III. Superfluid Quantum Gravity Marco Fedi

Total Page:16

File Type:pdf, Size:1020Kb

III. Superfluid Quantum Gravity Marco Fedi Hydrodynamics of the dark superfluid: III. Superfluid Quantum Gravity Marco Fedi To cite this version: Marco Fedi. Hydrodynamics of the dark superfluid: III. Superfluid Quantum Gravity. 2016. hal- 01423134v6 HAL Id: hal-01423134 https://hal.archives-ouvertes.fr/hal-01423134v6 Preprint submitted on 19 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License manuscript No. (will be inserted by the editor) Hydrodynamics of the dark superfluid: III. Superfluid Quantum Gravity. Marco Fedi Received: date / Accepted: date Abstract Having described in previous articles dark ener- dark matter as a dark superfluid (DS) whose quantum hydro- gy, dark matter and quantum vacuum as different aspects dynamics produces both what we call quantum vacuum (as of a dark superfluid which permeates the universe and hav- hydrodynamic fluctuations in the DS) and the massive parti- ing analyzed the fundamental massive particles as toroidal cles of the Standard Model, as torus-shaped superfluid quan- vortices in this superfluid, we reflect here on the Bernoulli tum vortices, where the ratio of the toroidal angular velocity pressure observed in quantum vortices, to propose it as the to the poloidal one may hydrodynamically describe the spin. mechanism of quantum gravity. In this view, the dark su- Furthermore, in [2] we have analyzed the theoretical pos- perfluid surrounding a particle would be attracted toward it: sibilities that a photon be a transverse phonon propagating a pressure gradient along with a velocity field would man- through the DS, concluding that there are good hints to con- ifest around the particle and would be currently interpreted sider light as “the sound of the dark superfluid”, as all prop- as the gravitational field. We call this hypothesis Superfluid erties and behaviors of light can be observed within a quan- Quantum Gravity. Here the hydrodynamics of the dark su- tum hydrodynamic approach. In this third paper, we return to perfluid would replace the curved spacetime of general rela- fundamental particles as quantum vortices and we focus on tivity, still respecting its observed predictions. Here the pic- the Bernoulli effect experimentally observed in superfluid ture of gravity is that of an apparent force driven by spin. vortices [25,26,28], suggesting that it can be the core mech- When this model is applied to a quadrupole dynamics, grav- anism of quantum gravity, which in turn is driven by spin [1] itational waves arise as negative pressure waves through the as a particle’s internal, vorticous motion. In this model we dark superfluid. Here the geometry of spacetime is indeed do not resort to gravitons, since the quantum aspect of grav- replaced by the hydrodynamics of the dark superfluid. A test ity is found in the quantized nature of the dark superfluid is eventually suggested to confirm the gravitational field as and in the attraction of its quanta into vortex-particles. Here an inflow of DS. Einstein’s curved spacetime is replaced by the hydrodynam- ics of the dark superfluid and time itself arises from the dy- Keywords Quantum gravity · general relativity · dark namical aspect of this superfluid. All known phenomena at- energy · gravitational waves · analog gravity tributed in general relativity to the Riemannian geometry of PACS 04.60.-m · 95.36.+x · 47.37.+q · 04.62.+v · 04.30.w spacetime possess an equivalent explanation resorting to the hydrodynamics of the DS, from Lense-Thirring precession and gravitational lensing up to gravitational waves. Introduction 1 Superfluid quantum gravity (SQG): Bernoulli In the first article on the hydrodynamics of the dark superflu- pressure in the DS as the mechanism of quantum id [1] we have provided reasons to interpret dark energy and gravity M.Fedi Ministero dell’Istruzione, Dell’Universita` e della Ricerca (MIUR), We refer here to the description of massive fundamental par- Rome, Italy ticles as torus-shaped quantum vortices in the DS [1], for E-mail: [email protected] which an hydrodynamic analogy with the fundamental en- 2 Marco Fedi tities introduced in Loop Quantum Gravity [9,10], where space is similarly granular and quantized, shall be reported for some aspects. From that, we focus on the Bernoulli force observed [25,26,29,28] when vortices form in superfluids. The formula reads [29] Z Fb = K(r)n(r)dS (1) S where K(r) = rv2=2 expresses the density of kinetic energy (which dominates on the vortex surface, while the density of the superfluid drops to zero within the so-called healing Fig. 1 Metallic