Soil Nail Walls Reference Manual

Total Page:16

File Type:pdf, Size:1020Kb

Soil Nail Walls Reference Manual U.S. Department of Transportation Publication No. FHWA-NHI-14-007 Federal Highway Administration FHWA GEC 007 February 2015 NHI Course No. 132085 Soil Nail Walls Reference Manual Developed following: AASHTO LRFD Bridge Design Specifications, 7th Edition. NOTICE The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers. Trade or manufacturers′ names appear herein only because they are considered essential to the objective of this document. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-NHI-14-007 4. Title and Subtitle 5. Report Date GEOTECHNICAL ENGINEERING CIRCULAR NO. 7 February 2015 SOIL NAIL WALLS - REFERENCE MANUAL 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Carlos A. Lazarte, PhD, PE, GE; Helen Robinson, PE; Jesús E. Gómez, PhD, PE; Andrew Baxter, PE, PG; Allen Cadden, PE*; Ryan Berg, PE† 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) †Ryan R. Berg & Associates, Inc., Woodbury, MN 55125 11. Contract or Grant No. DTFH61-13-T-70011 *Schnabel Engineering, Rockville, MD 20850 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered National Highway Institute U.S. Department of Transportation Federal Highway Administration, Washington, DC 20590 14. Sponsoring Agency Code 15. Supplementary Notes FHWA COTR: Heather Shelsta FHWA Technical Working Group Leader: Barry Siel, PE FHWA Technical Working Group: Silas Nichols, PE; Scott Anderson, PE; Khalid Mohamed, PE; Vernon Schaefer, PhD, PE; and Richard Barrows, PE 16. Abstract This document presents information on the analysis, design, and construction of permanent soil nail walls in highway applications. The main objective is to provide practitioners in this field with sound and simple methods and guidelines that will allow them to analyze, design, construct, and inspect safe and economical structures. This document updates the information contained in FHWA0-IF-03-017 (Lazarte et al. 2003). The focus is on soil nailing techniques that are commonly used in U.S. practice. The contents of this document include: an introduction; chapters on applications and feasibility, construction materials and methods, information required for design, analysis and design of soil nail walls, corrosion protection; and chapters on contracting approach, technical specifications and design examples. This manual introduces a framework for the design of soil nail walls that takes into account factors of safety used in the ASD method while integrating LRFD principles. 17. Key Word 18. Distribution Statement Soil nail, soil nail wall design, LRFD, ASD, earth- retaining structures, construction, soil nail load No restrictions. test, facing, shotcrete, specifications. 19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 425 Form DOT F 1700.7 Reproduction of completed page authorized CONVERSION FACTORS Approximate Conversions to SI Units Approximate Conversions from SI Units When You Know Multiply By To Find When You Know Multiply By To Find (a) Length inch (in.) 25.4 millimeter (mm) millimeter (mm) 0.039 inch (in.) foot (ft) 0.305 meter (m) meter (m) 3.28 foot (ft) yard (yd) 0.914 meter (m) meter (m) 1.09 yard (yd) mile (mi) 1.61 kilometer (km) kilometer (km) 0.621 mile (mi) (b) Area square inches (in2) 645.2 square millimeters (mm2) square millimeters (mm2) 0.0016 square inches (in2) square feet (ft2) 0.093 square meters (m2) square meters (m2) 10.764 square feet (ft2) Acres (ac) 0.405 hectares (ha) hectares (ha) 2.47 Acres (ac) square miles (mi2) 2.59 square kilometers (km2) square kilometers (km2) 0.386 square miles (mi2) square inches (in2) 645.2 square millimeters (mm2) square millimeters (mm2) 0.0016 square inches (in2) (c) Volume fluid ounces (oz) 29.57 milliliters (mL) milliliters (mL) 0.034 fluid ounces (oz) Gallons (gal) 3.785 liters (L) liters (L) 0.264 Gallons (gal) cubic feet (ft3) 0.028 cubic meters (m3) cubic meters (m3) 35.32 cubic feet (ft3) cubic yards (yd3) 0.765 cubic meters (m3) cubic meters (m3) 1.308 cubic yards (yd3) (d) Mass ounces (oz) 28.35 grams (g) grams (g) 0.035 ounces pounds (lb) 0.454 kilograms (kg) kilograms (kg) 2.205 pounds short tons (2000 lb) (T) 0.907 megagrams (tonne) (Mg) megagrams (tonne) (Mg) 1.102 short tons (2000 lb) (e) Force pound (lb) 4.448 Newton (N) Newton (N) 0.2248 pound (lb) (f) Pressure, Stress, Modulus of Elasticity pounds per square foot (psf) 47.88 Pascals (Pa) Pascals (Pa) 0.021 pounds per square foot (psf) pounds per square inch (psi) 6.895 kiloPascals (kPa) kiloPascals (kPa) 0.145 pounds per square inch (psi) (g) Density kilograms per cubic meter kilograms per cubic meter pounds per cubic foot (pcf) 16.019 0.0624 pounds per cubic feet (pcf) (kgm3) (kgm3) (h) Temperature Fahrenheit temperature (oF) 5/9(oF- 32) Celsius temperature (oC) Celsius temperature (oC) 9/5(oC)+ 32 Fahrenheit temperature (oF) Notes: 1) The primary metric (SI) units used in civil engineering are meter (m), kilogram (kg), second (s), Newton (N), and Pascal (Pa=N/m2). 