Introduction to Chaos and the Logistic Map CS523 Assignment One – Spring 2013 the University of New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Chaos and the Logistic Map CS523 Assignment One – Spring 2013 the University of New Mexico Introduction to Chaos and the Logistic Map CS523 Assignment One – Spring 2013 The University of New Mexico Karl Stolleis John Ericksen [email protected] [email protected] Introduction The following report is an introduction to the concepts of the logistic map function and its application to complex systems and chaos theory. The initial equation for the logistic map is as follows : 2 P(t +1)=R (Pt −Pt /k) where the population P at a given time step t is used to calculate the population at the next time step P(t +1) in the sequence. The value R is the the birth rate of the population minus the death rate. The constant k is the “carrying capacity,” or the number of individual organisms, that the organism's environment can support. [1] With some algebraic maneuvering the equation can be rewritten in the form: P(t +1)=R Pt (1−Pt ) where the value P is now the population given as a percentage of the total carrying capacity. [1] We will use both equations in this paper to demonstrate various principles. The logistic map is used as a basic demonstration of a mathematical equation that, despite its simplicity, can give rise to chaotic behavior. Chaos, in this context, simply means that the values generated by the logistic map, at a given R-value, will become unpredictable. Unlike the common definition of chaos, the chaos described by dynamical systems is really unpredictability arising from a deterministic structure, such as a mathematical equation. [2] The logistic map also demonstrates a hallmark of chaotic systems, namely high sensitivity to initial conditions. Each of these principles will be discussed in the results section. The connection of the logistic map to complex, adaptive systems has a number of points. The equation demonstrates that some deterministic systems can exhibit behavior that, under no circumstances, can be predicted. Many such systems, such as weather, biological populations, fluid turbulence and economic systems exhibit classic, chaotic behavior, the principles of which can be observed in the logistic map. [3] We will demonstrate such hallmarks as the Feigenbaum constant, self-similarity and how these chaotic behaviors can be described in terms of Shannon entropy. Lastly we will give an example of how, when compared to an actual, biological system, the logistic map is a simple and naive method to model populations. Methods Each of the data plots in the results section were generated using the software package Matlab. A script was written for each of the plots shown. In part one, population predictions for a theoretical rabbit population were generated using using a set of two different data inputs. The script cs523_1_1.m uses both the logisticMap.m and logisticPopulation.m functions to generate the data for questions one, two and three of part one. The resulting data sets are created by simply varying the input parameters for the listed functions, namely the R- value, the carrying capacity, the initial population and the number of time steps to be generated. The actual functions were simply the two listed in the introduction of this paper. Question four was generated with cs523_1_4a.m, cs523_1_4b.m, cs523_1_4c.m, and bifurcation.m scripts. The bifurcation diagram displays the behavior of the logistic map at a large time value threshold. The script executes the logistic map function until the threshold is met, then samples the next one hundred data points. If the logistic map has reached a stable state (cycling through a set of values) then the resulting data points contains less than the sample amount of unique values. If the logistic map has not reached stability, all of the data points are unique and represents chaotic behavior. These points are plotted over each R value, from -2 to 4. Question five was generated with the cs523_1_5.m script. The method for calculating the Shannon entropy was to generate a set of population predictions using a series of R-values between 2.5 and 4.0 and then create a histogram of the resulting values, for each R-value. The values were rounded to five decimal places to compensate for small rounding errors in the floating point representation. The histogram values were normalized, to create a set of probabilities and then the Shannon entropy equation : H (x)=−∑ p(x)∗log2( p(x)) where H (x) is the calculated entropy, for each R-value and p(x) is the probability of the expected values in the population estimate. The process was repeated for each R-value, and the resulting H-values were plotted. [4] Questions six(a,b) of part two were generated with the scripts cs523_2_1.m and cs523_2_2.m, respectively. Both scripts, in turn, used the the X.csv and Y.csv data sets and logisticMap.m and logisticPopulation.m functions to first plot the initial data set and then plot the calculated population estimate. The question asked us to estimate R-value, initial population and carrying capacity such that the initial data set could be reproduced. Analysis of the initial plot of X allowed for only a single, possible R-value and initial population. Analysis also showed a small range of possible carrying capacities which were iterated over until the correct value was found. Correctness was simply determined by how well the resulting plot matched the initial plot. A similar process for the Y data set was used with only a few more steps because of three additional, possible R-values. Question seven was plotted first from given data set Z.cxv, and using script 523_2_3.m a discrete Fourier series was generated to calculate