Magnetic Quantum Number

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Quantum Number MASTER CLASS TEACHER TEACHER Post-class: doubt solving More than 2 Million doubts solved Assessment: regular tests Enroll into Multiple course How to Avail Discount ? Special Discount for this class Apply Coupon Code: MRPRO Visit: https://vdnt.in/YTPRO Link in Description Wave Particle Quantum numbers First three derived from Schordinger’s wave equation. Quantum numbers are like the postal address of a man. To know about a particular person we should know about his country , his town, his lane and his house number. Quantum numbers Quantum numbers is defined as the set of four numbers with the help of which we can get the complete information about all the electrons in an atoms. i.e. Location , energy , the type of orbital occupied , shape and orientation of the orbital etc. Types of quantum numbers Principal quantum numbers(n) ● It represent the distance of the electron from the nucleus and also called as Shell of electron. It determines the size of the electron cloud. n = 1 K 2 L 3 M 4 N Principal quantum numbers ❏ The maximum number of electrons present in any principal shell is given by 2n2 where n is the number of the principal shell. 2. Azimuthal/ Angular momentum quantum number (l) Azimuthal quantum numbers tells about: ❏ The number of subshells present in the main shell. 2. Azimuthal/ Angular momentum quantum number (l) ❏ The angular momentum of the electron present in any subshell. 2. Azimuthal/ Angular momentum quantum number (l) ❏ The relative energies of the various subshells. 2. Azimuthal/ Angular momentum quantum number (l) ❏ The shape of the various subshell present within the same principal shell. 2. Azimuthal/ Angular momentum quantum number (l) For a given value of principal quantum number, the value of azimuthal quantum number ranging from 0 to (n-1). n l l = 0 1 2 3 4 1 0 Designation = s p d f g 2 0,1 3 0,1,2 4 0,1,2,3 Magnetic quantum number ★ The magnetic quantum number determines the number of preferred orientations of the electrons present in a subshell. ★ As each orientation corresponds to an orbital , therefore the magnetic quantum number determines the number of orbitals present in any subshell. Magnetic quantum number ❏ The magnetic quantum number is denoted by m or ml . ❏ For a given value of l, magnetic quantum number can have all the values ranging -l to +l . Total values of m =2l+1 Spin Quantum number(ms) This quantum number helps to explain the magnetic properties of the substances. A spinning electron behaves like a micromagnet with a magnetic moment. If an orbital contain two electrons, the two magnetic moment opposes and cancel each other. Spin Quantum number Important points about quantum numbers : ● These are the four quantum numbers. NUMBER SYMBOL POSSIBLE VALUES Principal quantum number n 1, 2, 3, 4, ……. Angular momentum quantum l 0, 1,2,3, ……..(n-1) number Magnetic quantum number ml -l , ……… , -1, 0, 1,......, l Spin quantum number ms +½, -½ Important points about quantum numbers : To sum up the four quantum numbers provide the following informations about orbitals : ● n describes the shell , determines the size of the orbital and also to the extent the energy of the orbital. ● l describes the subshell and the shape of the orbital . There are n subshells in nth shell . To some extent , l also determines the energy of the orbital in a multi electron atom. ● ml designates the orientation of the orbital . For a given value of l,m , can have (2l+1) values or number of orbitals . ● ms refers to the orientation of the spin of the electron. MASTER CLASS TEACHER TEACHER Post-class: doubt solving More than 2 Million doubts solved Assessment: regular tests Enroll into Multiple course How to Avail Discount ? Special Discount for this class Apply Coupon Code: MRPRO Visit: https://vdnt.in/YTPRO Link in Description Join Vedantu JEE Telegram channel NOW! Assignments Notes Daily Update https://vdnt.in/jeepro .
Recommended publications
  • Lecture #2: August 25, 2020 Goal Is to Define Electrons in Atoms
    Lecture #2: August 25, 2020 Goal is to define electrons in atoms • Bohr Atom and Principal Energy Levels from “orbits”; Balance of electrostatic attraction and centripetal force: classical mechanics • Inability to account for emission lines => particle/wave description of atom and application of wave mechanics • Solutions of Schrodinger’s equation, Hψ = Eψ Required boundaries => quantum numbers (and the Pauli Exclusion Principle) • Electron configurations. C: 1s2 2s2 2p2 or [He]2s2 2p2 Na: 1s2 2s2 2p6 3s1 or [Ne] 3s1 => Na+: [Ne] Cl: 1s2 2s2 2p6 3s23p5 or [Ne]3s23p5 => Cl-: [Ne]3s23p6 or [Ar] What you already know: Quantum Numbers: n, l, ml , ms n is the principal quantum number, indicates the size of the orbital, has all positive integer values of 1 to ∞(infinity) (Bohr’s discrete orbits) l (angular momentum) orbital 0s l is the angular momentum quantum number, 1p represents the shape of the orbital, has integer values of (n – 1) to 0 2d 3f ml is the magnetic quantum number, represents the spatial direction of the orbital, can have integer values of -l to 0 to l Other terms: electron configuration, noble gas configuration, valence shell ms is the spin quantum number, has little physical meaning, can have values of either +1/2 or -1/2 Pauli Exclusion principle: no two electrons can have all four of the same quantum numbers in the same atom (Every electron has a unique set.) Hund’s Rule: when electrons are placed in a set of degenerate orbitals, the ground state has as many electrons as possible in different orbitals, and with parallel spin.
