New Approach in the Application of Conjugated Polymers: the Light-Activated Source of Versatile Singlet Oxygen Molecule
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transparent Photochemistry: Infrared Photosensitizers and Singlet Oxygen Microscopy
Transparent Photochemistry: Infrared photosensitizers and singlet oxygen microscopy Elsa Fernanda Freitas da Silva Tese orientada por: Luís Guilherme da Silva Arnaut Moreira e Peter Remsen Ogilby Universidade de Coimbra Tese de Doutoramento em Química, especialidade Fotoquímica apresentada ao Departamento de Química da Faculdade de Ciências e tecnologia da Universidade de Coimbra. Coimbra, Julho de 2013 Acknowledgements This dissertation is the result of joint efforts, collaborations and help by many people. I want to express my appreciation to my supervisor, Professor Luis G. Arnaut, for his guidance, support and availability. His enthusiasm with science and motivation are an example to me. It has been a great pleasure to work in his group. To my group of colleagues in Coimbra: Rui Nunes, Gonçalo Sá, Ligia Silva, Hélder Tão, I want to thank you all for the support and fellowship. Specially, I want to thank Carlos Serpa for his availability to help and assistance me with the laser systems and, Fábio Schaberle for his assistance with photoacoustic calorimetry experiments and for been actively interested on my work providing me with great comments that were valued greatly. My special thanks to Professor Peter R. Ogilby for accepting to be my co-supervisor and give me the opportunity to work with different techniques in his laboratory in the University of Aarhus in Denmark. Peter valuable suggestions have greatly improved my scientific work. I have had a great time working in COMIs group. I want to thank all COMI group members whom I have encountered during my stay, for their great support and welcoming. Brian Wett for walking me through the laboratory on my first times. -
States of Oxygen Liquid and Singlet Oxygen Photodynamic Therapy
Oxygen States of Oxygen As far as allotropes go, oxygen as an element is fairly uninteresting, with ozone (O3, closed-shell and C2v symmetric like SO2) and O2 being the stable molecular forms. Most of our attention today will be devoted to the O2 molecule that is so critically connected with life on Earth. 2 2 2 4 2 O2 has the following valence electron configuration: (1σg) (1σu) (2σg) (1πu) (1πg) . It is be- cause of the presence of only two electrons in the two π* orbitals labelled 1πg that oxygen is paramagnetic with a triplet (the spin multiplicity \triplet" is given by 2S+1; here S, the total spin quantum number, is 0.5 + 0.5 = 1). There are six possible ways to arrange the two electrons in the two degenerate π* orbitals. These different ways of arranging the electrons in the open shell are called \microstates". Further, because there are six microstates, we can say that the total degeneracy of the electronic states 2 3 − arising from (1πg) configuration must be equal to six. The ground state of O2 is labeled Σg , the left superscript 3 indicating that this is a triplet state. It is singly degenerate orbitally and triply degenerate in terms of spin multiplicity; the total degeneracy (three for the ground state) is given by the spin times the orbital degeneracy. 1 The first excited state of O2 is labeled ∆g, and this has a spin degeneracy of one and an orbital degeneracy of two for a total degeneracy of two. This state corresponds to spin pairing of the electrons in the same π* orbital. -
Aromaticity Sem- Ii
AROMATICITY SEM- II In 1931, German chemist and physicist Sir Erich Hückel proposed a theory to help determine if a planar ring molecule would have aromatic properties .This is a very popular and useful rule to identify aromaticity in monocyclic conjugated compound. According to which a planar monocyclic conjugated system having ( 4n +2) delocalised (where, n = 0, 1, 2, .....) electrons are known as aromatic compound . For example: Benzene, Naphthalene, Furan, Pyrrole etc. Criteria for Aromaticity 1) The molecule is cyclic (a ring of atoms) 2) The molecule is planar (all atoms in the molecule lie in the same plane) 3) The molecule is fully conjugated (p orbitals at every atom in the ring) 4) The molecule has 4n+2 π electrons (n=0 or any positive integer Why 4n+2π Electrons? According to Hückel's Molecular Orbital Theory, a compound is particularly stable if all of its bonding molecular orbitals are filled with paired electrons. - This is true of aromatic compounds, meaning they are quite stable. - With aromatic compounds, 2 electrons fill the lowest energy molecular orbital, and 4 electrons fill each subsequent energy level (the number of subsequent energy levels is denoted by n), leaving all bonding orbitals filled and no anti-bonding orbitals occupied. This gives a total of 4n+2π electrons. - As for example: Benzene has 6π electrons. Its first 2π electrons fill the lowest energy orbital, and it has 4π electrons remaining. These 4 fill in the orbitals of the succeeding energy level. The criteria for Antiaromaticity are as follows: 1) The molecule must be cyclic and completely conjugated 2) The molecule must be planar. -
