Wave Model and Watercraft Model for Simulation of Sea State

Total Page:16

File Type:pdf, Size:1020Kb

Wave Model and Watercraft Model for Simulation of Sea State Department of Physics, Chemistry and Biology Master thesis work Wave Model and Watercraft Model for Simulation of Sea State Kristofer Krus Master thesis work carried out at Saab AB January 8, 2014 LITH-IFM-A-EX—14/2834—SE Department of Physics, Chemistry and Biology Linköpings universitet SE-581 83 Linköping, Sweden Department of Physics, Chemistry and Biology Wave Model and Watercraft Model for Simulation of Sea State Kristofer Krus Master thesis work carried out at Saab AB January 8, 2014 Supervisors: Anders Rönnbrant (Saab AB) Kenneth Järrendahl (Linköping University) Examiner: Magnus Johansson (Linköping University) Avdelning, institution Datum Division, Department Date Department of Physics, Chemistry and Biology 2014-01-08 Linköping University Språk Rapporttyp ISBN: Language Report category Svenska/Swedish Licentiatavhandling ISRN: LITH-IFM-A-EX—14/2834—SE Engelska/English Examensarbete _________________________________________________________________ C-uppsats Serietitel och serienummer ISSN D-uppsats Title of series, numbering ______________________________ _________________ Övrig rapport _________________ URL för elektronisk version URL for electronic version Titel Title Wave Model and Watercraft Model for Simulation of Sea State Författare Author Kristofer Krus Sammanfattning Abstract The problem of real-time simulation of ocean surface waves, ship movement and the coupling in between is tackled, and a number of different methods are covered and discussed. Among these methods, the finite volume method has been implemented in an attempt to solve the problem, along with the compressible Euler equations, an octree based staggered grid which allows for easy adaptive mesh refinement, the volume of fluid method and a variant of the Hyper-C advection scheme for compressible flows for advection of the phase fraction field. The process of implementing the methods that were chosen proved to be tricky in many ways, as they involve a large number of advanced topics, and the implementation that was implemented in this thesis work suffered from numerous issues. There were for example problems with keeping the interface intact, as well as a harsh restriction on the time step size due to the CFL condition. Improvements required to make the method sustainable for real-time applications are discussed, and a few suggestions on alternative approaches that are already in use for similar purposes are also given and discussed. Furthermore, a method for compensating for gain/loss of mass when solving the incompressible flow equations with an inaccurately solved pressure Poisson equation is presented and discussed. A momentum conservative method for transporting the velocity field on staggered grids without introducing unnecessary smearing is also presented and implemented. A simple, physically based illumination model for sea surfaces is derived, discussed and compared to the Blinn–Phong shading model, although it is never implemented. Finally, a two-dimensional partial differential equation in the spatial domain for simulating water surface waves for mildly varying bottom topography is derived and discussed, although it is deemed to be too slow for real-time purposes and is therefore never implemented. Nyckelord Keywords Computational fluid dynamics, ocean waves, finite volume method, octree, volume of fluid method, illumination model Copyright The publishers will keep this document online on the Internet — or its possible replacement — for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authentic- ity, security and accessibility. According to intellectual property law the author has the right to be men- tioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its WWW home page: http://www.ep.liu.se/. Abstract The problem of real-time simulation of ocean surface waves, ship move- ment and the coupling in between is tackled, and a number of different methods are covered and discussed. Among these methods, the finite vol- ume method has been implemented in an attempt to solve the problem, along with the compressible Euler equations, an octree based staggered grid which allows for easy adaptive mesh refinement, the volume of fluid method and a variant of the Hyper-C advection scheme for compressible flows for advection of the phase fraction field. The process of implementing the methods that were chosen proved to be tricky in many ways, as they involve a large number of advanced topics, and the implementation that was implemented in this thesis work suffered from numerous issues. There were for example problems with keeping the interface intact, as well as a harsh restriction