BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 3 Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.2478/cait-2014-0029 Stability and Fractal Patterns of Complex Logistic Map Bhagwati Prasad, Kuldip Katiyar Department of Mathematics, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 INDIA Emails:
[email protected],
[email protected] Abstract: The intent of this paper is to study the fractal patterns of one dimensional complex logistic map by finding the optimum values of the control parameter using Ishikawa iterative scheme. The logistic map is shown to have bounded and stable behaviour for larger values of the control parameter. This is well depicted via time series analysis and interesting fractal patterns as well are presented. Keywords: Complex logistic map, Ishikawa iteration, fractals, Julia set. 1. Introduction The name “logistic growth model” is essentially due to Verhulst [20] which he used for the studies on population dynamics. He introduced logistic equation for demographic modelling by extending the Malthus equation of the continuous growth of a population with a view to obtain a stable stationary finite state (see [4]). It took more than hundred years to recognize his founding contributions towards the population dynamics and non-linear sciences. This work received wide attention due to the great implications of the simple looking equation in Chaos theory. In 1963, Edward Lorenz introduced an equivalent version of the logistic model for his famous weather forecast model [13]. R. M a y [15, 16], in 1976, recognized the importance of the logistic model and observed that the continuous time model may not be suitable to reflect the realities in most of the cases and constructed a discrete 14 version of this model.