the exact periodicity of the data set. [5][6] An additional script cs523_2_3a.m was created to try and use the logistic map equation to recreate the data but the resulting plot was omitted for brevity. Included in the directory, with the source scripts, is a read me file that outlines the detailed instructions for running the above mentioned scripts. Additional details can be found in the comments included in the individual script files. Author Contributions Initial plots for 1.1, 1.2, 1.3, 2.1, 2.2, 2.3 were generated by Karl S .while 1.4(a,b,c,d) and 1.5 were generated by John E. Both authors then independently confirmed the work of the other and compared results. Report draft was written by Karl S., subsequently modified by both authors and final draft was completed by John E.. On-line collaboration was used extensively in comparing data and results. Results Figure 1 : Plot of two theoretical, rabbit populations with an R- value set below the chaotic threshold. Both populations synchronize quickly despite having different initial values. Figure 1 shows the values plotted for the two, proposed rabbit populations for part one, question one. The R-value is 3.25 which is below the chaotic threshold of ~ 3.569 [2] so the expected result was that the two populations would stabilize with a two attractor period and the values would synchronize after a large number of time steps. The plot clearly shows the resulting two attractor state and the population values synchronized after a single time step, despite not having reached the final attractor values. The assumptions underlying our predictions stem from a R-value below the chaotic threshold, the carrying capacity being identical for both populations and the initial values chosen that converge immediately to the same population cycles. Figure 2 : Plot of two theoretical, rabbit populations with an R- value set above the chaotic threshold. Both populations unexpectedly synchronize despite having unique initial values. This behavior is explained by the sum of the initial values being equal to one. Figure 2 shows the same process as for Figure 1 but having an R-value of 3.7, above the chaotic threshold of the logistic map equation. From the plot it is easy to see that the two populations do not reach a steady attractor state, despite what appears to be quasi-periodic (ergodic) regions of the plot. The surprising result was that the two populations again became synchronized after a single time step, belying the sensitivity of the equation to initial conditions while in the chaotic region. The synchronization can be explained by the initial values, (x0a , x0b ) being 0.3 and 0.7 respectively, summing to 1.0. Additional test plots, with other analogous values confirmed this. The logistic map equation where the current population value is multiplied by one minus the current value is the ultimate explanation for this behavior. The actual population dynamics show the classic unpredictability of having an R-value which exceeds the chaos boundary for this equation. It would be highly improbable that this particular condition, of synchronization, would occur in a real population. Figure 3 : Plot of four theoretical, rabbit populations with an R- value set above the chaotic threshold. The sensitivity to initial conditions is demonstrated by the divergence of the four predictions despite the initial values being quite similar in value. Figure 3 again uses a similar process as Figures 1 and 2 with four estimated populations. The R-value, in this case is set above the chaotic threshold but the initial populations are perturbed by a small amount. The result shows the four populations shadowing one another for approximately the first seven time steps but then diverging into individual, chaotic paths that show no overlap or any signs of synchronization across the populations. The sensitivity to initial conditions is exacerbated by the inability of a computer to represent numbers with infinite precision. The rounding errors created by floating point representations, in conventional computer architecture, can also create the above behavior.
Recommended publications
  • An Image Cryptography Using Henon Map and Arnold Cat Map
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 04 | Apr-2018 www.irjet.net p-ISSN: 2395-0072 An Image Cryptography using Henon Map and Arnold Cat Map. Pranjali Sankhe1, Shruti Pimple2, Surabhi Singh3, Anita Lahane4 1,2,3 UG Student VIII SEM, B.E., Computer Engg., RGIT, Mumbai, India 4Assistant Professor, Department of Computer Engg., RGIT, Mumbai, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this digital world i.e. the transmission of non- 2. METHODOLOGY physical data that has been encoded digitally for the purpose of storage Security is a continuous process via which data can 2.1 HENON MAP be secured from several active and passive attacks. Encryption technique protects the confidentiality of a message or 1. The Henon map is a discrete time dynamic system information which is in the form of multimedia (text, image, introduces by michel henon. and video).In this paper, a new symmetric image encryption 2. The map depends on two parameters, a and b, which algorithm is proposed based on Henon’s chaotic system with for the classical Henon map have values of a = 1.4 and byte sequences applied with a novel approach of pixel shuffling b = 0.3. For the classical values the Henon map is of an image which results in an effective and efficient chaotic. For other values of a and b the map may be encryption of images. The Arnold Cat Map is a discrete system chaotic, intermittent, or converge to a periodic orbit. that stretches and folds its trajectories in phase space. Cryptography is the process of encryption and decryption of 3.
