maximization of a weighted rate-sum method depends on the choice of the specific spectrum man- across all users, which explicitly takes into account the damage agement algorithm used. done to the other lines when optimizing each line’s spectra. IW, OSB, ISB, and SCALE mentioned above all assume syn- OSB has an exponential complexity in the number of users, chronous transmissions of the modems, which allows crosstalk making it intractable for DSL network with more than five to be modeled independently on each tone. This synchroniza- lines. As an improvement over the OSB algorithm, ISB was tion is rarely true in practice. Instead, the signal transmitted on proposed to implement the weighted-rate sum optimization in a particular tone of one modem will appear as crosstalk on a an iterative fashion over the users. This leads to a quadratic broad range of tones on the other modems. This inter-carrier- complexity in the number of users, which makes the ISB interference (ICI) complicates the DSM problem further. The feasible for networks with a relatively large number of users. state-of-the-art results for asynchronous transmissions are the However, an even more critical issue is that both OSB and two centralized greedy algorithms proposed in [10], bit-sub- ISB are centralized algorithms, which rely on a centralized net- tracting and bit-adding algorithms. Both algorithms start from work management center (NMC) to optimize the power spectral the power spectral density (PSD) obtained with the ISB algo- density (PSD) for all modems. The NMC requires knowledge rithm in the synchronous case, and search for local optimal solu- of the crosstalk channels among all lines and all background tions in the neighborhood by taking ICI into account. But again noise. Identification and transmission of crosstalk channel mea- these are centralized algorithms. surements back to the NMC are not supported in existing stan- dards either. The operation of NMC requires a lot of overhead, C. Summary of Contributions in terms of both bandwidth and infrastructure. Furthermore, reg- The advantages of ASB algorithms are summarized as fol- ulatory requirements on unbundling service make it impossible lows. First of all, ASB is autonomous: it can be applied in a to perform a centralized optimization. Finally, many lines in the distributed fashion across users with no explicitly information same binder terminate on different quad cards in the DSL Ac- exchange in real-time. Furthermore, the algorithm has low com- cess Multiplexer because customers in the same neighborhood plexity in both the number of users and tones, and is proved to sign up for service at different times, which makes it hard to be convergent under certain sufficient conditions on the channel have central coordination even if one can tolerate the costs. gains. In the synchronous case, the ASB algorithm has a sim- A semi-centralized DSM algorithm called SCALE is pro- ilar complexity as IW, but in the near–far scenario achieves a posed in [8].
Recommended publications
  • TITAN 2000 - Cat 12/15 4G LTE CPE Advanced Modem
    TITAN 2000 - Cat 12/15 4G LTE CPE Advanced Modem Global Telecom’s TITAN 2000 is the latest advancement in modems for the Internet of Things. With 8x8 MIMO at its core, the TITAN 2000 provides lightning fast speed and always reliable connections for enterprise and consumers alike. The TITAN 2000 is capable of maximum download speeds of 600 MBPS and is built using a Cat 15 module (model: Global-7243A) with eight antenna ports. It delivers 11 dB, which is 13 times stronger than typical 2x2 MIMO modems or end user devices. This high capacity and strong received power comes from specialized design with high MIMO and high gain antenna configuration. It’s an ideal solution for homes and businesses looking to truly cut the cord once and for all. Innovation and rapid changes in our connected devices make it hard to plan for § PoE capable for simple the future, but the TITAN 2000’s designers have taken migration needs into and reliable interface account. Using cellular high-speed protocols, including advanced LTE and 5G, § Advanced 4G the TITAN 2000 has been created to be future-proof and capable of hosting Cat capabilities with 8R2T 19 and 5G modules with pin-to-pin compatibility -- eliminating the need to design (Release 13 change software or other parts. Global Telecom’s flagship product for 2020 compliant) also supports up to four channels of carrier aggregation utilizing inter- and intra- band. The TITAN 2000 is compatible with all U.S. carriers and in more than 165 § Multi-band and multi- countries worldwide.