on the time step size due to the CFL condition. Improvements required to make the method sustainable for real-time applications are discussed, and a few suggestions on alternative approaches that are already in use for similar purposes are also given and discussed. Furthermore, a method for compensating for gain/loss of mass when solving the incompressible flow equations with an inaccurately solved pres- sure Poisson equation is presented and discussed. A momentum conserva- tive method for transporting the velocity field on staggered grids without introducing unnecessary smearing is also presented and implemented. A simple, physically based illumination model for sea surfaces is derived, discussed and compared to the Blinn–Phong shading model, although it is never implemented. Finally, a two-dimensional partial differential equa- tion in the spatial domain for simulating water surface waves for mildly varying bottom topography is derived and discussed, although it is deemed to be too slow for real-time purposes and is therefore never implemented. Table of Contents Notation iv Technical acronyms............................. iv Outline of thesis vi I Introduction1 1 Motivation2 1.1 Landing on ships with helicopters..................2 1.2 Visual cueing.............................2 1.2.1 Height estimation......................3 1.2.2 Landing on ships with aircraft...............4 2 Requirements and difficulties6 2.1 Wave dispersion and non-linearity.................6 2.2 Fluid–Structure Interaction.....................7 3 Related work8 3.1 Two-dimensional methods......................8 3.1.1 Two-dimensional Fluid–Structure Interaction.......8 3.1.2 Two-dimensional PDEs for shallow water.........9 3.1.3 Fourier Synthesis....................... 10 3.1.4 Laplacian Pyramid Decomposition............. 10 3.2 Three-dimensional methods..................... 14 3.2.1 Smoothed-Particle Hydrodynamics............. 14 3.2.2 Finite Volume Method.................... 15 3.2.3 Finite Volume Method on a restricted tall cell grid.... 16 3.2.4 Finite Volume Method on an octree grid.......... 16 3.3 Hybrid two- and three-dimensional methods............ 17 3.4 Miscellaneous other methods.................... 17 i II Theoretical background 19 4 The Finite volume method 20 4.1 Fluid simulation........................... 20 4.2 Divergence calculation........................ 21 4.3 Gradient calculation......................... 22 4.4 Navier–Stokes equations....................... 23 4.5 Continuity equation......................... 24 4.6 Pressure equation........................... 25 4.6.1 Compressible flow...................... 25 4.6.2 Incompressible Navier–Stokes equations.......... 26 4.7 Solution of the pressure Poisson equation............. 28 4.7.1 The Preconditioned Conjugate Gradient Method..... 29 4.7.2 The Jacobi Method..................... 29 4.7.3 The Gauss–Seidel Method.................. 32 4.7.4 The Multigrid Method.................... 33 4.7.5 Other acceleration methods................. 34 5 Octrees 35 5.1 Varying level of detail........................ 36 6 Free-Surface Modeling 38 6.1 Mesh based surface tracking methods................ 38 6.2 Level Set method........................... 39 6.3 Volume of Fluid method....................... 40 6.4 Coupled Level Set/Volume of Fluid method............ 41 7 Advection of properties 42 7.1 Advection of smooth fields...................... 42 7.1.1 Stability and energy preservation.............. 42 7.1.2 Error reduction for linear advection schemes........ 43 7.2 Advection of the phase fraction field................ 45 7.2.1 Geometric advection schemes................ 45 7.2.2 Algebraic advection schemes................ 46 8 Method summary 47 III Analysis 48 9 Results 49 9.1 The program............................. 49 9.2 A two-dimensional PDE for water waves at varying water depths 54 9.3 Study of other methods....................... 54 ii 10 Discussion 56 10.1 Other methods to use........................ 56 10.2 Speed................................. 57 10.3 Already existing software...................... 57 10.4 Improvements............................. 57 10.4.1 Adaptive Mesh Refinement................. 58 10.4.2 Unconditionally stable
Recommended publications
  • NANOOS Asset List 1 National Oceanic and Atmospheric