    [Show full text]
  • The Transition Between the Complex Quadratic Map and the Hénon Map
    The Transition Between the Complex Quadratic Map and the Hénon Map by Sarah N. Kabes Technical Report Department of Mathematics and Statistics University of Minnesota Duluth, MN 55812 July 2012 The Transition Between the Complex Quadratic Map and the Hénon map A PROJECT SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Sarah Kabes in partial fulfillment of the requirements for the degree of Master of Science July 2012 Acknowledgements Thank you first and foremost to my advisor Dr. Bruce Peckham. Your patience, encouragement, excitement, and support while teaching have made this experience not only possible but enjoyable as well. Additional thanks to my committee members, Dr. Marshall Hampton and Dr. John Pastor for reading and providing suggestions for this project. Furthermore, without the additional assistance from two individuals my project would not be as complete as it is today. Thank you Dr. Harlan Stech for finding the critical value , and thank you Scot Halverson for working with me and the open source code to produce the movie. Of course none of this would be possibly without the continued support of my family and friends. Thank you all for believing in me. i Abstract This paper investigates the transition between two well known dynamical systems in the plane, the complex quadratic map and the Hénon map. Using bifurcation theory, an analysis of the dynamical changes the family of maps undergoes as we follow a “homotopy” from one map to the other is presented. Along with locating common local bifurcations, an additional un-familiar bifurcation at infinity is discussed.
    [Show full text]
  • Role of Nonlinear Dynamics and Chaos in Applied Sciences
    v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings.
    [Show full text]
  • Chaos: the Mathematics Behind the Butterfly Effect
    Chaos: The Mathematics Behind the Butterfly E↵ect James Manning Advisor: Jan Holly Colby College Mathematics Spring, 2017 1 1. Introduction A butterfly flaps its wings, and a hurricane hits somewhere many miles away. Can these two events possibly be related? This is an adage known to many but understood by few. That fact is based on the difficulty of the mathematics behind the adage. Now, it must be stated that, in fact, the flapping of a butterfly’s wings is not actually known to be the reason for any natural disasters, but the idea of it does get at the driving force of Chaos Theory. The common theme among the two is sensitive dependence on initial conditions. This is an idea that will be revisited later in the paper, because we must first cover the concepts necessary to frame chaos. This paper will explore one, two, and three dimensional systems, maps, bifurcations, limit cycles, attractors, and strange attractors before looking into the mechanics of chaos. Once chaos is introduced, we will look in depth at the Lorenz Equations. 2. One Dimensional Systems We begin our study by looking at nonlinear systems in one dimen- sion. One of the important features of these is the nonlinearity. Non- linearity in an equation evokes behavior that is not easily predicted due to the disproportionate nature of inputs and outputs. Also, the term “system”isoftenamisnomerbecauseitoftenevokestheideaof asystemofequations.Thiswillbethecaseaswemoveourfocuso↵ of one dimension, but for now we do not want to think of a system of equations. In this case, the type of system we want to consider is a first-order system of a single equation.
    [Show full text]
  • Maps, Chaos, and Fractals
    MATH305 Summer Research Project 2006-2007 Maps, Chaos, and Fractals Phillips Williams Department of Mathematics and Statistics University of Canterbury Maps, Chaos, and Fractals Phillipa Williams* MATH305 Mathematics Project University of Canterbury 9 February 2007 Abstract The behaviour and properties of one-dimensional discrete mappings are explored by writing Matlab code to iterate mappings and draw graphs. Fixed points, periodic orbits, and bifurcations are described and chaos is introduced using the logistic map. Symbolic dynamics are used to show that the doubling map and the logistic map have the properties of chaos. The significance of a period-3 orbit is examined and the concept of universality is introduced. Finally the Cantor Set provides a brief example of the use of iterative processes to generate fractals. *supervised by Dr. Alex James, University of Canterbury. 1 Introduction Devaney [1992] describes dynamical systems as "the branch of mathematics that attempts to describe processes in motion)) . Dynamical systems are mathematical models of systems that change with time and can be used to model either discrete or continuous processes. Contin­ uous dynamical systems e.g. mechanical systems, chemical kinetics, or electric circuits can be modeled by differential equations. Discrete dynamical systems are physical systems that involve discrete time intervals, e.g. certain types of population growth, daily fluctuations in the stock market, the spread of cases of infectious diseases, and loans (or deposits) where interest is compounded at fixed intervals. Discrete dynamical systems can be modeled by iterative maps. This project considers one-dimensional discrete dynamical systems. In the first section, the behaviour and properties of one-dimensional maps are examined using both analytical and graphical methods.