    [Show full text]
  • Etsi Ts 129 173 V14.0.0 (2017-03)
    ETSI TS 129 173 V14.0.0 (2017-03) TECHNICAL SPECIFICATION Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Location Services (LCS); Diameter-based SLh interface for Control Plane LCS (3GPP TS 29.173 version 14.0.0 Release 14) 3GPP TS 29.173 version 14.0.0 Release 14 1 ETSI TS 129 173 V14.0.0 (2017-03) Reference RTS/TSGC-0429173ve00 Keywords GSM,LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Broadband ADSL2+ Modem Dm111pspv2 User Manual
    Broadband ADSL2+ Modem DM111PSPv2 User Manual 350 East Plumeria Drive San Jose, CA 95134 USA August 2011 202-10913-01 v1.0 Broadband ADSL2+ Modem DM111PSPv2 © 2011 NETGEAR, Inc. All rights reserved No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any means without the written permission of NETGEAR, Inc. Technical Support Thank you for choosing NETGEAR. To register your product, get the latest product updates, get support online, or for more information about the topics covered in this manual, visit the Support website at http://support.netgear.com. Phone (US & Canada only): 1-888-NETGEAR Phone (Other Countries): Check the list of phone numbers at http://support.netgear.com/app/answers/detail/a_id/984. Trademarks NETGEAR, the NETGEAR logo, and Connect with Innovation are trademarks and/or registered trademarks of NETGEAR, Inc. and/or its subsidiaries in the United States and/or other countries. Information is subject to change without notice. Other brand and product names are registered trademarks or trademarks of their respective holders. © 2011 NETGEAR, Inc. All rights reserved. Statement of Conditions To improve internal design, operational function, and/or reliability, NETGEAR reserves the right to make changes to the products described in this document without notice. NETGEAR does not assume any liability that may occur due to the use, or application of, the product(s) or circuit layout(s) described herein. 2 Contents Chapter 1 Hardware Setup Unpack Your New Modem. 7 Hardware Features . 8 Label . 8 Back Panel. 8 Front Panel .
    [Show full text]
  • CPON-HFC Light Link Direct® FTTH Node
    ® 969 Horsham Road CPON-HFC Light Link Direct FTTH Node Horsham, Pennsylvania 19044 USA 1 GHz Two Way FTTH Customer Premises Node Description Features The Light Link® Direct CPON-HFC customer Delivers full bandwidth CATV services to 1 GHz. premises optical node for FTTH networks offering The duplex unit is suitable for advanced DOCSIS full bandwidth cable television delivery, plus broad- with Telephony and Internet. band access via DOCSIS cable modems. High-performance optical receiver for CATV deliv- ery over glass (fibre) with 110 NTSC channels or Fiber-to-the-home (FTTH) is a reality today. The 91 PAL channels capacity. CPON-HFC is designed as an economic single port Suitable for transmission of PAL or NTSC ana- PBN CPON-HFC Light Link node customer premise deployment providing sim- logue TV channels as well as DVB-C or DVB-T plex or full duplex RF connectivity. digital television standards. Wide optical input range permits easy installation Employing leading edge designs for optical and without on-site alignment. electronic circuitry inside a die-cast metal housing, Optional return path transmitter to suit DOCSIS the CPON-HFC provides top class services and compliant cable modems and RF based pay-per- permits easy installation in home wiring closets or view systems. other confined spaces. Powered by either a direct coax 11 ~ 16 Vdc feed or DC power port. The core of the CPON-HFC is a high performance The compact and sturdy enclosure fits easily into low-noise optical receiver module for CATV to 1 wiring closets or network termination boxes. GHz, together with an optional return path transmit- ter module.