nano-particles adhere onto vortex-filaments in super- length [1]) and n(r) is a unit vector normal to the cylindrical fluid 4He making them visible, thanks to Bernoulli pressure [25,26]. surface S over which the integral is calculated. A schemati- The attraction of the surrounding quanta in the DS exerted by vortex- cal description of this force as superposition of the vortices’ particles is by us indicated as the quantum mechanism of gravity. velocity fields obeying a 1=r function, which pressure fields are associated to, has been made in [29]. Due to Bernoulli pressure we see in Fig. 1 that particles of various sizes ad- here onto the vortices, making them visible as filaments. The amazing analogy with the observed cosmic web of dark mat- ter filaments showed in [1] is significant and tells us how the DS hydrodynamics may express both the cosmos of galax- ies and the microcosm of particle physics. Also interesting is the appearance of attractive or repulsive (depending on the chirality) Bernoulli pressure between quantum vortices only in two-component superfluids [29], where we have a Fig. 2 Since macroscopic bodies consist of fundamental particles, they small amount of a “doping substance” (e.g. metallic atoms) also produce a pressure gradient which becomes strong and evident scattered in a superfluid, such as superfluid 4He. The analo- around large celestial bodies and determines attraction. This is what we gy with a two-component DS in which a smaller amount of call “gravitational field”. This hypothesis is nothing more than Gauss’s real dark matter (∼ 25%) is immersed in a vast ocean of superflu- law for gravity, however considering here a flux of DS. id dark energy (∼ 70%) [1] is relevant. Thus, if macroscopic bodies were made up of vortex-particles in a two-component created by the action of spin, once this quantum number DS [1], they would show as well a pressure gradient around has been defined as the circulation of quanta in a superflu- them and would exert (and be subject to) Bernoulli force. id vortex taking shape in the DS (see [1] Sect. 3). So the This pressure gradient is called “gravitational field”. Fig. 2 core mechanism of quantum gravity would be actually spin, represents the gravitational field as inflow of dark superfluid described as vorticity of quanta in the DS. which consequently causes attraction between two or more bodies floating in it [16], while in Fig. 3 the pressure gradi- ent causing attraction is shown through a set of CFD sim- 2 From classical to quantum gravity without gravitons ulations. Here we can verify that the consequent attractive force mathematically equals Gauss’s law for gravity We know that a pressure gradient generates a force, for which I the acceleration is expressed as Fg = g · n(r)dS = −4pGM; (2) S P a = −∇ ; (3) for which we consider a “real” incoming flow (in our case r of DS), and is compatible with the Schwarzschild solution. Similarity with (1) is also evident. A similar hypothesis of being P and r respectively pressure and density. In our case, hydrodynamic gravity was proposed by Cahill [17] and Kirk- (3) has to correspond to the gravitational acceleration caused wood [18] previously thought of the gravitational field as an by the attraction of dark superfluid quanta (DSQ) due to the ether inflow, moving from the interpretation of the equiv- Bernoulli effect (Fig. 1, 2), then we write alence principle (also see Sect. 7) and analyzing this issue Pd in terms of particle and light motion in a gravitational field. g = −∇ ; (4) rd Also other efforts in the context of analog gravity, as those by Visser, Barcel, Consoli, have to be mentioned [19–21]. where the subscript d refers to DS. By using (4) in Newton’s Finally, it is important to notice that Bernoulli pressure is second law, we can write a formula for universal gravitation, Hydrodynamics of the dark superfluid: III. Superfluid Quantum Gravity. 3 a scale and conversion factor and this is indeed the role as- sumed by G. It is also interesting to note that the units in (6) correspond to Gray (Gy), i.e. to the unit used for ener- gy absorption (J/kg). In this case, absorption of DS (of dark energy), as hypothesized for SQG. The Newtonian gravitational constant now would read r Pd r G = −jh = = const: (7) M rd M So, its value and utility remain but it would now reveal the physical quantities and the relationships among them which produce that constant output on a quantum hydrodynamic basis. Furthermore, we see that the same hydrodynamic ex- pression (6) is used for the equation of state of cosmology: w = P=r, that we already considered as the equation of state of the DS [1,8].