    [Show full text]
  • Analysis of the Coupled Logistic Map
    Theoretical Population Biology TP1365 Theoretical Population Biology 54, 1137 (1998) Article No. TP981365 Spatial Structure, Environmental Heterogeneity, and Population Dynamics: Analysis of the Coupled Logistic Map Bruce E. Kendall* Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, and National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, California 93106 and Gordon A. Fox- Department of Biology 0116, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, and Department of Biology, San Diego State University, San Diego, California 92182 Spatial extent can have two important consequences for population dynamics: It can generate spatial structure, in which individuals interact more intensely with neighbors than with more distant conspecifics, and it allows for environmental heterogeneity, in which habitat quality varies spatially. Studies of these features are difficult to interpret because the models are complex and sometimes idiosyncratic. Here we analyze one of the simplest possible spatial population models, to understand the mathematical basis for the observed patterns: two patches coupled by dispersal, with dynamics in each patch governed by the logistic map. With suitable choices of parameters, this model can represent spatial structure, environmental heterogeneity, or both in combination. We synthesize previous work and new analyses on this model, with two goals: to provide a comprehensive baseline to aid our understanding of more complex spatial models, and to generate predictions about the effects of spatial structure and environmental heterogeneity on population dynamics. Spatial structure alone can generate positive, negative, or zero spatial correlations between patches when dispersal rates are high, medium, or low relative to the complexity of the local dynamics.
    [Show full text]
  • The Logistic Map and Chaos
    The Logistic Map and Chaos Dylana Wilhelm James Madison University April 26, 2016 Dylana Wilhelm Logistic Map April 26, 2016 1 / 18 Logistic Map The logistic map is a first-order difference equation discovered to have complicated dynamics by mathematical biologist Robert May. The general form is given by xn+1 = rxn(1 − xn); where xn is the population of nth generation and r ≥ 0 is the growth rate. Dylana Wilhelm Logistic Map April 26, 2016 2 / 18 Applications of the Logistic Map Generally used in population biology to map the population at any time step to its values at the next time step Additional applications include: Genetics - change in gene frequency Epidemiology - fraction of population infected Economics - relationship between commodity quantity and price Social Sciences - number of people to have heard a rumor Dylana Wilhelm Logistic Map April 26, 2016 3 / 18 Logistic Map Derivation Derived from the logistic difference equation Nn+1 = Nn(r − aNn); by letting x = aN=r Results in simplest non-linear difference equation xn+1 = rxn(1 − xn) Parabola with a maximum value of r=4 at xn = 1=2 For 0 ≤ r ≤ 4, maps 0 ≤ xn ≤ 1 into itself Dylana Wilhelm Logistic Map April 26, 2016 4 / 18 Variation of Growth Rate Limit growth rate to interval 0 ≤ r ≤ 4 Range of behavior as r is varied: Population reaches extinction for r < 1 Non-trivial steady state for 1 < r < 3 Fluctuations in population for r > 3 Dylana Wilhelm Logistic Map April 26, 2016 5 / 18 Variation of Growth Rate Dylana Wilhelm Logistic Map April 26, 2016 6 / 18 Fixed Points of Logistic Map Fixed points satisfy the equation f (x∗) = x∗ = rx∗(1 − x∗); which gives x∗(1 − r + rx∗) = 0: Thus, we have that 1 x∗ = 0 or x∗ = 1 − : r Dylana Wilhelm Logistic Map April 26, 2016 7 / 18 Stability of Fixed Points Stability is given by jf 0(x∗)j < 1.