    [Show full text]
  • Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values
    268 A Textbook of Physical Chemistry – Volume I Principal, Azimuthal and Magnetic Quantum Numbers and the Magnitude of Their Values The Schrodinger wave equation for hydrogen and hydrogen-like species in the polar coordinates can be written as: 1 휕 휕휓 1 휕 휕휓 1 휕2휓 8휋2휇 푍푒2 (406) [ (푟2 ) + (푆푖푛휃 ) + ] + (퐸 + ) 휓 = 0 푟2 휕푟 휕푟 푆푖푛휃 휕휃 휕휃 푆푖푛2휃 휕휙2 ℎ2 푟 After separating the variables present in the equation given above, the solution of the differential equation was found to be 휓푛,푙,푚(푟, 휃, 휙) = 푅푛,푙. 훩푙,푚. 훷푚 (407) 2푍푟 푘 (408) 3 푙 푘=푛−푙−1 (−1)푘+1[(푛 + 푙)!]2 ( ) 2푍 (푛 − 푙 − 1)! 푍푟 2푍푟 푛푎 √ 0 = ( ) [ 3] . exp (− ) . ( ) . ∑ 푛푎0 2푛{(푛 + 푙)!} 푛푎0 푛푎0 (푛 − 푙 − 1 − 푘)! (2푙 + 1 + 푘)! 푘! 푘=0 (2푙 + 1)(푙 − 푚)! 1 × √ . 푃푚(퐶표푠 휃) × √ 푒푖푚휙 2(푙 + 푚)! 푙 2휋 It is obvious that the solution of equation (406) contains three discrete (n, l, m) and three continuous (r, θ, ϕ) variables. In order to be a well-behaved function, there are some conditions over the values of discrete variables that must be followed i.e. boundary conditions. Therefore, we can conclude that principal (n), azimuthal (l) and magnetic (m) quantum numbers are obtained as a solution of the Schrodinger wave equation for hydrogen atom; and these quantum numbers are used to define various quantum mechanical states. In this section, we will discuss the properties and significance of all these three quantum numbers one by one. Principal Quantum Number The principal quantum number is denoted by the symbol n; and can have value 1, 2, 3, 4, 5…..∞.
    [Show full text]
  • Vibrational Quantum Number
    Fundamentals in Biophotonics Quantum nature of atoms, molecules – matter Aleksandra Radenovic [email protected] EPFL – Ecole Polytechnique Federale de Lausanne Bioengineering Institute IBI 26. 03. 2018. Quantum numbers •The four quantum numbers-are discrete sets of integers or half- integers. –n: Principal quantum number-The first describes the electron shell, or energy level, of an atom –ℓ : Orbital angular momentum quantum number-as the angular quantum number or orbital quantum number) describes the subshell, and gives the magnitude of the orbital angular momentum through the relation Ll2 ( 1) –mℓ:Magnetic (azimuthal) quantum number (refers, to the direction of the angular momentum vector. The magnetic quantum number m does not affect the electron's energy, but it does affect the probability cloud)- magnetic quantum number determines the energy shift of an atomic orbital due to an external magnetic field-Zeeman effect -s spin- intrinsic angular momentum Spin "up" and "down" allows two electrons for each set of spatial quantum numbers. The restrictions for the quantum numbers: – n = 1, 2, 3, 4, . – ℓ = 0, 1, 2, 3, . , n − 1 – mℓ = − ℓ, − ℓ + 1, . , 0, 1, . , ℓ − 1, ℓ – –Equivalently: n > 0 The energy levels are: ℓ < n |m | ≤ ℓ ℓ E E 0 n n2 Stern-Gerlach experiment If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by a different amount, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount.