Recommended publications
  • Physical Vacuum Is a Special Superfluid Medium
    Physical vacuum is a special superfluid medium Valeriy I. Sbitnev∗ St. Petersburg B. P. Konstantinov Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Leningrad district, 188350, Russia; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA (Dated: August 9, 2016) The Navier-Stokes equation contains two terms which have been subjected to slight modification: (a) the viscosity term depends of time (the viscosity in average on time is zero, but its variance is non-zero); (b) the pressure gradient contains an added term describing the quantum entropy gradient multiplied by the pressure. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schr¨odingerequation describing behavior of a particle into the vacuum being as a superfluid medium. Vortex structures arising in this medium show infinitely long life owing to zeroth average viscosity. The non-zero variance describes exchange of the vortex energy with zero-point energy of the vacuum. Radius of the vortex trembles around some average value. This observation sheds the light to the Zitterbewegung phenomenon. The long-lived vortex has a non-zero core where the vortex velocity vanishes. Keywords: Navier-Stokes; Schr¨odinger; zero-point fluctuations; superfluid vacuum; vortex; Bohmian trajectory; interference I. INTRODUCTION registered. Instead, the wave function represents it existence within an experimental scene [13]. A dramatic situation in physical understand- Another interpretation was proposed by Louis ing of the nature emerged in the late of 19th cen- de Broglie [18], which permits to explain such an tury. Observed phenomena on micro scales came experiment. In de Broglie's wave mechanics and into contradiction with the general positions of the double solution theory there are two waves.
    [Show full text]
  • Loop Quantum Cosmology, Modified Gravity and Extra Dimensions
    universe Review Loop Quantum Cosmology, Modified Gravity and Extra Dimensions Xiangdong Zhang Department of Physics, South China University of Technology, Guangzhou 510641, China; [email protected] Academic Editor: Jaume Haro Received: 24 May 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: Loop quantum cosmology (LQC) is a framework of quantum cosmology based on the quantization of symmetry reduced models following the quantization techniques of loop quantum gravity (LQG). This paper is devoted to reviewing LQC as well as its various extensions including modified gravity and higher dimensions. For simplicity considerations, we mainly focus on the effective theory, which captures main quantum corrections at the cosmological level. We set up the basic structure of Brans–Dicke (BD) and higher dimensional LQC. The effective dynamical equations of these theories are also obtained, which lay a foundation for the future phenomenological investigations to probe possible quantum gravity effects in cosmology. Some outlooks and future extensions are also discussed. Keywords: loop quantum cosmology; singularity resolution; effective equation 1. Introduction Loop quantum gravity (LQG) is a quantum gravity scheme that tries to quantize general relativity (GR) with the nonperturbative techniques consistently [1–4]. Many issues of LQG have been carried out in the past thirty years. In particular, among these issues, loop quantum cosmology (LQC), which is the cosmological sector of LQG has received increasing interest and has become one of the most thriving and fruitful directions of LQG [5–9]. It is well known that GR suffers singularity problems and this, in turn, implies that our universe also has an infinitely dense singularity point that is highly unphysical.
    [Show full text]
  • Quantum Vacuum Energy Density and Unifying Perspectives Between Gravity and Quantum Behaviour of Matter
    Annales de la Fondation Louis de Broglie, Volume 42, numéro 2, 2017 251 Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter Davide Fiscalettia, Amrit Sorlib aSpaceLife Institute, S. Lorenzo in Campo (PU), Italy corresponding author, email: [email protected] bSpaceLife Institute, S. Lorenzo in Campo (PU), Italy Foundations of Physics Institute, Idrija, Slovenia email: [email protected] ABSTRACT. A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. This model introduces the possibility to interpret gravity and the quantum behaviour of matter as two different aspects of the same origin. The change of the quantum vacuum energy density can be considered as the fundamental medium which determines a bridge between gravity and the quantum behaviour, leading to new interest- ing perspectives about the problem of unifying gravity with quantum theory. PACS numbers: 04. ; 04.20-q ; 04.50.Kd ; 04.60.-m. Key words: general relativity, three-dimensional space, quantum vac- uum energy density, quantum mechanics, generalized Klein-Gordon equation for the quantum vacuum energy density, generalized Dirac equation for the quantum vacuum energy density. 1 Introduction The standard interpretation of phenomena in gravitational fields is in terms of a fundamentally curved space-time. However, this approach leads to well known problems if one aims to find a unifying picture which takes into account some basic aspects of the quantum theory. For this reason, several authors advocated different ways in order to treat gravitational interaction, in which the space-time manifold can be considered as an emergence of the deepest processes situated at the fundamental level of quantum gravity.