    [Show full text]
  • Diseño De Red De Acceso Doméstica Híbrida Wifi/Lifi
    Trabajo Fin de Grado Grado en Ingeniería de las Tecnologías de Telecomunicación Diseño de red de acceso doméstica híbrida WiFi/LiFi Autor: José María García Bocuñano Tutor: Alejandro Carballar Rincón Equation Chapter 1 Section 1 Dpto. de Ingeniería Electrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2019 Trabajo Fin de Grado Grado en Ingeniería de las Tecnologías de Telecomunicación Diseño de red de acceso doméstica híbrida WiFi/LiFi Autor: José María García Bocuñano Tutor: Alejandro Carballar Rincón Catedrático de Universidad Dpto. de Ingeniería Electrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2019 iii Trabajo Fin de Grado: Diseño de red de acceso doméstica híbrida WiFi/LiFi Autor: José María García Bocuñano Tutor: Alejandro Carballar Rincón El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros: Presidente: Vocales: Secretario: Acuerdan otorgarle la calificación de: Sevilla, 2019 v El Secretario del Tribunal A mi familia y amigos vii Agradecimientos Este apartado de agradecimientos, como el de cualquier cosa que haga en mi vida, no puede empezar con otro nombre que el de mi madre por ser ella la causa y el pilar por el que he podido llegar hasta el día de la entrega de este Trabajo Fin de Grado. Junto con ella, mi familia y amigos han tenido un papel fundamental, tanto en los éxitos como en los momentos malos que he tenido que experimentar a lo largo del grado en el que comencé hace 5 años. Por ayudarme a levantarme, entender el tiempo que les he tenido que quitar y acompañarme en las celebraciones, este trabajo tiene una parte de todos ellos.
    [Show full text]
  • Hughesnet HT2000W Satellite Modem – User Guide
    HT2000W Satellite Modem User Guide 1041264-0001 Revision A February 15, 2017 11717 Exploration Lane, Germantown, MD 20876 Phone (301) 428-5500 Fax (301) 428-1868/2830 Copyright © 2017 Hughes Network Systems, LLC All rights reserved. This publication and its contents are proprietary to Hughes Network Systems, LLC. No part of this publication may be reproduced in any form or by any means without the written permission of Hughes Network Systems, LLC, 11717 Exploration Lane, Germantown, Maryland 20876. Hughes Network Systems, LLC has made every effort to ensure the correctness and completeness of the material in this document. Hughes Network Systems, LLC shall not be liable for errors contained herein. The information in this document is subject to change without notice. Hughes Network Systems, LLC makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Trademarks HUGHES and Hughes Network Systems are trademarks of Hughes Network Systems, LLC. All other trademarks are the property of their respective owners. Contents Contents ................................................................................................. 3 Understanding safety alert messages .................................................... 5 Messages concerning personal injury .................................................................... 5 Messages concerning property damage ................................................................ 5 Safety
    [Show full text]
  • Actiontec PK5000 Wireless DSL Modem Router Product Datasheet
    Creative Solutions for the Digital Lif e™ 802 .1 1g Wireless DSL Modem Router ctiontec Electronics, leveraging the experience gained from shipping over 17.5 million Internet access devices, introduces A a new 802.11g wireless router: the PK5000 DSL Modem Router. The PK5000 is a small, fast wireless router with more memory than previous models and advanced features not often found on similar products in this category, advantages that will make it a favorite among discerning DSL Internet Service Providers. Designed to Fulfill the Carrier's Needs, Today and Tomorrow The PK5000 has been designed from the ground up for compactness and usability. Since both its footprint and weight have been decreased compared to earlier models, the shipping costs for DSL carriers will be lowered considerably. Despite these size