Scientific Rationale for Mobility in Planetary Environments

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Rationale for Mobility in Planetary Environments Scientific Rationale for Mobility in Planetary Environments Committee on Planetary and Lunar Exploration Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1999 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. William A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal govern- ment. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce Alberts and Dr. William A. Wulf are chairman and vice chairman, respectively, of the National Research Council. Support for this project was provided by Contract NASW 96013 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the organizations or agencies that provided support for this project. International Standard Book Number 0-309-06437-6 Copyright 1999 by the National Academy of Sciences. All rights reserved. COVER: An artist's impression of various forms of mobility that might be employed by future Mars exploration missions. Lander, rover, and balloon images courtesy of the Jet Propulsion Laboratory. Aircraft image courtesy of Malin Space Science Systems. Composite by Penny E. Margolskee. Copies of this report are available free of charge from: Space Studies Board National Research Council 2101 Constitution Avenue, NW Washington, DC 20418 Printed in the United States of America COMMITTEE ON PLANETARY AND LUNAR EXPLORATION RONALD GREELEY, Arizona State University, Chair FRANCES BAGENAL,* University of Colorado JEFFREY R. BARNES, Oregon State University RICHARD P. BINZEL, Massachusetts Institute of Technology WENDY CALVIN, U.S. Geological Survey RUSSELL DOOLITTLE, University of California, San Diego HEIDI HAMMEL, Massachusetts Institute of Technology LARRY HASKIN, Washington University BRUCE JAKOSKY, University of Colorado KENNETH JEZEK, Ohio State University GEORGE McGILL, University of Massachusetts HARRY McSWEEN, JR., University of Tennessee MICHAEL MENDILLO, Boston University TED ROUSH,* San Francisco State University JOHN RUMMEL,* Marine Biological Laboratory GERALD SCHUBERT, University of California, Los Angeles EVERETT SHOCK, Washington University EUGENE SHOEMAKER,* Lowell Observatory Staff DAVID H. SMITH, Study Director JACQUELINE ALLEN, Senior Program Assistant SHARON SEAWARD, Program Assistant ERIN HATCH, Research Associate STEPHANIE ROY, Research Assistant BRIDGET ZIEGELAAR, Research Assistant *Formermember. iii SPACE STUDIES BOARD CLAUDE R. CANIZARES, Massachusetts Institute of Technology, Chair MARK R. ABBOTT, Oregon State University FRANCES BAGENAL, University of Colorado, Boulder DANIEL N. BAKER, University of Colorado, Boulder LAWRENCE BOGORAD,* Harvard University DONALD E. BROWNLEE,* University of Washington ROBERT E. CLELAND, University of Washington GERALD ELVERUM, JR., TRW Space and Technology Group ANTHONY W. ENGLAND,* University of Michigan MARILYN L. FOGEL, Carnegie Institution of Washington RONALD GREELEY, Arizona State University BILL GREEN, former member, U.S. House of Representatives CHRISTIAN JOHANNSEN, Purdue University ANDREW H. KNOLL, Harvard University JONATHAN I. LUNINE, University of Arizona ROBERTA BALSTAD MILLER, CIESIN-Columbia University BERRIEN MOORE III,* University of New Hampshire GARY J. OLSEN, University of Illinois, Urbana MARY JANE OSBORN, University of Connecticut Health Center SIMON OSTRACH,* Case Western Reserve University MORTON B. PANISH,* AT&T Bell Laboratories (retired) CARLI_ M. PIETERS,* Brown University THOMAS A. PRINCE, California Institute of Technology PEDRO L. RUSTAN, JR., Ellipso Inc. JOHN A. SIMPSON,* Enrico Fermi Institute GEORGE L. SISCOE, Boston University EUGENE B. SKOLNIKOFF, Massachusetts Institute of Technology EDWARD M. STOLPER, California Institute of Technology NORMAN E. THAGARD, Florida State University ALAN M. TITLE, Lockheed Martin Advanced Technology Center RAYMOND VISKANTA, Purdue University PETER VOORHEES, Northwestern University ROBERT E. WILLIAMS,* Space Telescope Science Institute JOHN A. WOOD, Harvard-Smithsonian Center for Astrophysics MARC S. ALLEN, Director (until December 12, 1997) JOSEPH ALEXANDER, Director (as of February 17, 1998) *Formermember. iv COMMISSION ON PHYSICAL SCIENCES, MATHEMATICS, AND APPLICATIONS PETER M. BANKS, ERIM International Inc., Co-chair W. CARL LINEBERGER, University of Colorado, Co-chair WILLIAM