Singlet Oxygen Production by Peptide-Coated Quantum Dot-Photosensitizer Conjugates James M
Published on Web 05/04/2007 Singlet Oxygen Production by Peptide-Coated Quantum Dot-Photosensitizer Conjugates James M. Tsay,†,|,§ Michael Trzoss,† Lixin Shi,⊥ Xiangxu Kong,†,| Matthias Selke,⊥ Michael E. Jung,† and Shimon Weiss*,†,‡,| Contribution from the Department of Chemistry and Biochemistry, Department of Physiology, and California NanoSystems Institute, UniVersity of California at Los Angeles, Los Angeles, California 90095, and Department of Chemistry, California State UniVersity, Los Angeles, Los Angeles, California 90032 Received January 31, 2007; E-mail: [email protected] Abstract: Peptide-coated quantum dot-photosensitizer conjugates were developed using novel covalent conjugation strategies on peptides which overcoat quantum dots (QDs). Rose bengal and chlorin e6, photosensitizers (PSs) that generate singlet oxygen in high yield, were covalently attached to phytochelatin- related peptides. The photosensitizer-peptide conjugates were subsequently used to overcoat green- and red-emitting CdSe/CdS/ZnS nanocrystals. Generation of singlet oxygen could be achieved via indirect excitation through Fo¨rster (fluorescence) resonance energy transfer (FRET) from the nanocrystals to PSs, or by direct excitation of the PSs. In the latter case, by using two color excitations, the conjugate could be simultaneously used for fluorescence imaging and singlet oxygen generation. Singlet oxygen quantum yields as high as 0.31 were achieved using 532-nm excitation wavelengths. 1. Introduction cancer, (3) have efficient energy transfer to O2, (4) be easily cleared from the body, (5) be resistant to aggregation, and (6) Photodynamic therapy (PDT) has emerged as a highly be photostable.1,3 Unfortunately, even the most successful PSs, 1,2 effective treatment for oncological diseases. It relies on the such as Photofrin, have major drawbacks: poor water solubility, effective localization of photosensitizers (PSs) into tumor tissues low selectivity, skin phototoxicity, and instability. -
The Photochemistry of Tetramethyl-3-Thio-1,3-Cyclobutanedione
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1972 The Photochemistry of tetramethyl-3-thio-1,3-cyclobutanedione Mason Ming-Sun Shen Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Shen, Mason Ming-Sun, "The Photochemistry of tetramethyl-3-thio-1,3-cyclobutanedione" (1972). Electronic Theses and Dissertations. 4833. https://openprairie.sdstate.edu/etd/4833 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. THE PHarOCHEMISTRY OF TETRAMETHYL-3-THIO-l,J-CYCLOBUTANEDIONE BY MASON MING-SUN SHEN A thesis submitted in partial fulfillment of the requirements for tne degree Master of Science, Major - in Chemistry, South Dakota State University 1972 SOUTH DAKOTA STATE UNIVERSITY LIBRAR fer -th:Ls -7 - - -- -07 - D;;;/:...; TO MY PARENTS PHOTOCHEMISTRY OF THE TETRAMETHYL-)-THI0-1,)-CYCLOBUTANEDIONE Abstract MASON MING-SUN SHEN Under the supervision of Professor James J. Worman photochemical reaction of tetramethyl-3-thio-i.l,3-cyclo The butanedione in the presence of oxygen and light yields tetramethyl-1, )-cyclobutanedione and sulfur dioxide. kinetics and mechanism of the reaction have been studied The thoroughly in different solvents and at different concentrations. Results this study indicate that the mechanism probably involves· of singlet oxygen and state thione although triplet thione and ground triplet xygen are not completely eliminated. -
Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics
International Journal of Molecular Sciences Review Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics Banendu Sunder Dash 1 , Suprava Das 1 and Jyh-Ping Chen 1,2,3,4,* 1 Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; [email protected] (B.S.D.); [email protected] (S.D.) 2 Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan 3 Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan 4 Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan * Correspondence: [email protected]; Tel.: +886-3-2118800 Abstract: Photosensitizers (PSs) have received significant attention recently in cancer treatment due to its theranostic capability for imaging and phototherapy. These PSs are highly responsive to light source of a suitable wavelength for image-guided cancer therapy from generated singlet oxygen and/or thermal heat. Various organic dye PSs show tremendous attenuation of tumor cells during cancer treatment. Among them, porphyrin and chlorophyll-based ultraviolet-visible (UV-Vis) dyes are employed for photodynamic therapy (PDT) by reactive oxygen species (ROS) and free radicals generated with 400–700 nm laser lights, which have poor tissue penetration depth. To enhance the efficacy of PDT, other light sources such as red light laser and X-ray have been suggested; nonetheless, it is still a challenging task to improve the light penetration depth for deep tumor treatment. -