    [Show full text]
  • The Quantum Mechanical Model of the Atom
    The Quantum Mechanical Model of the Atom Quantum Numbers In order to describe the probable location of electrons, they are assigned four numbers called quantum numbers. The quantum numbers of an electron are kind of like the electron’s “address”. No two electrons can be described by the exact same four quantum numbers. This is called The Pauli Exclusion Principle. • Principle quantum number: The principle quantum number describes which orbit the electron is in and therefore how much energy the electron has. - it is symbolized by the letter n. - positive whole numbers are assigned (not including 0): n=1, n=2, n=3 , etc - the higher the number, the further the orbit from the nucleus - the higher the number, the more energy the electron has (this is sort of like Bohr’s energy levels) - the orbits (energy levels) are also called shells • Angular momentum (azimuthal) quantum number: The azimuthal quantum number describes the sublevels (subshells) that occur in each of the levels (shells) described above. - it is symbolized by the letter l - positive whole number values including 0 are assigned: l = 0, l = 1, l = 2, etc. - each number represents the shape of a subshell: l = 0, represents an s subshell l = 1, represents a p subshell l = 2, represents a d subshell l = 3, represents an f subshell - the higher the number, the more complex the shape of the subshell. The picture below shows the shape of the s and p subshells: (notice the electron clouds) • Magnetic quantum number: All of the subshells described above (except s) have more than one orientation.
    [Show full text]
  • Magnetic Quantum Number: Describes the Orbital of the Subshell  Ms Or S - Spin Quantum Number: Describes the Spin QUANTUM NUMBER VALUES
    ST. LAWRENCE HIGH SCHOOL A JESUIT CHRISTIAN MINORITY INSTITUTION STUDY MATERIAL FOR CHEMISTRY (CLASS-11) TOPIC- STRUCTURE OF ATOM SUBTOPIC- QUANTUM NUMBERS PREPARED BY: MR. ARNAB PAUL CHOWDHURY SET NUMBER-03 DATE: 07.07.2020 ------------------------------------------------------------------------------------------------------------------------------- In chemistry and quantum physics, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. In the case of electrons, the quantum numbers can be defined as "the sets of numerical values which give acceptable solutions to the Schrödinger wave equation for the hydrogen atom". How many quantum numbers exist? A quantum number is a value that is used when describing the energy levels available to atoms and molecules. An electron in an atom or ion has four quantum numbers to describe its state and yield solutions to the Schrödinger wave equation for the hydrogen atom. There are four quantum numbers: n - principal quantum number: describes the energy level ℓ - azimuthal or angular momentum quantum number: describes the subshell mℓ or m - magnetic quantum number: describes the orbital of the subshell ms or s - spin quantum number: describes the spin QUANTUM NUMBER VALUES According to the Pauli Exclusion Principle, no two electrons in an atom can have the same set of quantum numbers. Each quantum number is represented by either a half-integer or integer value. The principal quantum number is an integer that is the number of the electron's shell. The value is 1 or higher (never 0 or negative). The angular momentum quantum number is an integer that is the value of the electron's orbital (for example, s=0, p=1).
    [Show full text]
  • 4 Nuclear Magnetic Resonance
    Chapter 4, page 1 4 Nuclear Magnetic Resonance Pieter Zeeman observed in 1896 the splitting of optical spectral lines in the field of an electromagnet. Since then, the splitting of energy levels proportional to an external magnetic field has been called the "Zeeman effect". The "Zeeman resonance effect" causes magnetic resonances which are classified under radio frequency spectroscopy (rf spectroscopy). In these resonances, the transitions between two branches of a single energy level split in an external magnetic field are measured in the megahertz and gigahertz range. In 1944, Jevgeni Konstantinovitch Savoiski discovered electron paramagnetic resonance. Shortly thereafter in 1945, nuclear magnetic resonance was demonstrated almost simultaneously in Boston by Edward Mills Purcell and in Stanford by Felix Bloch. Nuclear magnetic resonance was sometimes called nuclear induction or paramagnetic nuclear resonance. It is generally abbreviated to NMR. So as not to scare prospective patients in medicine, reference to the "nuclear" character of NMR is dropped and the magnetic resonance based imaging systems (scanner) found in hospitals are simply referred to as "magnetic resonance imaging" (MRI). 4.1 The Nuclear Resonance Effect Many atomic nuclei have spin, characterized by the nuclear spin quantum number I. The absolute value of the spin angular momentum is L =+h II(1). (4.01) The component in the direction of an applied field is Lz = Iz h ≡ m h. (4.02) The external field is usually defined along the z-direction. The magnetic quantum number is symbolized by Iz or m and can have 2I +1 values: Iz ≡ m = −I, −I+1, ..., I−1, I.