BROWDER, Princeton University LAWRENCE D. BROWN, University of Pennsylvania MARSHALL H. COHEN, California Institute of Technology RONALD G. DOUGLAS, Texas A&M University JOHN E. ESTES, University of California, Santa Barbara JERRY P. GOLLUB, Haverford College MARTHA P. HAYNES, Cornell University JOHN L. HENNESSY, Stanford University CAROL M. JANTZEN, Westinghouse Savannah River Company PAUL KAMINSKI, Technovation Inc. KENNETH H. KELLER, University of Minnesota MARGARET G. KIVELSON, University of California, Los Angeles DANIEL KLEPPNER, Massachusetts Institute of Technology JOHN R. KREICK, Sanders, a Lockheed Martin Company MARSHA I. LESTER, University of Pennsylvania M. ELISABETH PATI_-CORNELL, Stanford University NICHOLAS P. SAMIOS, Brookhaven National Laboratory CHANG-LIN TIEN, University of California, Berkeley NORMAN METZGER, Executive Director Preface Planetary surfaces and atmospheres are complex, with physical and chemical properties that vary over a large range of spatial scales. To understand such variegated features we need multipoint measurements and/or mobile platforms. 1. For planetary atmospheres, scientific payloads carried by a fleet of balloons could enable synoptic mea- surements of chemical compositions and physical characteristics as functions of depth, latitude, and longitude. Measurements could be made for significantly longer times than those typical of entry probes. 2. For planets with solid surfaces, mobility is essential. The case is exemplified for Mars, where spacecraft mobility would enable major advances in understanding climate change and geologic history and in searching for direct evidence of past life. This would require landers that can reach identified targets and there analyze selected materials. 3. Given the extensive round-trip communication times involved in interplanetary exploration, a significant degree of autonomy may also be required. Power needs and communication rates will inevitably be major considerations, as will cost. Given the importance of mobility-related issues to the achievement of priority objectives in the planetary sciences, the Space Studies Board charged the Committee on Planetary and Lunar Exploration (COMPLEX) to review the science that can be uniquely addressed by mobility in exploring the atmospheres and surfaces of planetary bodies. In particular, COMPLEX was asked to address the following questions: • What are the practical methods for achieving mobility? • For surface missions, what are the associated needs for sample acquisition?
Recommended publications
  • The Planetary Report
    A Publication of THEPLANETA SOCIETY o o o • o -e o o Board of Directors CARL SAGAN NORMAN R. AUGUSTI NE President Chairman and CEO, Director, Martin Marietta Corporation Laboratory for Planetary Studies, Cornelf University JOHN E. BRYSON Chairman and CEO, BRUCE MURRAY Southern California Edison Vice President Professor of Planetary Science, JOSEPH RYAN California Institute of Technology O'Melveny & Myers LOU IS FRIEDMAN STEVEN SPI ELBERG A WARNING FROM YOUR EDITOR Bringing People Together Through Executive Director director and producer You may soon be getting a phone call Planetary Science-Page 13-Education Board of Advisors from me. No, I won't be asking you for has always been close to the hearts of DIANE ACKERMAN JOHN M. LOGSDON donations or nagging you about a missed Planetary Society members, and we have poet and author Director, Space Policy Institute, George Washington University deadline (a common fear among planetary sponsored many programs to promote sci­ BUZZ ALDRIN Apollo 11 astronaut HANS MARK scientists). Instead, I will be asking for ence education around the world. We've The University of Texas at Austin RICHARD BERENDZEN your opinion about The Planetary Report. gathered together reports on three projects educator and astrophysicist JAMES MICHENER author JACQUES BLAMONT Each month our computer will randomly now completed and one just beginning. Chief Scientist, Centre MARVIN MINSKY Nationa! d'Etudes Spatia/es, Toshiba Professor of Media Arts select several members whom I will call to A Planetary Readers' Service-Page 16- France and Sciences, Massachusetts Institute of Technology discuss the contents of our latest issue-or For most of its history, the science we call RAY BRADBURY poet and author PHILIP MORRISON any other topic related to our publications.