2) In a "soft" conversion, an English measurement is mathematically converted to its exact metric equivalent. 3) In a "hard" conversion, a new rounded metric number is created that is convenient to work with and remember. PREFACE The purpose of this manual is to provide updated, state-of-the-practice information for selecting, designing, and constructing soil nail walls for roadway projects. The information contained herein is aimed at producing safe and cost-effective designs, and to help owners identify and manage the risks associated with soil nail wall projects. This manual focuses solely on soil nail systems for long-term support of excavations and does not specifically address the use of soil nails as temporary structures. This GEC serves as the FHWA reference document for highway projects involving permanent soil nail walls. Recent advances in the state-of-the-practice for this system addressed in the document include: • The implementation of the Load and Resistance Factor Design (LRFD) platform. • Information on new or emerging soil nailing technologies. • The inclusion of design examples based upon the SNAP-2 computer program. The primary audience for this document is: agency and consulting engineers specialized in bridge, structural, geotechnical, and roadway design; and engineering geologists and consulting engineers providing technical reviews, or who are engaged in the design, procurement, and construction of permanent soil nail systems. This document is also intended for management, specification and contracting specialists, as well as for construction engineers interested in design and contracting aspects of soil nail systems. In this document, the term “soil nail” refers to inclusions in soils and soft and weathered rock. The term “soil nail” is used in this document regardless of the material supported by the soil nail wall. Although this manual is focused on solid bar soil nails, Chapter 10 presents necessary considerations for the design and construction of Hollow Bar Soil Nails (HBSNs). This document draws descriptions and basic information from earlier FHWA publications in this field; in particular, the predecessor manual entitled “Soil Nail Walls,” Report FHWA0-IF-03-017 (Lazarte et al. 2003). Valuable information was also obtained from the publication entitled “Hollow Bar Soil Nails Pullout Test Program,” Publication No. FHWA-CFL/TD-10-001 (Cadden et al. 2003). ACKNOWLEDGEMENTS The authors would like to acknowledge the support provided by the FHWA Technical Working Group for this project. The authors would also like to thank those practitioners who reviewed and contributed to this document including: • James G. Collin, PhD, PE, The Collin Group, Ltd. • Terence P. Holman, PhD, PE, Geosyntec Consultants • Paul J. Sabatini, PhD, PE, Geosyntec Consultants Thanks also go to: Thomas Bird, Williams Form Engineering Corp.; Denis Ambio and Dan MacLean, Con-Tech Systems, Ltd.; John Delphia, PE, Texas DOT; and Kenneth Fishman, PhD, PE, Earth Reinforcement Testing, Inc., for their data, commentary and/or photograph contributions. The authors thank the following organizations and their representatives for providing valuable information and review of the manual: • International Association of Foundation Drilling (ADSC-IAFD) – Anchored Earth Retention Committee, Thomas Richards, PE, Nicholson • Deep Foundations Institute (DFI) – Tiebacks and Soil Nailing Committee, Chair: Edward Laczynski, PE, G.A. & F.C. Wagman, Inc. • AASHTO – T-15 Committee • ASCE – Earth Retaining Structure Committee • TRB – Foundations Committee The authors would also like to extend their gratitude for the support provided by Schnabel Engineering personnel, including: Helen Foreman; Miranda Dibert; Sixto Fernandez, PE; Phil Shull, PE; Johanna Mikitka Simon, PE; Eric Rehwoldt, PE; Timothy Hastings, EIT; Naveen Thakur, PE; Carlos Englert, PE; and Carol Butler for their assistance with review, analysis, AutoCAD, proofreading, word processing, compiling and 508 compliance. Table of Contents Cover Notice Page Technical Report Documentation Page Conversion Factors Preface Acknowledgements Table of Contents