    [Show full text]
  • The Principal Quantum Number the Azimuthal Quantum Number The
    To completely describe an electron in an atom, four quantum numbers are needed: energy (n), angular momentum (ℓ), magnetic moment (mℓ), and spin (ms). The Principal Quantum Number This quantum number describes the electron shell or energy level of an atom. The value of n ranges from 1 to the shell containing the outermost electron of that atom. For example, in caesium (Cs), the outermost valence electron is in the shell with energy level 6, so an electron incaesium can have an n value from 1 to 6. For particles in a time-independent potential, as per the Schrödinger equation, it also labels the nth eigen value of Hamiltonian (H). This number has a dependence only on the distance between the electron and the nucleus (i.e. the radial coordinate r). The average distance increases with n, thus quantum states with different principal quantum numbers are said to belong to different shells. The Azimuthal Quantum Number The angular or orbital quantum number, describes the sub-shell and gives the magnitude of the orbital angular momentum through the relation. ℓ = 0 is called an s orbital, ℓ = 1 a p orbital, ℓ = 2 a d orbital, and ℓ = 3 an f orbital. The value of ℓ ranges from 0 to n − 1 because the first p orbital (ℓ = 1) appears in the second electron shell (n = 2), the first d orbital (ℓ = 2) appears in the third shell (n = 3), and so on. This quantum number specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles.
    [Show full text]
  • Chem 1A Chapter 7 Exercises
    Chem 1A Chapter 7 Exercises Exercises #1 Characteristics of Waves 1. Consider a wave with a wavelength = 2.5 cm traveling at a speed of 15 m/s. (a) How long does it take for the wave to travel a distance of one wavelength? (b) How many wavelengths (or cycles) are completed in 1 second? (The number of waves or cycles completed per second is referred to as the wave frequency.) (c) If = 3.0 cm but the speed remains the same, how many wavelengths (or cycles) are completed in 1 second? (d) If = 1.5 cm and the speed remains the same, how many wavelengths (or cycles) are completed in 1 second? (e) What can you conclude regarding the relationship between wavelength and number of cycles traveled in one second, which is also known as frequency ()? Answer: (a) 1.7 x 10–3 s; (b) 600/s; (c) 500/s; (d) 1000/s; (e) ?) 2. Consider a red light with = 750 nm and a green light = 550 nm (a) Which light travels a greater distance in 1 second, red light or green light? Explain. (b) Which light (red or green) has the greater frequency (that is, contains more waves completed in 1 second)? Explain. (c) What are the frequencies of the red and green light, respectively? (d) If light energy is defined by the quantum formula, such that Ep = h, which light carries more energy per photon? Explain. 8 -34 (e) Assuming that the speed of light, c = 2.9979 x 10 m/s, Planck’s constant, h = 6.626 x 10 J.s., and 23 Avogadro’s number, NA = 6.022 x 10 /mol, calculate the energy: (i) per photon; (ii) per mole of photon for green and red light, respectively.
    [Show full text]
  • The Extent of Acceptance of the Non-Separable Solution in Cylindrical Coordinates Through the Hydrogen Atom
    Advanced Studies in Theoretical Physics Vol. 13, 2019, no. 8, 433 - 437 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2019.91246 The Extent of Acceptance of the Non-separable Solution in Cylindrical Coordinates through the Hydrogen Atom Mohammad F. Alshudifat Dept. of Physics, Al al-Bayt University, Mafraq 25113, Jordan This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright c 2019 Hikari Ltd. Abstract The hydrogen atom has been used to measure the extent of accep- tance of the non-separable solution in cylindrical coordinates. This work is not representing a new solution for the hydrogen atom, but to see how the non-separable solution in cylindrical coordinates gives acceptable results when compared with the known separable solution in spherical coordinates. The current work shows that the energy states (labeled by n = 1; 2; 3; :::) were found to be consistent with the Rutherford-Bohr model. The azimuthal quantum number ` was found to have a single value for each energy state, while the magnetic quantum number m was found to have two allowed values ` and ` − 1 for each energy state, this shrank the degeneracy of the excited states (n`m) to only two different states (n``) and (n` ` − 1), this result veers from the degeneracy cal- culated using spherical coordinates. A comparison between this work and the known solution in spherical coordinates show some acceptable results especially for the energy of atomic states, which is promising to use cylindrical coordinate in quantum problems when the spherical symmetry is deformed. Keywords: Cylindrical coordinates, non-separable solution, hydrogen atom, energy states, azimuthal quantum number, angular momentum 434 Mohammad F.