    [Show full text]
  • 2015 Summer Intern Poster Session and Abstract Proceedings
    2015 Summer Intern Poster Session and Abstract Proceedings NASA Goddard Space Flight Center 2015 Summer Intern Poster Session and Abstracts NASA Goddard Space Flight Center Greenbelt, MD, USA July 30, 2015 Director, Office of Education, Goddard Space Flight Center Dr. Robert Gabrys Deputy Director, Office of Education, Goddard Space Flight Center Dean A. Kern Acting Lead, Internships, Fellowships, and Scholarships, Goddard Space Flight Center Mablelene Burrell Prepared by USRA Republication of an article or portions thereof (e.g., extensive excerpts, figures, tables, etc.) in original form or in translation, as well as other types of reuse (e.g., in course packs) require formal permission from the Office of Education at NASA Goddard Space Flight Center. i Preface NASA Education internships provide unique NASA‐related research and operational experiences for high school, undergraduate, and graduate students. These internships immerse participants with career professionals emphasizing mentor‐directed, degree‐related, and real NASA‐mission work tasks. During the internship experience, participants engage in scientific or engineering research, technology development, and operations activities. As part of the internship enrichment activities offered by Goddard’s Office of Education, the Greenbelt Campus hosts its annual all‐intern Summer Poster Session. Here, interns from Business, Science, Computer Science, Information Technology, and Engineering and Functional Services domains showcase their completed work and research to the entire internal Goddard community and visiting guests. On July 30, 2015, more than 375 interns presented their work at Greenbelt while having the opportunity to receive feedback from scientists and engineers alike. It is this interaction with Center‐wide technical experts that contributes significantly to the interns’ professional development and represents a culminating highlight of their quality experience at NASA.
    [Show full text]
  • SPACE NEWS Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page BEF Mags INTERNATIONAL
    Contents | Zoom in | Zoom out For navigation instructions please click here Search Issue | Next Page SPACEAPRIL 19, 2010 NEWSAN IMAGINOVA CORP. NEWSPAPER INTERNATIONAL www.spacenews.com VOLUME 21 ISSUE 16 $4.95 ($7.50 Non-U.S.) PROFILE/22> GARY President’s Revised NASA Plan PAYTON Makes Room for Reworked Orion DEPUTY UNDERSECRETARY FOR SPACE PROGRAMS U.S. AIR FORCE AMY KLAMPER, COLORADO SPRINGS, Colo. .S. President Barack Obama’s revised space plan keeps Lockheed Martin working on a Ulifeboat version of a NASA crew capsule pre- INSIDE THIS ISSUE viously slated for cancellation, potentially positioning the craft to fly astronauts to the interna- tional space station and possibly beyond Earth orbit SATELLITE COMMUNICATIONS on technology demonstration jaunts the president envisions happening in the early 2020s. Firms Complain about Intelsat Practices Between pledging to choose a heavy-lift rocket Four companies that purchase satellite capacity from Intelsat are accusing the large fleet design by 2015 and directing NASA and Denver- operator of anti-competitive practices. See story, page 5 based Lockheed Martin Space Systems to produce a stripped-down version of the Orion crew capsule that would launch unmanned to the space station by Report Spotlights Closed Markets around 2013 to carry astronauts home in an emer- The office of the U.S. Trade Representative has singled out China, India and Mexico for not meet- gency, the White House hopes to address some of the ing commitments to open their domestic satellite services markets. See story, page 13 chief complaints about the plan it unveiled in Feb- ruary to abandon Orion along with the rest of NASA’s Moon-bound Constellation program.