    NANOOS Asset List 2008 NANOOS Asset List 1 National Oceanic and Atmospheric Administration 1.1 The CoastWatch West Coast Regional Node http://coastwatch.pfel.noaa.gov Daily – Monthly composites of satellite observations Sea Surface Temperature (GOES & POES) Ocean Color (MODIS and SeaWiFS) Ocean Winds (QuikSCAT) 1.2 The National Data Buoy Center http://seaboard.ndbc.noaa.gov/maps/Northwest.shtml 6 Minute – Hourly buoy observations Meteorological Observations (Air Temp., Pressure, Wind Speed and Direction) Ocean Observations (Water Temp., Wave Height, Period and Direction) 1.3 The Center for Operational Oceanographic Products and Services http://tidesandcurrents.noaa.gov http://opendap.co-ops.nos.noaa.gov/content 6 Minute near-shore station observations Meteorological Observations (Air Temp., Pressure, Wind Speed and Direction) Ocean Observations (Water Temp., Water Level) 1.4 NOAAWatch http://www.noaawatch.gov Information related to ongoing environmental events NOAAWatch themes include Air Quality, Droughts, Earthquakes, Excessive Heat, Fire, Flooding, Harmful Algal Blooms (HABs), Oil Spills, Rip Currents, Severe Weather, Space Weather, Tsunamis, and Volcanoes 1.5 National Weather Service http://www.weather.gov Environmental observations and forecasts Coastal and Marine Forecasts Weather Warnings 1 NANOOS Asset List 2008 Surface Pressure Maps Coastal and Marine Observations (Wind, Visibility, Sky Conditions, Temperature, Dew Point, Relative Humidity, Atmospheric Pressure, Pressure tendency) GOES Satellite Observations (Visible,
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • Sea State in Marine Safety Information Present State, Future Prospects
    Sea State in Marine Safety Information Present State, future prospects Henri SAVINA – Jean-Michel LEFEVRE Météo-France Rogue Waves 2004, Brest 20-22 October 2004 JCOMM Joint WMO/IOC Commission for Oceanography and Marine Meteorology The future of Operational Oceanography Intergovernmental body of technical experts in the field of oceanography and marine meteorology, with a mandate to prepare both regulatory (what Member States shall do) and guidance (what Member States should do) material. TheThe visionvision ofof JCOMMJCOMM Integrated ocean observing system Integrated data management State-of-the-art technologies and capabilities New products and services User responsiveness and interaction Involvement of all maritime countries JCOMM structure Terms of Reference Expert Team on Maritime Safety Services • Monitor / review operations of marine broadcast systems, including GMDSS and others for vessels not covered by the SOLAS convention •Monitor / review technical and service quality standards for meteo and oceano MSI, particularly for the GMDSS, and provide assistance and support to Member States • Ensure feedback from users is obtained through appropriate channels and applied to improve the relevance, effectiveness and quality of services • Ensure effective coordination and cooperation with organizations, bodies and Member States on maritime safety issues • Propose actions as appropriate to meet requirements for international coordination of meteorological and related communication services • Provide advice to the SCG and other Groups of JCOMM on issues related to MSS Chair selected by Commission. OPEN membership, including representatives of the Issuing Services for GMDSS, of IMO, IHO, ICS, IMSO, and other user groups GMDSS Global Maritime Distress & Safety System Defined by IMO for the provision of MSI and the coordination of SAR alerts on a global basis.
    [Show full text]
  • Sea State Effect on the Sea Surface Emissivity at L-Band
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003 2307 Sea State Effect on the Sea Surface Emissivity at L-Band Jorge José Miranda, Mercè Vall-llossera, Member, IEEE, Adriano Camps, Senior Member, IEEE, Núria Duffo, Member, IEEE, Ignasi Corbella, Member, IEEE, and Jacqueline Etcheto Abstract—In May 1999, the European Space Agency (ESA) temperature images will provide looks of the same pixel under selected the Earth Explorer Opportunity Soil Moisture and incidence angles from 0 to almost 65 , which requires the Ocean Salinity (SMOS) mission to obtain global and frequent soil development of soil and sea emission models in the whole moisture and ocean salinity maps. SMOS single payload is the Microwave Imaging Radiometer by Aperture Synthesis (MIRAS), range of incidence angles, and suitable geophysical parameters an L-band two-dimensional aperture synthesis radiometer with retrieval algorithms. multiangular observation capabilities. At L-band, the brightness The dielectric permittivity for seawater is determined, among temperature sensitivity to the sea surface salinity (SSS) is low, other variables, by salinity. Therefore, in principle, it is possible approximately 0.5 K/psu at 20 C, decreasing to 0.25 K/psu at to retrieve SSS from passive microwave measurements as long 0 C, comparable to that to the wind speed 0.2 K/(m/s) at nadir. However, at a given time, the sea state does not depend only as the variables influencing the brightness temperature (TB) on local winds, but on the local wind history and the presence signal (sea surface temperature, roughness, and foam) can be of waves traveling from far distances.