Recommended publications
  • GEOTEXTILE TUBE and GABION ARMOURED SEAWALL for COASTAL PROTECTION an ALTERNATIVE by S Sherlin Prem Nishold1, Ranganathan Sundaravadivelu 2*, Nilanjan Saha3
    PIANC-World Congress Panama City, Panama 2018 GEOTEXTILE TUBE AND GABION ARMOURED SEAWALL FOR COASTAL PROTECTION AN ALTERNATIVE by S Sherlin Prem Nishold1, Ranganathan Sundaravadivelu 2*, Nilanjan Saha3 ABSTRACT The present study deals with a site-specific innovative solution executed in the northeast coastline of Odisha in India. The retarded embankment which had been maintained yearly by traditional means of ‘bullah piling’ and sandbags, proved ineffective and got washed away for a stretch of 350 meters in 2011. About the site condition, it is required to design an efficient coastal protection system prevailing to a low soil bearing capacity and continuously exposed to tides and waves. The erosion of existing embankment at Pentha ( Odisha ) has necessitated the construction of a retarded embankment. Conventional hard engineered materials for coastal protection are more expensive since they are not readily available near to the site. Moreover, they have not been found suitable for prevailing in in-situ marine environment and soil condition. Geosynthetics are innovative solutions for coastal erosion and protection are cheap, quickly installable when compared to other materials and methods. Therefore, a geotextile tube seawall was designed and built for a length of 505 m as soft coastal protection structure. A scaled model (1:10) study of geotextile tube configurations with and without gabion box structure is examined for the better understanding of hydrodynamic characteristics for such configurations. The scaled model in the mentioned configuration was constructed using woven geotextile fabric as geo tubes. The gabion box was made up of eco-friendly polypropylene tar-coated rope and consists of small rubble stones which increase the porosity when compared to the conventional monolithic rubble mound.
    [Show full text]
  • Mechanically Stabilized Embankments
    Part 8 MECHANICALLY STABILIZED EMBANKMENTS First Reinforced Earth wall in USA -1969 Mechanically Stabilized Embankments (MSEs) utilize tensile reinforcement in many different forms: from galvanized metal strips or ribbons, to HDPE geotextile mats, like that shown above. This reinforcement increases the shear strength and bearing capacity of the backfill. Reinforced Earth wall on US 50 Geotextiles can be layered in compacted fill embankments to engender additional shear strength. Face wrapping allows slopes steeper than 1:1 to be constructed with relative ease A variety of facing elements may be used with MSEs. The above photo illustrates the use of hay bales while that at left uses galvanized welded wire mesh HDPE geotextiles can be used as wrapping elements, as shown at left above, or attached to conventional gravity retention elements, such as rock-filled gabion baskets, sketched at right. Welded wire mesh walls are constructed using the same design methodology for MSE structures, but use galvanized wire mesh as the geotextile 45 degree embankment slope along San Pedro Boulevard in San Rafael, CA Geotextile soil reinforcement allows almost unlimited latitude in designing earth support systems with minimal corridor disturbance and right-of-way impact MSEs also allow roads to be constructed in steep terrain with a minimal corridor of disturbance as compared to using conventional 2:1 cut and fill slopes • Geotextile grids can be combined with low strength soils to engender additional shear strength; greatly enhancing repair options when space is tight Geotextile tensile soil reinforcement can also be applied to landslide repairs, allowing selective reinforcement of limited zones, as sketch below left • Short strips, or “false layers” of geotextiles can be incorporated between reinforcement layers of mechanically stabilized embankments (MSE) to restrict slope raveling and erosion • Section through a MSE embankment with a 1:1 (45 degree) finish face inclination.