AROMATIC COMPOUNDS Aromaticity
AROMATICITY AROMATIC COMPOUNDS Aromaticity Benzene - C6H6 H H H H H H H H H H H H Kekulé and the Structure of Benzene Kekule benzene: two forms are in rapid equilibrium 154 pm 134 pm • All bonds are 140 pm (intermediate between C-C and C=C) • C–C–C bond angles are 120° • Structure is planar, hexagonal A Resonance Picture of Bonding in Benzene resonance hybrid 6 -electron delocalized over 6 carbon atoms The Stability of Benzene Aromaticity: cyclic conjugated organic compounds such as benzene, exhibit special stability due to resonance delocalization of -electrons. Heats of hydrogenation + H2 + 120 KJ/mol + 2 H2 + 230 KJ/mol calc'd value= 240 KJ/mol 10 KJ/mol added stability + 3 H 2 + 208 KJ/mol calc'd value= 360 KJ/mol 152 KJ/mol added stability + 3 H2 + 337 KJ/mol 1,3,5-Hexatriene - conjugated but not cyclic Resonance energy of benzene is 129 - 152 KJ/mol An Orbital Hybridization View of Bonding in Benzene • Benzene is a planar, hexagonal cyclic hydrocarbon • The C–C–C bond angles are 120° = sp2 hybridized • Each carbon possesses an unhybridized p-orbital, which makes up the conjugated -system. • The six -electrons are delocalized through the -system The Molecular Orbitals of Benzene - the aromatic system of benzene consists of six p-orbitals (atomic orbitals). Benzene must have six molecular orbitals. Y6 Y4 Y5 six p-orbitals Y2 Y3 Y1 Degenerate orbitals: Y : zero nodes orbitals that have the 1 Bonding same energy Y2 and Y3: one node Y and Y : two nodes 4 5 Anti-bonding Y6: three node Substituted Derivatives of Benzene and Their Nomenclature -
Detergent-Induced Self-Assembly and Controllable Photosensitizer Activity of Diester Phenylene Ethynylenes
Detergent-induced self-assembly and controllable photosensitizer activity of diester phenylene ethynylenes Patrick L. Donabediana,b, Matthew N. Creyerc, Florencia A. Mongeb,d, Kirk S. Schanzee,1, Eva Y. Chib,f, and David G. Whittenb,f,2 aNanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131; bCenter for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131; cDepartment of Chemistry, University of Wisconsin–Madison, Madison, WI 53706; dBiomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131; eDepartment of Chemistry, University of Florida, Gainesville, FL 32611; and fDepartment of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131 Edited by Vivian Wing-Wah Yam, The University of Hong Kong, Hong Kong, China, and approved May 25, 2017 (received for review February 14, 2017) Photodynamic therapy, in which malignant tissue is killed by investigations of switchable photosensitizers by various groups targeted light exposure following administration of a photosen- have used a pH-activatable rubyrin derivative (13), a quencher- sitizer, can be a valuable treatment modality but currently relies tethered Si(IV) phthalocyanine (14) and pyropheophorbide (15), on passive transport and local irradiation to avoid off-target and various boron-dipyrromethene (BODIPY) dye-based scaf- oxidation. We present a system of excited-state control for truly folds (16–18). Solvent microenvironment has been used to se- local delivery of singlet oxygen. An anionic phenylene ethynylene lectively photooxidize protein (19) and cellular targets (17), but oligomer is initially quenched by water, producing minimal only using intramolecular FRET quenching or solvent polarity fluorescence and no measurable singlet oxygen generation. -
Bsc Chemistry
Subject Chemistry Paper No and Title Paper 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module No and Module 3: Hyper-Conjugation Title Module Tag CHE_P1_M3 CHEMISTRY PAPER No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module No. 3: Hyper-Conjugation TABLE OF CONTENT 1. Learning outcomes 2. Introduction 3. Hyperconjugation 4. Requirements for Hyperconjugation 5. Consequences and Applications of Hyperconjugation 6. Reverse Hyperconjugation 7. Summary CHEMISTRY PAPER No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Module No. 3: Hyper-Conjugation 1. Learning Outcomes After studying this module you shall be able to: Understand the concept of hyperconjugation. Know about the structural requirements in a molecule to show hyperconjugation. Learn about the important consequences and applications of hyperconjugation. Comprehend the concept of reverse hyperconjugation. 2. Introduction In conjugation, we have studied that the electrons move from one p orbital to other which are aligned in parallel planes. Is it possible for electron to jump from p orbital to sp3 orbital that are not parallelly aligned with one another? The answer is yes. This type of conjugation is not normal, it is extra-ordinary. Hence, the name hyper-conjugation. It is also know as no-bond resonance. Let us study more about it. 3. Hyperconjugation The normal electron releasing inductive effect (+I effect) of alkyl groups is in the following order: But it was observed by Baker and Nathan that in conjugated system, the attachment of alkyl groups reverse their capability of electron releasing. They suggested that alkyl groups are capable of releasing electrons by some process other than inductive. -