and weight reductions, we've managed to include two antennas (one external, one internal), dramatically boosting the PK5000's wireless signal. We've also increased the amount of memory available to 32MB of flash and 64MB of SDRAM, allowing carriers to add new features in Model # PK5000 the future. The PK5000 provides everything a DSL Internet Service provider needs: power, economy, portability, and scalability. Future- Other features include: proof your router needs with the PK5000 DSL Modem Router. • Bit Swapping Remote Management Features DHCP Server Option Services Blocking Compliant with Broadband Static Routing • More memory... 32MB Flash & 64MB SDRAM Forum TR-48 Rate and Unnumbered Mode Support • TR069 Remote Management Reach
    [Show full text]
  • N600 Wifi DSL Modem Router Model D3600 and AC750 Wifi
    You can connect the modem router either to an 5. Log in to the modem router. Connect the Modem 2. Power on the modem router. ADSL service or to a cable or fiber modem. Choose Quick Start Launch a web browser. Router to a Cable or Fiber Connect the power adapter to the one connection method only. Do not use both. modem router and plug it into an NETGEAR genie displays. Modem electrical outlet. Connect the Modem Router to If you do not see genie, in the 1. Connect the modem router to Wait for the Power LED to an ADSL Service address field of the web browser, the Internet. light green. 1. Contact your Internet service enter www.routerlogin.net. Use an Ethernet cable to connect the 3. Connect a computer. N600 WiFi DSL Modem Router provider (ISP). When prompted, enter admin for cable or fiber modem to the yellow Model D3600 Two types of DSL are available: ADSL and the user name and password for LAN4 WAN Ethernet port next to the Use an Ethernet cable to VDSL. Contact your ISP to confirm that your the password. gray DSL port on the modem router. connect your computer to any AC750 WiFi DSL Modem Router DSL service is ADSL. This product supports (Do not use another Ethernet port yellow Ethernet port on the modem router. Model D6000 only ADSL. for this connection.) 2. Connect the modem router to the You can also use WiFi to connect. Internet. ADSL Internet To connect with WiFi, use the WiFi Package Content network name and password on Install an ADSL microfilter between the the product label.
    [Show full text]
  • N150 Wifi DSL Modem Router Essentials Edition Data Sheet D500
    N150 WiFi DSL Modem Router Essentials Edition Data Sheet D500 Performance & Use • Built-in ADSL2+ Modem • N150 WiFi speed—Ideal for web, email, & social networking • Ethernet WAN—For fibre Internet connection • Works with DSL Internet service providers Overview The NETGEAR N150 WiFi DSL Modem Router—Essentials Edition has a built-in ADSL2+ modem for use with DSL, cable or fibre Internet service. With an external antenna for improved WiFi coverage, this modem router delivers speeds of up to 150 Mbps†—and is an ideal modem router for medium-sized homes. The N150 WiFi DSL Modem Router—Essentials Edition delivers the speed and reliability needed for web, email and social networking with a secure and reliable connection to the Internet. It includes features such as Ethernet WAN for easy upgrade to cable or fibre. Speed Speed makes all your devices really go. And WiFi Speed anyplace you need speed, with NETGEAR you got it. Fast download speeds up to N150 Mbps†. N150 WIFI—Faster than 802. 11g & compatible with 802.11b/g/n Everything you need for a fast connected home. Built-in ADSL2+ Modem WiFi Range Homes come in all shapes and sizes. The NETGEAR WiFi Range N150 WiFi DSL Modem Router—Essentials Edition provides WiFi connectivity throughout your home RANGE—For medium-sized homes for all your Internet-enabled devices. PAGE 1 OF 4 N150 WiFi DSL Modem Router Essentials Edition Data Sheet D500 Reliable Connections Stay connected—with your devices, your media, EXTERNAL ANTENNA—Provides improved WiFi coverage and your friends. The N150 WiFi DSL Modem and throughput Router—Essentials Edition has an external antenna that provides improved coverage and throughput.