    [Show full text]
  • Chaos Theory and Its Application in the Atmosphere
    Chaos Theory and its Application in the Atmosphere by XubinZeng Department of Atmospheric Science Colorado State University Fort Collins, Colorado Roger A. Pielke, P.I. NSF Grant #ATM-8915265 CHAOS THEORY AND ITS APPLICATION IN THE ATMOSPHERE Xubin Zeng Department of Atmospheric Science CoJorado State University Fort Collins, Colorado Summer, 1992 Atmospheric Science Paper No. 504 \llIlll~lIl1ll~I""I1~II~'I\1 U16400 7029194 ABSTRACT CHAOS THEORY AND ITS APPLICATION IN THE ATMOSPHERE Chaos theory is thoroughly reviewed, which includes the bifurcation and routes to tur­ bulence, and the characterization of chaos such as dimension, Lyapunov exponent, and Kolmogorov-Sinai entropy. A new method is developed to compute Lyapunov exponents from limited experimental data. Our method is tested on a variety of known model systems, and it is found that our algorithm can be used to obtain a reasonable Lyapunov­ exponent spectrum from only 5000 data points with a precision of 10-1 or 10-2 in 3- or 4-dimensional phase space, or 10,000 data points in 5-dimensional phase space. On 1:he basis of both the objective analyses of different methods for computing the Lyapunov exponents and our own experience, which is subjective, this is recommended as a good practical method for estiIpating the Lyapunov-exponent spectrum from short time series of low precision. The application of chaos is divided into three categories: observational data analysis, llew ideas or physical insights inspired by chaos, and numerical model output analysis. Corresponding with these categories, three subjects are studied. First, the fractal dimen­ sion, Lyapunov-exponent spectrum, Kolmogorov entropy, and predictability are evaluated from the observed time series of daily surface temperature and pressure over several regions of the United States and the North Atlantic Ocean with different climatic signal-to-noise ratios.
    [Show full text]
  • Stability and Fractal Patterns of Complex Logistic Map
    BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 3 Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.2478/cait-2014-0029 Stability and Fractal Patterns of Complex Logistic Map Bhagwati Prasad, Kuldip Katiyar Department of Mathematics, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 INDIA Emails: [email protected], [email protected] Abstract: The intent of this paper is to study the fractal patterns of one dimensional complex logistic map by finding the optimum values of the control parameter using Ishikawa iterative scheme. The logistic map is shown to have bounded and stable behaviour for larger values of the control parameter. This is well depicted via time series analysis and interesting fractal patterns as well are presented. Keywords: Complex logistic map, Ishikawa iteration, fractals, Julia set. 1. Introduction The name “logistic growth model” is essentially due to Verhulst [20] which he used for the studies on population dynamics. He introduced logistic equation for demographic modelling by extending the Malthus equation of the continuous growth of a population with a view to obtain a stable stationary finite state (see [4]). It took more than hundred years to recognize his founding contributions towards the population dynamics and non-linear sciences. This work received wide attention due to the great implications of the simple looking equation in Chaos theory. In 1963, Edward Lorenz introduced an equivalent version of the logistic model for his famous weather forecast model [13]. R. M a y [15, 16], in 1976, recognized the importance of the logistic model and observed that the continuous time model may not be suitable to reflect the realities in most of the cases and constructed a discrete 14 version of this model.
    [Show full text]
  • Lecture 11: Feigenbaum's Analysis of Period Doubling, Superstability of Fixed Points and Period-P Points, Renor- Malisation, U
    Lecture notes #11 Nonlinear Dynamics YFX1520 Lecture 11: Feigenbaum’s analysis of period doubling, superstability of fixed points and period-p points, renor- malisation, universal limiting function, discrete time dy- namics analysis methods, Poincaré section, Poincaré map, Lorenz section, attractor reconstruction Contents 1 Feigenbaum’s analysis of period doubling 2 1.1 Feigenbaum constants . .2 1.2 Superstable fixed points and period-p points . .2 1.3 Renormalisation and the Feigenbaum constants . .5 1.4 Numerical determination of the Feigenbaum α constant . .7 2 Discrete time analysis methods 8 2.1 Poincaré section and Poincaré map . .9 2.1.1 Example of finding a Poincaré map formula . .9 2.2 Poincaré analysis of the periodically driven damped Duffing oscillator . 11 2.3 Poincaré analysis of the Rössler attractor . 13 3 Lorenz section of 3-D attractor 15 4 Attractor reconstruction 16 D. Kartofelev 1/16 K As of March 10, 2021 Lecture notes #11 Nonlinear Dynamics YFX1520 1 Feigenbaum’s analysis of period doubling In this lecture we are continuing our study of one-dimensional maps as simplified models of chaos and as tools for analysing higher order differential equations. We have already encountered maps in this role. The Lorenz map provided strong evidence that the Lorenz attractor is truly strange, and is not just a long- period limit-cycle, see Lectures 9 and 10. 1.1 Feigenbaum constants The Feigenbaum constants were presented during Lecture 10. Slide: 3 1-D unimodal maps and Feigenbaum constants ∆n 1 rn 1 rn 2 δ = lim − = lim − − − 4.669201609... (1) n ∆n n rn rn 1 ≈ →∞ →∞ − − dn 1 α = lim − 2.502907875..