    [Show full text]
  • Aspects of Loop Quantum Gravity
    Aspects of loop quantum gravity Alexander Nagen 23 September 2020 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London 1 Contents 1 Introduction 4 2 Classical theory 12 2.1 The ADM / initial-value formulation of GR . 12 2.2 Hamiltonian GR . 14 2.3 Ashtekar variables . 18 2.4 Reality conditions . 22 3 Quantisation 23 3.1 Holonomies . 23 3.2 The connection representation . 25 3.3 The loop representation . 25 3.4 Constraints and Hilbert spaces in canonical quantisation . 27 3.4.1 The kinematical Hilbert space . 27 3.4.2 Imposing the Gauss constraint . 29 3.4.3 Imposing the diffeomorphism constraint . 29 3.4.4 Imposing the Hamiltonian constraint . 31 3.4.5 The master constraint . 32 4 Aspects of canonical loop quantum gravity 35 4.1 Properties of spin networks . 35 4.2 The area operator . 36 4.3 The volume operator . 43 2 4.4 Geometry in loop quantum gravity . 46 5 Spin foams 48 5.1 The nature and origin of spin foams . 48 5.2 Spin foam models . 49 5.3 The BF model . 50 5.4 The Barrett-Crane model . 53 5.5 The EPRL model . 57 5.6 The spin foam - GFT correspondence . 59 6 Applications to black holes 61 6.1 Black hole entropy . 61 6.2 Hawking radiation . 65 7 Current topics 69 7.1 Fractal horizons . 69 7.2 Quantum-corrected black hole . 70 7.3 A model for Hawking radiation . 73 7.4 Effective spin-foam models .
    [Show full text]
  • Introduction to Loop Quantum Gravity
    Introduction to Loop Quantum Gravity Abhay Ashtekar Institute for Gravitation and the Cosmos, Penn State A broad perspective on the challenges, structure and successes of loop quantum gravity. Addressed to Young Researchers: From Beginning Students to Senior Post-docs. Organization: 1. Historical & Conceptual Setting 2. Structure of Loop Quantum Gravity 3. Outlook: Challenges and Opportunities – p. 1. Historical and Conceptual Setting Einstein’s resistance to accept quantum mechanics as a fundamental theory is well known. However, he had a deep respect for quantum mechanics and was the first to raise the problem of unifying general relativity with quantum theory. “Nevertheless, due to the inner-atomic movement of electrons, atoms would have to radiate not only electro-magnetic but also gravitational energy, if only in tiny amounts. As this is hardly true in Nature, it appears that quantum theory would have to modify not only Maxwellian electrodynamics, but also the new theory of gravitation.” (Albert Einstein, Preussische Akademie Sitzungsberichte, 1916) – p. • Physics has advanced tremendously in the last 90 years but the the problem of unification of general relativity and quantum physics still open. Why? ⋆ No experimental data with direct ramifications on the quantum nature of Gravity. – p. • Physics has advanced tremendously in the last nine decades but the the problem of unification of general relativity and quantum physics is still open. Why? ⋆ No experimental data with direct ramifications on the quantum nature of Gravity. ⋆ But then this should be a theorist’s haven! Why isn’t there a plethora of theories? – p. ⋆ No experimental data with direct ramifications on quantum Gravity.
    [Show full text]
  • Conformal Field Theory out of Equilibrium: a Review Denis Bernard
    Conformal field theory out of equilibrium: a review Denis Bernard| and Benjamin Doyon♠ | Laboratoire de Physique Th´eoriquede l'Ecole Normale Sup´erieurede Paris, CNRS, ENS & PSL Research University, UMPC & Sorbonne Universit´es,France. ♠ Department of Mathematics, King's College London, London, United Kingdom. We provide a pedagogical review of the main ideas and results in non-equilibrium conformal field theory and connected subjects. These concern the understanding of quantum transport and its statistics at and near critical points. Starting with phenomenological considerations, we explain the general framework, illustrated by the example of the Heisenberg quantum chain. We then introduce the main concepts underlying conformal field theory (CFT), the emergence of critical ballistic transport, and the CFT scattering construction of non-equilibrium steady states. Using this we review the theory for energy transport in homogeneous one-dimensional critical systems, including the complete description of its large deviations and the resulting (extended) fluctuation relations. We generalize some of these ideas to one-dimensional critical charge transport and to the presence of defects, as well as beyond one-dimensional criticality. We describe non-equilibrium transport in free-particle models, where connections are made with generalized Gibbs ensembles, and in higher-dimensional and non-integrable quantum field theories, where the use of the powerful hydrodynamic ideas for non-equilibrium steady states is explained. We finish with a list of open questions. The review does not assume any advanced prior knowledge of conformal field theory, large-deviation theory or hydrodynamics. March 24, 2016 Contents 1 Introduction 1 2 Mesoscopic electronic transport: basics 3 2.1 Elementary phenomenology .