Sc-Homoaromaticity
This is a repository copy of Modern Valence-Bond Description of Homoaromaticity. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/106288/ Version: Accepted Version Article: Karadakov, Peter Borislavov orcid.org/0000-0002-2673-6804 and Cooper, David L. (2016) Modern Valence-Bond Description of Homoaromaticity. Journal of Physical Chemistry A. pp. 8769-8779. ISSN 1089-5639 https://doi.org/10.1021/acs.jpca.6b09426 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Modern Valence-Bond Description of Homoaromaticity Peter B. Karadakov; and David L. Cooper; Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K. Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K. Abstract Spin-coupled (SC) theory is used to obtain modern valence-bond (VB) descriptions of the electronic structures of local minimum and transition state geometries of three species that have been con- C sidered to exhibit homoconjugation and homoaromaticity: the homotropenylium ion, C8H9 , the C cycloheptatriene neutral ring, C7H8, and the 1,3-bishomotropenylium ion, C9H11. -
Organic–Inorganic Hybrid Nanosystems for Photodynamic Therapy
PhysBioSymp17 The 2nd International Symposium on KnE Energy & Physics Physics, Engineering and Technologies for Biomedicine Volume 2018 Conference Paper Organic–Inorganic Hybrid Nanosystems for Photodynamic Therapy Rakovich Yu.P.1,2 1Materials Physics Center, University of the Basque Country, IKERBASQUE, Donostia-San Sebastián, Spain 2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow, 115409, Russia Abstract The purpose of this study is to investigate the possibility of improving the efficiency of a photosensitizer utilizing colloidal semiconductor quantum dots as light-harvesting nanoantenna and reveal the mechanism of this enhancement. Keywords: quantum dots, photosensitizer, photodynamic therapy, FRET, charge transfer Corresponding Author: Rakovich Yu.P. [email protected] Received: 17 January 2018 1. Introduction Accepted: 25 March 2018 Published: 17 April 2018 Photodynamic (PD) therapy takes advantages of light absorption by light-sensitive Publishing services provided by photosensitizers and the generation of photochemical species such as singlet oxy- Knowledge E 1 gen ( O2) or other reactive oxygen species (ROS) linked to apoptosis or necrosis Rakovich Yu.P.. This article is of cancerous cells.[1] One of the necessary conditions for the efficient generation distributed under the terms of the Creative Commons of ROS is wavelength matching of excitation wavelength to optical absorption of a Attribution License, which photosensitizer.[2] permits unrestricted use and redistribution provided that the Upon last decades, there have been a lot of research activities directed toward original author and source are the development of PD complexes based on different nanomaterials which are able credited. to expand the excitation spectral region beyond the absorption of a photosensitizer Selection and Peer-review and to enhance the efficiency of ROS generation.[3] Among others, semiconductor under the responsibility of the quantum dots (QDs) are highly attractive for PD therapy applications. -
Conjugated Molecules
Conjugated Molecules - Conjugated molecules have alternating single and multiple (i.e. double or triple) bonds. Example 1: Nomenclature: 2,6-dimethylhepta-2,5-diene This molecule is not conjugated because it does not have alternating single and multiple bonds (the arrangement of the bonds starting from C2 is double, single, single and double). Between the two double bonds, there is a saturated center (C4) and two intersecting single bonds. Example 2: Nomenclature: 2,5-dimethylhexa-2,4-diene This molecule is conjugated because the arrangement of the bonds starting at C2 is double, single, and double. They are alternated. Example 3: Nomenclature: (2E)-hept-2-en-5-yne note: (2E) is a stereochemical identifier. The letter “E” indicates the arrangement of the double bond (where E usually refers to trans and Z refers to cis). The number “2” indicates the position of the double bond. This molecule is not conjugated because the single and multiple bonds are not alternated. Example 4: Nomenclature: (2Z)-hex-2-en-4-yne This molecule is conjugated because there is an alternation of multiple and single bonds (double, single, and triple starting from C2). More examples: note: the term conjugation refers to parts of the molecule. If you can find one conjugated system within the molecule, that molecule is said to be conjugated. Example: In this molecule, the double bond A is not conjugated. However, since double bond B is conjugated with double bond C, the molecule is said to be conjugated. Special Nomenclature: The Letter "S" stands for “single” and indicates that we are talking about the conjugated double bonds.