    [Show full text]
  • 33-234 Quantum Physics Spring 2015
    33-234 Quantum Physics Spring 2015 Derivation of Angular Momentum Rules in Quantum Mechanics R.M. Suter March 23, 2015 These notes follow the derivation in the text but provide some additional details and alternate explanations. Comments are welcome. For 33-234, you will not be responsible for the details of the derivations given here. We have covered the material necessary to follow the derivations so these details are presented for the ambitious and curious. All students should, however, be sure to understand the results as displayed on page 6 and following as well as the basic commutation properties given on this and the next page. Classical angular momentum. The classical angular momentum of a point particle is computed as L = R p, (1) × where R is the position, p is the linear momentum. For circular motion, this reduces to 2 2πR L = Rp = Rmv = ωmR using v = T = ωR. In the absence of external torques, L is a conserved quantity; in other words, it is constant in magnitude and direction. In the presence of a torque, τ (a vector quantity), generated by a force, F, τ = R F, the equation dL × of motion is dt = τ. In a composite system, the total angular momentum is computed as a vector sum: LT = Pi Li. We would like to determine the stationary states of angular momentum and determine the “good” quantum numbers that describe these states. For a particle bound by some potential in three dimensions, we want to know the set of physical quantities that can be used to specify the stable states or eigenstates.
    [Show full text]
  • The Wave Behavior of Matter the Wave Behavior of Matter
    The Wave Behavior of The Wave Behavior of Matter Matter The Uncertainty Principle • Knowing that light has a particle nature, it seems • Heisenberg’s Uncertainty Principle: on the mass scale reasonable to ask if matter has a wave nature. of atomic particles, we cannot determine exactly the • Using Einstein’s and Planck’s equations, de Broglie position, direction of motion, and speed simultaneously. h showed: λ = • For electrons: we cannot determine their momentum and mv position simultaneously. • de Broglie summarized the concepts of waves and •If ∆x is the uncertainty in position and ∆mv is the particles, with noticeable effects if the objects are small. uncertainty in momentum, then h • Problem 6.33 ∆x·∆mv ≥ 4π Prentice Hall © 2003 Chapter 6 Prentice Hall © 2003 Chapter 6 The Wave Behavior of Matter The Wave Behavior of Matter • Electron microscopy • Calculating the uncertainty in various objects (Problem • Problem 6.36 6.37) Prentice Hall © 2003 Chapter 6 Prentice Hall © 2003 Chapter 6 1 Quantum Mechanics and Quantum Mechanics and Atomic Orbitals Atomic Orbitals Orbitals and Quantum Numbers • Schrödinger proposed an equation that contains both • If we solve the Schrödinger equation, we get wave wave and particle terms. functions and energies for the wave functions. • Solving the equation leads to wave functions. • We call wave functions orbitals. • The wave function gives the shape of the electronic • Schrödinger’s equation requires 3 quantum numbers: orbital (ψ). 1. Principal Quantum Number, n. This is the same as Bohr’s • The square of the wave function, gives the probability of n. As n becomes larger, the atom becomes larger and the electron is further from the nucleus.
    [Show full text]
  • Mass, Fine Structure Constant, and the Classification of Elementary Particles by Masses
    Journal of Modern Physics, 2021, 12, 988-1004 https://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 Mass, Fine Structure Constant, and the Classification of Elementary Particles by Masses Khachatur Kirakosyan Institute of Chemical Physics, Armenian National Academy of Sciences, Erevan, Armenia How to cite this paper: Kirakosyan, K. Abstract (2021) Mass, Fine Structure Constant, and the Classification of Elementary Particles The equations of motion of physical bodies are given, the characteristic pa- by Masses. Journal of Modern Physics, 12, rameters of which become the basis for determining a fundamental property 988-1004. of all matter—“mass”. The equations of motion are characterized by two con- https://doi.org/10.4236/jmp.2021.127061 stants, the derivative of one of which is the fine structure constant. Using Received: April 9, 2021 these constants, energy scales are compiled, which are the basis for classifying Accepted: May 22, 2021 particles by mass. Published: May 25, 2021 Copyright © 2021 by author(s) and Keywords Scientific Research Publishing Inc. Mass, Energy, Structure, Quantum Numbers, Elementary Particles This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction In modern theoretical views, the origin of the mass and the fine structure con- stant (the symbol α) one relates with the phenomena of interaction [1]-[6], thus the search for a connection between the mass of elementary particles (EP) and α seems to be quite natural. However, the establishment of this connection is complicated by the fact that the contents of α and mass are not sufficiently re- vealed.
    [Show full text]