    [Show full text]
  • Loop Quantum Gravity Alejandro Perez, Centre De Physique Théorique and Université Aix-Marseille II • Campus De Luminy, Case 907 • 13288 Marseille • France
    features Loop quantum gravity Alejandro Perez, Centre de Physique Théorique and Université Aix-Marseille II • Campus de Luminy, case 907 • 13288 Marseille • France. he revolution brought by Einstein’s theory of gravity lies more the notion of particle, Fourier modes, vacuum, Poincaré invariance Tin the discovery of the principle of general covariance than in are essential tools that can only be constructed on a given space- the form of the dynamical equations of general relativity. General time geometry.This is a strong limitation when it comes to quantum covariance brings the relational character of nature into our descrip- gravity since the very notion of space-time geometry is most likely tion of physics as an essential ingredient for the understanding of not defined in the deep quantum regime. Secondly, quantum field the gravitational force. In general relativity the gravitational field is theory is plagued by singularities too (UV divergences) coming encoded in the dynamical geometry of space-time, implying a from the contribution of arbitrary high energy quantum processes. strong form of universality that precludes the existence of any non- This limitation of standard QFT’s is expected to disappear once the dynamical reference system—or non-dynamical background—on quantum fluctuations of the gravitational field, involving the dynam- top of which things occur. This leaves no room for the old view ical treatment of spacetime geometry, are appropriately taken into where fields evolve on a rigid preestablished space-time geometry account. But because of its intrinsically background dependent (e.g. Minkowski space-time): to understand gravity one must definition, standard QFT cannot be used to shed light on this issue.
    [Show full text]
  • Stochastic Hydrodynamic Analogy of Quantum Mechanics
    The mass lowest limit of a black hole: the hydrodynamic approach to quantum gravity Piero Chiarelli National Council of Research of Italy, Area of Pisa, 56124 Pisa, Moruzzi 1, Italy Interdepartmental Center “E.Piaggio” University of Pisa Phone: +39-050-315-2359 Fax: +39-050-315-2166 Email: [email protected]. Abstract: In this work the quantum gravitational equations are derived by using the quantum hydrodynamic description. The outputs of the work show that the quantum dynamics of the mass distribution inside a black hole can hinder its formation if the mass is smaller than the Planck's one. The quantum-gravitational equations of motion show that the quantum potential generates a repulsive force that opposes itself to the gravitational collapse. The eigenstates in a central symmetric black hole realize themselves when the repulsive force of the quantum potential becomes equal to the gravitational one. The work shows that, in the case of maximum collapse, the mass of the black hole is concentrated inside a sphere whose radius is two times the Compton length of the black hole. The mass minimum is determined requiring that the gravitational radius is bigger than or at least equal to the radius of the state of maximum collapse. PACS: 04.60.-m Keywords: quantum gravity, minimum black hole mass, Planck's mass, quantum Kaluza Klein model 1. Introduction One of the unsolved problems of the theoretical physics is that of unifying the general relativity with the quantum mechanics. The former theory concerns the gravitation dynamics on large cosmological scale in a fully classical ambit, the latter one concerns, mainly, the atomic or sub-atomic quantum phenomena and the fundamental interactions [1-9].
    [Show full text]
  • An Introduction to Loop Quantum Gravity with Application to Cosmology
    DEPARTMENT OF PHYSICS IMPERIAL COLLEGE LONDON MSC DISSERTATION An Introduction to Loop Quantum Gravity with Application to Cosmology Author: Supervisor: Wan Mohamad Husni Wan Mokhtar Prof. Jo~ao Magueijo September 2014 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London Abstract The development of a quantum theory of gravity has been ongoing in the theoretical physics community for about 80 years, yet it remains unsolved. In this dissertation, we review the loop quantum gravity approach and its application to cosmology, better known as loop quantum cosmology. In particular, we present the background formalism of the full theory together with its main result, namely the discreteness of space on the Planck scale. For its application to cosmology, we focus on the homogeneous isotropic universe with free massless scalar field. We present the kinematical structure and the features it shares with the full theory. Also, we review the way in which classical Big Bang singularity is avoided in this model. Specifically, the spectrum of the operator corresponding to the classical inverse scale factor is bounded from above, the quantum evolution is governed by a difference rather than a differential equation and the Big Bang is replaced by a Big Bounce. i Acknowledgement In the name of Allah, the Most Gracious, the Most Merciful. All praise be to Allah for giving me the opportunity to pursue my study of the fundamentals of nature. In particular, I am very grateful for the opportunity to explore loop quantum gravity and its application to cosmology for my MSc dissertation.