    [Show full text]
  • ,.II Launch in Late 2001 Pasadena, California Vol
    c SIRTF gets 0 - - - go-ahead Design, development phase now under way; .._,.II launch in late 2001 Pasadena, California Vol. 28, No. 7 April 3, 1998 By MARY BETH MURRILL NASA Administrator Dan Goldin last week authorized the start of work on the IPL-man­ aged Space Infrared Telescope Facility MGS will target imaging areas (SIRTF), an advanced orbiting observatory that will give astronomers unprecedented views of phenomena in the universe that are invisible to Attempts will include other types of telescopes. The authorization signals the start of the design and development phase of the SIRTF Pathfinder and project. Scheduled for launch in December 2001 on a Delta7920-H rocket from Cape Viking landing sites, Canaveral, Fla., SIRTF represents the culmina­ tion of more than a decade of planning and Cydonia region design to develop an infrared space telescope with high sensitivity, low cost and long lifetime. "The Space Infrared Telescope Facility will do By DIANE AINSWORTH for infrared astronomy what the Hubble Space Telescope has done in its unveiling of the visible JPL's Mars Global Surveyor project has universe, and it will do it faster, better and cheaper resumed scientific observations of the surface than its predecessors," said Dr. Wesley Huntress, of Mars and has scheduled opportunities to NASA's associate administrator for space science. image four selected sites: the Viking l and 2 "By sensing the heat given off by objects in landing sites, the Mars Pathfinder landing site space, this new observatory will see behind the and the Cydonia region. cosmic curtains of dust particles that obscure Three opportunities to image each of the Target areas for Mars Global Surveyor imaging include the landing sites of Pathfinder (near much of the visible universe," Huntress said.
    [Show full text]
  • Bias-Corrected Population, Size Distribution, and Impact Hazard for the Near-Earth Objects ✩
    Icarus 170 (2004) 295–311 www.elsevier.com/locate/icarus Bias-corrected population, size distribution, and impact hazard for the near-Earth objects ✩ Joseph Scott Stuart a,∗, Richard P. Binzel b a MIT Lincoln Laboratory, S4-267, 244 Wood Street, Lexington, MA 02420-9108, USA b MIT EAPS, 54-426, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Received 20 November 2003; revised 2 March 2004 Available online 11 June 2004 Abstract Utilizing the largest available data sets for the observed taxonomic (Binzel et al., 2004, Icarus 170, 259–294) and albedo (Delbo et al., 2003, Icarus 166, 116–130) distributions of the near-Earth object population, we model the bias-corrected population. Diameter-limited fractional abundances of the taxonomic complexes are A-0.2%; C-10%, D-17%, O-0.5%, Q-14%, R-0.1%, S-22%, U-0.4%, V-1%, X-34%. In a diameter-limited sample, ∼ 30% of the NEO population has jovian Tisserand parameter less than 3, where the D-types and X-types dominate. The large contribution from the X-types is surprising and highlights the need to better understand this group with more albedo measurements. Combining the C, D, and X complexes into a “dark” group and the others into a “bright” group yields a debiased dark- to-bright ratio of ∼ 1.6. Overall, the bias-corrected mean albedo for the NEO population is 0.14 ± 0.02, for which an H magnitude of 17.8 ± 0.1 translates to a diameter of 1 km, in close agreement with Morbidelli et al. (2002, Icarus 158 (2), 329–342).
    [Show full text]
  • Nasa Advisory Council
    National Aeronautics and Space Administration Washington, DC NASA ADVISORY COUNCIL February 18~19, 2010 NASA Headquarters Washington, DC MEETING MINUTES ~~7(~ P. Diane Rausch Kenneth M. Ford Executive Director Chair NASA Advisory Council February 18-19. 2010 NASA ADVISORY COUNCIL NASA Headquarters Washington, DC February 18-19, 2010 Meeting Report TABLE OF CONTENTS Announcements and Opening Remarks 2 NASA Administrator Remarks 2 The President's FY 2011 Budget Request for NASA 4 NASA Exploration Update 6 Aeronautics Committee Report 8 Audit, Finance & Analysis Committee Report 9 Commercial Space Committee Report II Education & Public Outreach Committee Report II Non-Traditional International Partnerships 12 IT Infrastructure Committee Report 13 Science Committee Report 14 Space Operations Committee Report 17 Technology & Innovation Committee Report 18 Council Roundtable Discussion 19 Appendix A Agenda AppendixB Council Membership AppendixC Meeting Attendees AppendixD List of Presentation Material Meeting Report Prepared By: David J. Frankel 1 NASA Advisory Council February 18-19. 2010 NASA ADVISORY COUNCIL NASA Headquarters Washington, DC February 18-19, 2010 February 18,2010 Announcements and Opening Remarks Ms. Diane Rausch, NASA Advisory Council (NAC) Executive Director, called the meeting to order and welcomed the NAC members and attendees to Washington, DC, and NASA Headquarters. She reminded everyone that the meeting was open to the public and held in accordance with the Federal Advisory Committee Act (FACA) requirements. All comments and discussions should be considered to be on the record. The meeting minutes will be taken by Mr. David Frankel, and will be posted to the NAC website: www.nasa.gov/offices/nac/, shortly after the meeting.