    [Show full text]
  • Path Tracing
    Path Tracing Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Irradiance Circumference of a Circle • The circumference of a circle of radius r is 2πr • In fact, a radian is defined as the angle you get on an arc of length r • We can represent the circumference of a circle as an integral 2휋 푐푖푟푐 = 푟푑휑 0 • This is essentially computing the length of the circumference as an infinite sum of infinitesimal segments of length 푟푑휑, over the range from 휑=0 to 2π Area of a Hemisphere • We can compute the area of a hemisphere by integrating ‘rings’ ranging over a second angle 휃, which ranges from 0 (at the north pole) to π/2 (at the equator) • The area of a ring is the circumference of the ring times the width 푟푑휃 • The circumference is going to be scaled by sin휃 as the rings are smaller towards the top of the hemisphere 휋 2 2휋 2 2 푎푟푒푎 = sin 휃 푟 푑휑 푑휃 = 2휋푟 0 0 Hemisphere Integral 휋 2 2휋 2 푎푟푒푎 = sin 휃 푟 푑휑 푑휃 0 0 • We are effectively computing an infinite summation of tiny rectangular area elements over a two dimensional domain. Each element has dimensions: sin 휃 푟푑휑 × 푟푑휃 Irradiance • Now, let’s assume that we are interested in computing the total amount of light arriving at some point on a surface • We are essentially integrating over all possible directions in the hemisphere above the surface (assuming it’s opaque and we’re not receiving translucent light from below the surface) • We are integrating the light intensity (or radiance) coming in from every direction • The total incoming radiance over all directions in the hemisphere
    [Show full text]
  • Marine Forecasting at TAFB [email protected]
    Marine Forecasting at TAFB [email protected] 1 Waves 101 Concepts and basic equations 2 Have an overall understanding of the wave forecasting challenge • Wave growth • Wave spectra • Swell propagation • Swell decay • Deep water waves • Shallow water waves 3 Wave Concepts • Waves form by the stress induced on the ocean surface by physical wind contact with water • Begin with capillary waves with gradual growth dependent on conditions • Wave decay process begins immediately as waves exit wind generation area…a.k.a. “fetch” area 4 5 Wave Growth There are three basic components to wave growth: • Wind speed • Fetch length • Duration Wave growth is limited by either fetch length or duration 6 Fully Developed Sea • When wave growth has reached a maximum height for a given wind speed, fetch and duration of wind. • A sea for which the input of energy to the waves from the local wind is in balance with the transfer of energy among the different wave components, and with the dissipation of energy by wave breaking - AMS. 7 Fetches 8 Dynamic Fetch 9 Wave Growth Nomogram 10 Calculate Wave H and T • What can we determine for wave characteristics from the following scenario? • 40 kt wind blows for 24 hours across a 150 nm fetch area? • Using the wave nomogram – start on left vertical axis at 40 kt • Move forward in time to the right until you reach either 24 hours or 150 nm of fetch • What is limiting factor? Fetch length or time? • Nomogram yields 18.7 ft @ 9.6 sec 11 Wave Growth Nomogram 12 Wave Dimensions • C=Wave Celerity • L=Wave Length •
    [Show full text]
  • Adjoints and Importance in Rendering: an Overview
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 3, JULY-SEPTEMBER 2003 1 Adjoints and Importance in Rendering: An Overview Per H. Christensen Abstract—This survey gives an overview of the use of importance, an adjoint of light, in speeding up rendering. The importance of a light distribution indicates its contribution to the region of most interest—typically the directly visible parts of a scene. Importance can therefore be used to concentrate global illumination and ray tracing calculations where they matter most for image accuracy, while reducing computations in areas