    [Show full text]
  • Emergence of Time in Loop Quantum Gravity∗
    Emergence of time in Loop Quantum Gravity∗ Suddhasattwa Brahma,1y 1 Center for Field Theory and Particle Physics, Fudan University, 200433 Shanghai, China Abstract Loop quantum gravity has formalized a robust scheme in resolving classical singu- larities in a variety of symmetry-reduced models of gravity. In this essay, we demon- strate that the same quantum correction which is crucial for singularity resolution is also responsible for the phenomenon of signature change in these models, whereby one effectively transitions from a `fuzzy' Euclidean space to a Lorentzian space-time in deep quantum regimes. As long as one uses a quantization scheme which re- spects covariance, holonomy corrections from loop quantum gravity generically leads to non-singular signature change, thereby giving an emergent notion of time in the theory. Robustness of this mechanism is established by comparison across large class of midisuperspace models and allowing for diverse quantization ambiguities. Con- ceptual and mathematical consequences of such an underlying quantum-deformed space-time are briefly discussed. 1 Introduction It is not difficult to imagine a mind to which the sequence of things happens not in space but only in time like the sequence of notes in music. For such a mind such conception of reality is akin to the musical reality in which Pythagorean geometry can have no meaning. | Tagore to Einstein, 1920. We are yet to come up with a formal theory of quantum gravity which is mathematically consistent and allows us to draw phenomenological predictions from it. Yet, there are widespread beliefs among physicists working in fundamental theory regarding some aspects of such a theory, once realized.
    [Show full text]
  • 2 Cosmic Rays and Atmospheric Neutrinos 4
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a preprint version which may differ from the publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/75873 Please be advised that this information was generated on 2021-10-05 and may be subject to change. S e a r c h in g f o r Q u a n t u m G r a v it y w it h H ig h - e n e r g y A t m o s p h e r ic N e u t r in o s a n d A M A N D A - I I by J o h n L a w r e n c e K e l l e y A dissertation submitted in partial fulfillment of the requirements for the degree of D o c t o r o f P h il o s o p h y (P h y s ic s ) at the U n iv e r s it y o f W is c o n s in - M a d is o n 2008 © 2008 John Lawrence Kelley All Rights Reserved S e a r c h i n g f o r Q u a n t u m G r a v it y w i t h H i g h - e n e r g y A t m o s p h e r i c N e u t r i n o s a n d AMANDA-II John Lawrence Kelley Under the supervision of Professor Albrecht Karle At the University of Wisconsin - Madison The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range.
    [Show full text]
  • No-Go Result for Covariance in Models of Loop Quantum Gravity
    PHYSICAL REVIEW D 102, 046006 (2020) No-go result for covariance in models of loop quantum gravity Martin Bojowald Institute for Gravitation and the Cosmos, The Pennsylvania State University, 104 Davey Lab, University Park, Pennsylvania 16802, USA (Received 3 July 2020; accepted 30 July 2020; published 10 August 2020) Based on the observation that the exterior space-times of Schwarzschild-type solutions allow two symmetric slicings, a static spherically symmetric one and a timelike homogeneous one, modifications of gravitational dynamics suggested by symmetry-reduced models of quantum cosmology can be used to derive corresponding modified spherically symmetric equations. Generally covariant theories are much more restricted in spherical symmetry compared with homogeneous slicings, given by 1 þ 1-dimensional dilaton models if they are local. As shown here, modifications used in loop quantum cosmology do not have a corresponding covariant spherically symmetric theory. Models of loop quantum cosmology therefore violate general covariance in the form of slicing independence. Only a generalized form of covariance with a non-Riemannian geometry could consistently describe space-time in models of loop quantum gravity. DOI: 10.1103/PhysRevD.102.046006 I. INTRODUCTION space-time structure in models of loop quantum gravity [9]. Here, we elaborate on this application and use it to Models of black holes in quantum gravity are valuable demonstrate a no-go result that implies the noncovariance not only because their strong-field effects draw consider- of any model of loop quantum gravity, if covariance is able physical interest, but also because they are understood understood in the classical way related to slicing inde- as a consequence of nontrivial dynamical properties of pendence in Riemannian geometry.
    [Show full text]