    [Show full text]
  • Deep Subsoil Stabilization Pressure Grouting
    TECHNICAL SPECIAL PROVISIONS FOR Deep Soil Stabilization Pressure Grouting Project Name Project Number Notice: The official record of this document is the electronic file signed and sealed under Rule 61G15-23.003 F.A.C Prepared By: Name , P.E. Date: Date Pages 1 through 5 1 of 5 SECTION T173 DEEP SUBSOIL STABILIZATION PRESSURE GROUTING T173-1 Description The following Technical Special Provisions are for stabilization and improvement of deep subsoil conditions. The work consists of furnishing all labor, equipment and materials required to inject cementitious grout to an approximate elevation of -210 ft NAVD from a work platform surface (+90 ft NAVD). The stabilization program is intended to minimize the potential for future ground subsidence. T173-2 Scope The scope of the stabilization program includes vertical grout injections. If directed by the Engineer, some injection locations may be deleted and/or alternate locations may be added to the program. The Contractor shall stake out the primary grout injection locations as shown on the plans. The Contractor shall stake out the primary grout injection locations as shown on the plans. The Engineer will establish the secondary grout injection locations in the field. T173-3 Contractor The pressure grouting contractor shall submit his qualifications to the Engineer for approval. The contractor shall have at least five years of experience in deep cement pressure grouting project and shall submit references of such activities. T173-4 Grout Mixture T173-4-1 General: The materials used in this work shall conform to the requirements of the FDOT Standard Specifications except that for sinkhole grouting materials only, Sections 346 and 347 shall not apply.
    [Show full text]
  • Post Grouting Drilled Shaft Tips Phase I
    Post Grouting Drilled Shaft Tips Phase I Principal Investigator: Gray Mullins Graduate Students: S. Dapp, E. Frederick, V. Wagner Department of Civil and Environmental Engineering December 2001 DISCLAIMER The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation. ii CONVERSION FACTORS, US CUSTOMARY TO METRIC UNITS Multiply by to obtain inch 25.4 mm foot 0.3048 meter square inches 645 square mm cubic yard 0.765 cubic meter pound (lb) 4.448 Newtons kip (1000 lb) 4.448 kiloNewton (kN) Newton 0.2248 pound kip/ft 14.59 kN/meter pound/in2 0.0069 MPa kip/in2 6.895 MPa MPa 0.145 ksi kip-ft 1.356 kN-m kip-in 0.113 kN-m kN-m .7375 kip-ft iii PREFACE The investigation reported was funded by a contract awarded to the University of South Florida, Tampa by the Florida Department of Transportation. Mr. Peter Lai was the Project Manager. It is a pleasure to acknowledge his contribution to this study. The full-scale tests required by this study were carried out in part at Coastal Caisson’s Clearwater location. We are indebted to Mr. Bud Khouri, Mr Richard Walsh, and staff for providing this site and also for making available lifting, moving, and excavating equipment that was essential for this study. We thank Mr. Ron Broderick, Earth Tech, Tampa for donating his time, equipment and grout materials necessary for grouting shafts at Site I and II. We are indebted to Mr.