of the scene that do not significantly influence the image. In this paper, we attempt to clarify the various uses of adjoints and importance in rendering by unifying them into a single framework. While doing so, we also generalize some theoretical results—known from discrete representations—to a continuous domain. Index Terms—Rendering, adjoints, importance, light, ray tracing, global illumination, participating media, literature survey. æ 1INTRODUCTION HE use of importance functions started in neutron importance since it indicates how much the different parts Ttransport simulations soon after World War II. Im- of the domain contribute to the solution at the most portance was used (in different disguises) from 1983 to important part. Importance is also known as visual accelerate ray tracing [2], [16], [27], [78], [79]. Smits et al. [67] importance, view importance, potential, visual potential, value, formally introduced the use of importance for global
    [Show full text]
  • Waves and Structures
    WAVES AND STRUCTURES By Dr M C Deo Professor of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai 400 076 Contact: [email protected]; (+91) 22 2572 2377 (Please refer as follows, if you use any part of this book: Deo M C (2013): Waves and Structures, http://www.civil.iitb.ac.in/~mcdeo/waves.html) (Suggestions to improve/modify contents are welcome) 1 Content Chapter 1: Introduction 4 Chapter 2: Wave Theories 18 Chapter 3: Random Waves 47 Chapter 4: Wave Propagation 80 Chapter 5: Numerical Modeling of Waves 110 Chapter 6: Design Water Depth 115 Chapter 7: Wave Forces on Shore-Based Structures 132 Chapter 8: Wave Force On Small Diameter Members 150 Chapter 9: Maximum Wave Force on the Entire Structure 173 Chapter 10: Wave Forces on Large Diameter Members 187 Chapter 11: Spectral and Statistical Analysis of Wave Forces 209 Chapter 12: Wave Run Up 221 Chapter 13: Pipeline Hydrodynamics 234 Chapter 14: Statics of Floating Bodies 241 Chapter 15: Vibrations 268 Chapter 16: Motions of Freely Floating Bodies 283 Chapter 17: Motion Response of Compliant Structures 315 2 Notations 338 References 342 3 CHAPTER 1 INTRODUCTION 1.1 Introduction The knowledge of magnitude and behavior of ocean waves at site is an essential prerequisite for almost all activities in the ocean including planning, design, construction and operation related to harbor, coastal and structures. The waves of major concern to a harbor engineer are generated by the action of wind. The wind creates a disturbance in the sea which is restored to its calm equilibrium position by the action of gravity and hence resulting waves are called wind generated gravity waves.
    [Show full text]
  • Air-Sea Interaction and Surface Waves
    712 Air-Sea Interaction and Surface Waves Peter A.E.M. Janssen, Øyvind Breivik, Kristian Mogensen, Frédéric Vitart, Magdalena Balmaseda, Jean-Raymond Bidlot, Sarah Keeley, Martin Leutbecher, Linus Magnusson, and Franco Molteni. Research Department November 2013 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ Contact: [email protected] ©Copyright 2013 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director- General. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. Air-Sea Interaction and Surface Waves 1 Introduction Presently we are developing a coupled earth system model that allows for efficient, sequential interaction of the ocean/sea-ice, atmosphere and ocean waves components, and, therefore it becomes feasible to introduce sea state effects on the upper ocean mixing and dynamics (Mogensen et al., 2012). By the end of 2013, a first version of this system will be introduced in operations in the medium-range/monthly ensemble forecasting system. The main purpose of this operational change is that coupling between atmosphere and ocean is switched on from initial time, rather than from day 9-10 in the forecast.