    [Show full text]
  • Galileo Reveals Best-Yet Europa Close-Ups Stone Projects A
    II Stone projects a prom1s1ng• • future for Lab By MARK WHALEN Vol. 28, No. 5 March 6, 1998 JPL's future has never been stronger and its Pasadena, California variety of challenges never broader, JPL Director Dr. Edward Stone told Laboratory staff last week in his annual State of the Laboratory address. The Laboratory's transition from an organi­ zation focused on one large, innovative mission Galileo reveals best-yet Europa close-ups a decade to one that delivers several smaller, innovative missions every year "has not been easy, and it won't be in the future," Stone acknowledged. "But if it were easy, we would­ n't be asked to do it. We are asked to do these things because they are hard. That's the reason the nation, and NASA, need a place like JPL. ''That's what attracts and keeps most of us here," he added. "Most of us can work elsewhere, and perhaps earn P49631 more doing so. What keeps us New images taken by JPL's The Conamara Chaos region on Europa, here is the chal­ with cliffs along the edges of high-standing Galileo spacecraft during its clos­ lenge and the ice plates, is shown in the above photo. For est-ever flyby of Jupiter's moon scale, the height of the cliffs and size of the opportunity to do what no one has done before­ Europa were unveiled March 2. indentations are comparable to the famous to search for life elsewhere." Europa holds great fascination cliff face of South Dakota's Mount To help achieve success in its series of pro­ for scientists because of the Rushmore.
    [Show full text]
  • The Origins of the Discovery Program, 1989-1993
    Space Policy 30 (2014) 5e12 Contents lists available at ScienceDirect Space Policy journal homepage: www.elsevier.com/locate/spacepol Transforming solar system exploration: The origins of the Discovery Program, 1989e1993 Michael J. Neufeld National Air and Space Museum, Smithsonian Institution, United States article info abstract Article history: The Discovery Program is a rarity in the history of NASA solar system exploration: a reform program that Received 18 October 2013 has survived and continued to be influential. This article examines its emergence between 1989 and Accepted 18 October 2013 1993, largely as the result of the intervention of two people: Stamatios “Tom” Krimigis of the Johns Available online 19 April 2014 Hopkins University Applied Physics Laboratory (APL), and Wesley Huntress of NASA, who was Division Director of Solar System Exploration 1990e92 and the Associate Administrator for Space Science 1992 Keywords: e98. Krimigis drew on his leadership experience in the space physics community and his knowledge of Space history its Explorer program to propose that it was possible to create new missions to the inner solar system for a NASA Space programme organization fraction of the existing costs. He continued to push that idea for the next two years, but it took the influence of Huntress at NASA Headquarters to push it on to the agenda. Huntress explicitly decided to use APL to force change on the Jet Propulsion Laboratory and the planetary science community. He succeeded in moving the JPL Mars Pathfinder and APL Near Earth Asteroid Rendezvous (NEAR) mission proposals forward as the opening missions for Discovery. But it took Krimigis’s political skill and access to Sen.