    [Show full text]
  • Foundations of the Scale-Symmetric Physics
    Copyright © 2015 by Sylwester Kornowski All rights reserved Foundations of the Scale-Symmetric Physics (Main Article No 3: Chaos Theory) Sylwester Kornowski Abstract: Here, applying the Scale-Symmetric Theory (SST), we show how particle physics via the Chaos Theory leads to the cosmological dark-matter structures and mental solitons. Moreover, the interactions of the cosmological dark-matter structures with baryonic matter via weak interactions of leptons, lead to the untypical motions of stars in galaxies and to other cosmological structures such as AGN composed of a torus and a central- condensate/modified-black-hole or solar system. Most important in the Chaos Theory (ChT) is to understand physical meaning of a logistic map for the baryons - it concerns the black- body spectrum and the ratio of the masses of charged kaon and pion. Such logistic map leads to the first Feigenbaum constant related to the period-doubling bifurcations that in a limit lead to the onset of chaos. In the period-doubling bifurcations for proton there appear the orbits of period-4 and higher periods. We show that the orbits of period-4 follow from the structure of baryons and that they lead to the Titius-Bode law for the nuclear strong interactions. Calculated here on base of the structure of proton the first Feigenbaum constant is 4.6692033 and it is close to the mathematical value 4.6692016… Contents 1. Introduction 86 2. The logistic map for proton, physical origin of the period-doubling cascade In proton and the Feigenbaum constants, and the leaking dark-matter structures 87 2.1 The logistic map for proton 87 2.2 The Titius-Bode law for the nuclear strong interactions as a result of creation of attractors in the logistic map for proton 88 2.3 Physical origin of the period-doubling cascade for proton and Feigenbaum constants 90 2.4 The leaking dark-matter structures 90 2.5 The Titius-Bode law and bifurcation 90 2.6 Prime numbers and the Titius-Bode law and solar system 91 3.
    [Show full text]
  • Pseudo-Random Number Generator Based on Logistic Chaotic System
    entropy Article Pseudo-Random Number Generator Based on Logistic Chaotic System Luyao Wang and Hai Cheng * Electronic Engineering College, Heilongjiang University, Harbin 150080, China; [email protected] * Correspondence: [email protected] Received: 23 August 2019; Accepted: 27 September 2019; Published: 30 September 2019 Abstract: In recent years, a chaotic system is considered as an important pseudo-random source to pseudo-random number generators (PRNGs). This paper proposes a PRNG based on a modified logistic chaotic system. This chaotic system with fixed system parameters is convergent and its chaotic behavior is analyzed and proved. In order to improve the complexity and randomness of modified PRNGs, the chaotic system parameter denoted by floating point numbers generated by the chaotic system is confused and rearranged to increase its key space and reduce the possibility of an exhaustive attack. It is hard to speculate on the pseudo-random number by chaotic behavior because there is no statistical characteristics and infer the pseudo-random number generated by chaotic behavior. The system parameters of the next chaotic system are related to the chaotic values generated by the previous ones, which makes the PRNG generate enough results. By confusing and rearranging the output sequence, the system parameters of the previous time cannot be gotten from the next time which ensures the security. The analysis shows that the pseudo-random sequence generated by this method has perfect randomness, cryptographic properties and can pass the statistical tests. Keywords: logistic chaotic system; PRNG; Pseudo-random number sequence 1. Introduction With the rapid development of communication technology and the wide use of the Internet and mobile networks, people pay more and more attention to information security.
    [Show full text]