    [Show full text]
  • 6 Water Waves 35 6 Water Waves
    6 WATER WAVES 35 6 WATER WAVES Surface waves in water are a superb example of a stationary and ergodic random process. The model of waves as a nearly linear superposition of harmonic components, at random phase, is confirmed by measurements at sea, as well as by the linear theory of waves, the subject of this section. We will skip some elements of fluid mechanics where appropriate, and move quickly to the cases of two-dimensional, inviscid and irrotational flow. These are the major assumptions that enable the linear wave model. 6.1 Constitutive and Governing Relations First, we know that near the sea surface, water can be considered as incompressible, and that the density ½ is nearly uniform. In this case, a simple form of conservation of mass will hold: @u @v @w + + = 0; @x @y @z where the Cartesian space is [x; y; z], with respective particle velocity vectors [u; v; w]. In words, the above equation says that net flow into a differential volume has to equal net flow out of it. Considering a box of dimensions [±x; ±y; ±z], we see that any ±u across the x-dimension, has to be accounted for by ±v and ±w: ±u±y±z + ±v±x±z + ±w±x±y = 0: w + Gw v + Gv Gy z y Gx u u + Gu x Gz v w Next, we invoke Newton’s law, in the three directions: " # " # @u @u @u @u @p @2u @2u @2u ½ + u + v + w = ¡ + ¹ + + ; @t @x @y @z @x @x2 @y2 @z2 " # " # @v @v @v @v @p @2v @2v @2v ½ + v + w + u = ¡ + ¹ + + ; @t @x @y @z @y @x2 @y2 @z2 " # " # @w @w @w @w @p @2w @2w @2w ½ + w + u + v = ¡ + ¹ + + ¡ ½g: @t @x @y @z @z @x2 @y2 @z2 6 WATER WAVES 36 Here the left-hand side of each equation is the acceleration of the fluid particle, as it moves @u through the differential volume.
    [Show full text]
  • Realistic Simulation of Ocean Surface Using Wave Spectra Jocelyn Fréchot
    Realistic simulation of ocean surface using wave spectra Jocelyn Fréchot To cite this version: Jocelyn Fréchot. Realistic simulation of ocean surface using wave spectra. Proceedings of the First International Conference on Computer Graphics Theory and Applications (GRAPP 2006), 2006, Por- tugal. pp.76–83. hal-00307938 HAL Id: hal-00307938 https://hal.archives-ouvertes.fr/hal-00307938 Submitted on 29 Jul 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REALISTIC SIMULATION OF OCEAN SURFACE USING WAVE SPECTRA Jocelyn Frechot´ LaBRI - Laboratoire bordelais de recherche en informatique Domaine universitaire, 351 cours de la Liber´ ation, 33405 Talence CEDEX, France [email protected] Keywords: Natural phenomena, realistic ocean waves, procedural animation, parametric energy spectra Abstract: We present a method to simulate ocean surfaces away from the coast, with correct statistical wave height and direction distributions. By using classical oceanographic parametric wave spectra, our results fit real world measurements, without depending on them. Since wave spectra are independent of the ocean model, Gerstner parametric equations and Fourier transform method can be used with them. Moreover, since they are simple to use and need very few parameters, they allow easy production of ocean surface animations usable in movies and games.
    [Show full text]
  • Swell and Wave Forecasting
    Lecture 24 Part II Swell and Wave Forecasting 29 Swell and Wave Forecasting • Motivation • Terminology • Wave Formation • Wave Decay • Wave Refraction • Shoaling • Rouge Waves 30 Motivation • In Hawaii, surf is the number one weather-related killer. More lives are lost to surf-related accidents every year in Hawaii than another weather event. • Between 1993 to 1997, 238 ocean drownings occurred and 473 people were hospitalized for ocean-related spine injuries, with 77 directly caused by breaking waves. 31 Going for an Unintended Swim? Lulls: Between sets, lulls in the waves can draw inexperienced people to their deaths. 32 Motivation Surf is the number one weather-related killer in Hawaii. 33 Motivation - Marine Safety Surf's up! Heavy surf on the Columbia River bar tests a Coast Guard vessel approaching the mouth of the Columbia River. 34 Sharks Cove Oahu 35 Giant Waves Peggotty Beach, Massachusetts February 9, 1978 36 Categories of Waves at Sea Wave Type: Restoring Force: Capillary waves Surface Tension Wavelets Surface Tension & Gravity Chop Gravity Swell Gravity Tides Gravity and Earth’s rotation 37 Ocean Waves Terminology Wavelength - L - the horizontal distance from crest to crest. Wave height - the vertical distance from crest to trough. Wave period - the time between one crest and the next crest. Wave frequency - the number of crests passing by a certain point in a certain amount of time. Wave speed - the rate of movement of the wave form. C = L/T 38 Wave Spectra Wave spectra as a function of wave period 39 Open Ocean – Deep Water Waves • Orbits largest at sea sfc.
    [Show full text]