    [Show full text]
  • Minimizing Grout Shading
    TB20 MINIMIZING GROUT SHADING CAUSES w Mix grout thoroughly by hand or with a low RPM (300 rpm) Inconsistent grout color is a condition where colored grout dries power mixer. to its expected color in some areas, a darker color in some areas w Always mix the grout powder into the liquid. and varying shades in-between. The main cause for this variation w Mix grout to a stiff, creamy, paste-like consistency. in color is uneven drying of the Portland cement in the grout. w Allow grout to rest (slake) once mixed, then remix. There are jobsite conditions and factors which create the conditions for uneven drying and improper cement hydration. w Discard grout when it becomes too stiff to work. Inconsistent grout color is not considered a manufacturing defect w Use the same procedure to grout all areas. due to the inconsistent nature of Portland cement. Portland w Use a rubber grout float to remove grout from tile during cement is a natural product, mined from the ground, with inherent installation. properties which cannot be completely controlled. w Allow grout to firm in the joint before any further cleaning is to Colored grouts, like concrete, are a combination of Portland be done. Porcelain tile will require more time. Grout is firm cement and an inert aggregate. It is not uncommon for concrete when it can only slightly be indented when pressed hard with driveways, or sidewalks to show discoloration and inconsistent your fingernail. color. Like colored grout, this is mainly due to the uneven drying w Use as little water as possible for clean-up.
    [Show full text]
  • Linktm Gabions and Mattresses Design Booklet
    LinkTM Gabions and Mattresses Design Booklet www.globalsynthetics.com.au Australian Company - Global Expertise Contents 1. Introduction to Link Gabions and Mattresses ................................................... 1 1.1 Brief history ...............................................................................................................................1 1.2 Applications ..............................................................................................................................1 1.3 Features of woven mesh Link Gabion and Mattress structures ...............................................2 1.4 Product characteristics of Link Gabions and Mattresses .........................................................2 2. Link Gabions and Mattresses .............................................................................. 4 2.1 Types of Link Gabions and Mattresses .....................................................................................4 2.2 General specification for Link Gabions, Link Mattresses and Link netting...............................4 2.3 Standard sizes of Link Gabions, Mattresses and Netting ........................................................6 2.4 Durability of Link Gabions, Link Mattresses and Link Netting ..................................................7 2.5 Geotextile filter specification ....................................................................................................7 2.6 Rock infill specification .............................................................................................................8
    [Show full text]
  • Assessment of Pavement Foundation Stiffness Using Cyclic Plate Load Test
    Assessment of Pavement Foundation Stiffness using Cyclic Plate Load Test Mark H. Wayne & Jayhyun Kwon Tensar International Corporation, Alpharetta, U.S.A. David J. White R.L. Handy Associate Professor of Civil Engineering, Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa ABSTRACT: The quality of the pavement foundation layer is critical in performance and sustainability of the pavement. Over the years, various soil modification or stabilization methods were developed to achieve sufficient bearing performance of soft subgrade. Geogrid, through its openings, confine aggre- gates and forms a stabilized composite layer of aggregate fill and geogrid. This mechanically stabilized layer is used to provide a stable foundation layer for roadways. Traditional density-based QC plans and associated QA test methods such as nuclear density gauge are limited in their ability to assess stiffness of stabilized composite layers. In North America, non-destructive testing methods, such as falling weight de- flectometer (FWD) and light weight deflectometer (LWD) are used as stiffness- or strength-based QA test methods. In Germany and some other European countries, a static strain modulus (Ev2) is more commonly used to verify bearing performance of paving layers. Ev2 is a modulus measured on second load stage of the static plate load test. In general, modulus determined from first load cycle is not reliable because there is too much re-arrangement of the gravel particles. However, a small number of load cycles may not be sufficiently dependable or reliable to be used as a design parameter. Experiments were conducted to study the influence of load cycles in bearing performance.