    [Show full text]
  • Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems
    Digital Subscriber Lines and Cable Modems Digital Subscriber Lines and Cable Modems Paul Sabatino, [email protected] This paper details the impact of new advances in residential broadband networking, including ADSL, HDSL, VDSL, RADSL, cable modems. History as well as future trends of these technologies are also addressed. OtherReports on Recent Advances in Networking Back to Raj Jain's Home Page Table of Contents ● 1. Introduction ● 2. DSL Technologies ❍ 2.1 ADSL ■ 2.1.1 Competing Standards ■ 2.1.2 Trends ❍ 2.2 HDSL ❍ 2.3 SDSL ❍ 2.4 VDSL ❍ 2.5 RADSL ❍ 2.6 DSL Comparison Chart ● 3. Cable Modems ❍ 3.1 IEEE 802.14 ❍ 3.2 Model of Operation ● 4. Future Trends ❍ 4.1 Current Trials ● 5. Summary ● 6. Glossary ● 7. References http://www.cis.ohio-state.edu/~jain/cis788-97/rbb/index.htm (1 of 14) [2/7/2000 10:59:54 AM] Digital Subscriber Lines and Cable Modems 1. Introduction The widespread use of the Internet and especially the World Wide Web have opened up a need for high bandwidth network services that can be brought directly to subscriber's homes. These services would provide the needed bandwidth to surf the web at lightning fast speeds and allow new technologies such as video conferencing and video on demand. Currently, Digital Subscriber Line (DSL) and Cable modem technologies look to be the most cost effective and practical methods of delivering broadband network services to the masses. <-- Back to Table of Contents 2. DSL Technologies Digital Subscriber Line A Digital Subscriber Line makes use of the current copper infrastructure to supply broadband services.
    [Show full text]
  • Flexis—A Flexible Sensor Node Platform for the Internet of Things
    sensors Article FlexiS—A Flexible Sensor Node Platform for the Internet of Things Duc Minh Pham and Syed Mahfuzul Aziz * UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-08-8302-3643 Abstract: In recent years, significant research and development efforts have been made to transform the Internet of Things (IoT) from a futuristic vision to reality. The IoT is expected to deliver huge economic benefits through improved infrastructure and productivity in almost all sectors. At the core of the IoT are the distributed sensing devices or sensor nodes that collect and communicate information about physical entities in the environment. These sensing platforms have traditionally been developed around off-the-shelf microcontrollers. Field-Programmable Gate Arrays (FPGA) have been used in some of the recent sensor nodes due to their inherent flexibility and high processing capability. FPGAs can be exploited to huge advantage because the sensor nodes can be configured to adapt their functionality and performance to changing requirements. In this paper, FlexiS, a high performance and flexible sensor node platform based on FPGA, is presented. Test results show that FlexiS is suitable for data and computation intensive applications in wireless sensor networks because it offers high performance with low energy profile, easy integration of multiple types of sensors, and flexibility. This type of sensing platforms will therefore be suitable for the distributed data analysis and decision-making capabilities the emerging IoT applications require. Keywords: Internet of Things (IoT); wireless sensor networks (WSN); sensor node; field-programmable Citation: Pham, D.M.; Aziz, S.M.
    [Show full text]
  • Design of a Lan-Based Voice Over Ip (Voip) Telephone System
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace DESIGN OF A LAN-BASED VOICE OVER IP (VOIP) TELEPHONE SYSTEM A thesis submitted to the University of Khartoum in partial fulfillment of the requirement for the degree of MSC in Communication & Information Systems BY HASSAN SULEIMAN ABDALLA OMER B.SC of Electrical Engineering (2000) University of Khartoum Supervisor Dr. MOHAMMED ALI HAMAD ABBAS Faculty of Engineering & Architecture Department of Electrical & Electronics Engineering SEPTEMBER 2009 ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ ﺻﺪق اﷲ اﻟﻌﻈﻴﻢ iii ACKNOWLEDGEMENTS First I would like to thanks my supervisor Dr. Mohammed Ali Hamad Abbas, because this research project would not have been possible without his support and guidance; so I take this opportunity to offer him my gratitude for his patience ,support and guidance . Special thanks to the Department of Electrical and Electronics Engineering University Of Khartoum for their facilities, also I would like to convey my thanks to the staff member of MSc program for their help and to all my colleges in the MSc program. It is with great affection and appreciation that I acknowledge my indebtedness to my parents for their understanding & endless love. H.Suleiman iv Abstract The objective of this study was to design a program to transmit voice conversations over data network using the internet protocol –Voice Over IP (VOIP). JAVA programming language was used to design the client-server model, codec and socket interfaces. The design was fully explained as to its input, processing and output. The test of the designed voice over IP model was successful, although some delay in receiving the conversation was noticed.
    [Show full text]