    [Show full text]
  • Ways to Get out of Sales Slump
    ! 25 Ways to Get Out of a Sales Slump Compliments of Clarke, Inc. www.bebetterdomore.com " ! ! ! ! ! Hey There! Thanks for downloading! ! There are no strings a5ached, no catch, and no hidden agenda in this eBook. If you like the <ps, feel free to share them. And if you don’t like them, well, we will try to do be5er next <me. ! RespecDully, The Gang at Clarke, Inc. G G G G G ! ! We recently par<cipated in a Sales Playbook LinkedIn group discussion regarding sales slumps. Specifically, how do you get out of a dismal sales spin? Well, the number and quality of responses were nothing short of amazing. We have dis<lled the best responses and given a5ribu<on to the authors. There is a lot of informa/on and ideas in this eBook. But, do not miss reading the final two sugges/ons. If a par<cular author’s idea stands out and you would like to connect with him or her give us a call. We want to be a “maven” and make the connec<on for you. ! 25 WAYS TO GET OUT OF A SALES SLUMP ! Jose Mario D. Experienced Fire and Security Systems Designer Many <mes a salesman is having a bad <me, or is in need of closing a sale, or is financially in a bad situa<on, they tend to show it off and this scares customers. You need to be confident of your product and services and once you believe in them, you will pass this confidence to your customer. Innovate, look !what your compe<<on is doing Sharon S.
    [Show full text]
  • An Experimental Study of a Nailed Soil Slope: Effects of Surcharge Loading and Nails Characteristics
    applied sciences Article An Experimental Study of a Nailed Soil Slope: Effects of Surcharge Loading and Nails Characteristics Mahmoud H. Mohamed 1 , Mohd Ahmed 1,*, Javed Mallick 1 and Pham V. Hoa 2 1 Civil Engineeg Department, College of Engineering, K. K. University, Abha 61421, Saudi Arabia; [email protected] (M.H.M.); [email protected] (J.M.) 2 Ho Chi Minh City Institute, Vietnam Academy of Science and Technology, Ho Chi Minh City 008428, Vietnam; [email protected] * Correspondence: [email protected]; Tel.: +966-172-418-439 Abstract: The earth nailing system is a ground improvement technique used to stabilize earth slopes. The behavior of the earth nailing system is dependent on soil and nailing characteristics, such as the spacing between nails, the orientation, length, and method of installation of nails, soil properties, slope height and angle, and surcharge loading, among others. In the present study, a three-dimensional physical model was built to simulate a soil nailed slope with a model scale of 1:10 with various soil nail characteristics. The simulated models consist of Perspex strips as facing and steel bars as a reinforcing system to stabilize the soil slope. Sand beds in the model were formed, using a sand raining system. The performance of nailed soil slope models under three important nails characteristics, i.e., length, spacing and orientation, with varying surcharge loading were studied. It was observed that there is a reduction in the lateral movement of slope and footing settlements with an increase in length. It was found that the slope face horizontal pressure is non-linear with different nail characteristics.
    [Show full text]
  • Mechanically Stabilized Earth Wall Abutments for Bridge Support
    JOINT TRANSPORTATION RESEARCH PROGRAM FHWA/IN/JTRP-2006/38 Final Report MECHANICALLY STABILIZED EARTH WALL ABUTMENTS FOR BRIDGE SUPPORT Ioannis Zevgolis Philippe Bourdeau April 2007 TECHNICAL Summary Technology Transfer and Project Implementation Information INDOT Research TRB Subject Code: 62-6 Soil Compaction and Stabilization April 2007 Publication No.FHWA/IN/JTRP-2006/38, SPR-2855 Final Report Mechanically Stabilized Earth Wall Abutments for Bridge Support Introduction Using MSE structures as direct bridge abutments objective of this study was to investigate on the would be a significant simplification in the design possible use of MSE bridge abutments as direct and construction of current bridge abutment support of bridges on Indiana highways and to systems and would lead to faster construction of lead to drafting guidelines for INDOT engineers highway bridge infrastructures. Additionally, it to decide in which cases such a solution would be would result in construction cost savings due to applicable. The study was composed of two major elimination of deep foundations. This solution parts. First, analysis was performed based on would also contribute to better compatibility of conventional methods of design in order to assess deformation between the components of bridge the performance of MSE bridge abutments with abutment systems, thus minimize the effects of respect to external and internal stability. differential settlements and the undesirable “bump” Consequently, based on the obtained results, finite at bridge / embankment transitions. Cost savings in element analysis was performed in order to maintenance and retrofitting would also result. The investigate deformation issues. Findings MSE walls have been successfully used walls compared to conventional reinforced as direct bridge abutments for more than thirty concrete walls is their ability to withstand years.
    [Show full text]
  • Guidelines for Analyzing Mitigating Liquefaction in California
    RECOMMENDED PROCEDURES FOR IMPLEMENTATION OF DMG SPECIAL PUBLICATION 117 GUIDELINES FOR ANALYZING AND MITIGATING LIQUEFACTION IN CALIFORNIA Organized through the S C C Southern California Earthquake Center S EE University of Southern California RECOMMENDED PROCEDURES FOR IMPLEMENTATION OF DMG SPECIAL PUBLICATION 117 GUIDELINES FOR ANALYZING AND MITIGATING LIQUEFACTION HAZARDS IN CALIFORNIA Implementation Committee: G.R. Martin and M. Lew Co-chairs and Editors K. Arulmoli, J.I. Baez, T.F. Blake, J. Earnest, F. Gharib, J. Goldhammer, D. Hsu, S. Kupferman, J. O’Tousa, C.R. Real, W. Reeder, E. Simantob, and T.L. Youd Committee Members March 1999 Organized through the S C C Southern California Earthquake Center S EE University of Southern California Recommended Procedures for Implementation of DMG Special Publication 117 Guidelines for Analyzing and Mitigating Liquefaction Hazards in California This document was funded by the Southern California Earthquake Center. SCEC is funded by NSF Cooperative Agreement EAR-8920136 and USGS Cooperative Agreements 14-08-0001- A0899 and 1434-HQ-97AG01718. The SCEC contribution number for this paper is 462. Cover page photograph of L.A. County Juvenile Hall, Sylmar, California damaged by liquefaction during the San Fernando earthquake of February 9, 1971, was provided by Jack Meehan, Structural Engineer. Title page photograph of Marine Research Facility at Moss Landing, California, damaged by liquefaction during the Loma Prieta earthquake of October 17, 1989, was provided by Prof. T. L. Youd of Brigham Young University. The publication costs of this report were supported by the Larwin Company, Lennar Communities, and the Newhall Land and Farming Company. ii Recommended Procedures for Implementation of DMG Special Publication 117 Guidelines for Analyzing and Mitigating Liquefaction Hazards in California TABLE OF CONTENTS TABLE OF CONTENTS....................................................................................................................
    [Show full text]
  • A Masonry Wall and Slide Repair Using Soil Nails and Rock Dowels Drew Gelfenbein, Christopher Benda, PE and Peter Ingraham, PE 1.0 Background
    A Masonry Wall and Slide Repair Using Soil Nails and Rock Dowels Drew Gelfenbein, Christopher Benda, PE and Peter Ingraham, PE 1.0 Background In the middle of August 2003, Vermont experienced several days of very heavy rains which precipitated a slide failure on Vermont Route 73 in Forest Dale at approximately mile marker 6.36. A blocked culvert on the south side of VT 73 caused an overflow of water across the road surface and over an asphalt and wood curb down an embankment. This resulted in a significant amount of erosion, undermining of the road surface (Figure 1) and a washout of a timber cribbing retaining structure Figure 1: Undermining of north side of VT 73 located on the top of a mortared masonry wall (Figure 2). in Forest Dale. In the project area, VT 73 is constructed on a retained embankment in steep terrain formed in sub-vertically dipping schistose meta-greywacke. The embankment along a valley sidewall was originally built by constructing masonry retaining structures to span between a series of rock knobs. Soils mantling the rock in the valley consist of dense glacial till. The natural terrain was incised by the Neshobe River, which occupies the valley floor approximately 80 feet below and 100 feet north of the project retaining walls. After site visits by Vermont Agency of Transportation (VTrans) staff, it was decided that the laid up masonry wall immediately west of the slide area was also in desperate need of repair. The laid up masonry wall (Figure 3) was observed to have broken and missing blocks.
    [Show full text]