    [Show full text]
  • NASA Advisory Council Science Committee Meeting, March 6-7, 2012
    NASA Advisory Council Science Committee Meeting, March 6-7, 2012 Table of Contents Welcome and Introduction 3 Science Mission Directorate (SMD) 4 Planetary Science Division (PSD) 7 Astrophysics Division (APD) 9 Heliophysics Division (HPD) 12 Earth Science Division (EDP) 14 Planetary Protection 16 James Webb Space Telescope (JWST) 18 Launch Services 19 Discussion with NAC Chair 20 Discussion of findings/recommendations 20 Appendix A- Attendees Appendix B- Membership roster Appendix C- Presentations Appendix D- Agenda Prepared by Joan M. Zimmermann 2 NASA Advisory Council Science Committee Meeting, March 6-7, 2012 March 6, 2012 Welcome and Introduction Dr. Wesley Huntress, Chair for the NASA Advisory Council (NAC) Science Committee (SC) opened the meeting, welcoming the new Acting Chair for the Heliophysics Subcommittee (HPS) Robert McPherron, and William McKinnon representing the Planetary Science Subcommittee (PSS). He welcomed Dr. Barbara Giles as the newly named as Director of the Heliophysics Division (HPD). Other changes include a newly appointed Chair for the NAC, Dr. Steven Squyres, an exceptional planetary scientist, and Chair of the Steering Committee for the National Research Council’s 2011 Planetary Science Decadal Survey. Dr. John Grunsfeld has taken the place of Dr. Edward Weiler as Associate Administrator (AA) of the Science Mission Directorate (SMD). Dr. Grunsfeld is an astrophysicist and astronaut with great experience and knowledge in human spaceflight and robotic exploration. Noting that Dr. Weiler had retired abruptly in response to the FY13 budget, Dr. Huntress expressed regret at the loss of an effective AA, but was pleased to see Dr. Grunsfeld take the new position. Dr. T.
    [Show full text]
  • Radar Observations and a Physical Model of Asteroid 4660 Nereus, a Prime Space Mission Target ∗ Marina Brozovic A, ,Stevenj.Ostroa, Lance A.M
    Icarus 201 (2009) 153–166 Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus Radar observations and a physical model of Asteroid 4660 Nereus, a prime space mission target ∗ Marina Brozovic a, ,StevenJ.Ostroa, Lance A.M. Benner a, Jon D. Giorgini a, Raymond F. Jurgens a,RandyRosea, Michael C. Nolan b,AliceA.Hineb, Christopher Magri c, Daniel J. Scheeres d, Jean-Luc Margot e a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA b Arecibo Observatory, National Astronomy and Ionosphere Center, Box 995, Arecibo, PR 00613, USA c University of Maine at Farmington, Preble Hall, 173 High St., Farmington, ME 04938, USA d Aerospace Engineering Sciences, University of Colorado, Boulder, CO 80309-0429, USA e Department of Astronomy, Cornell University, 304 Space Sciences Bldg., Ithaca, NY 14853, USA article info abstract Article history: Near–Earth Asteroid 4660 Nereus has been identified as a potential spacecraft target since its 1982 Received 11 June 2008 discovery because of the low delta-V required for a spacecraft rendezvous. However, surprisingly little Revised 1 December 2008 is known about its physical characteristics. Here we report Arecibo (S-band, 2380-MHz, 13-cm) and Accepted 2 December 2008 Goldstone (X-band, 8560-MHz, 3.5-cm) radar observations of Nereus during its 2002 close approach. Available online 6 January 2009 Analysis of an extensive dataset of delay–Doppler images and continuous wave (CW) spectra yields a = ± = ± Keywords: model that resembles an ellipsoid with principal axis dimensions X 510 20 m, Y 330 20 m and +80 Radar observations Z = 241− m.
    [Show full text]
  • Transforming Solar System Exploration: the Origins of the Discovery Program, 1989E1993
    Space Policy 30 (2014) 5e12 Contents lists available at ScienceDirect Space Policy journal homepage: www.elsevier.com/locate/spacepol Transforming solar system exploration: The origins of the Discovery Program, 1989e1993 Michael J. Neufeld National Air and Space Museum, Smithsonian Institution, United States article info abstract Article history: The Discovery Program is a rarity in the history of NASA solar system exploration: a reform program that Received 18 October 2013 has survived and continued to be influential. This article examines its emergence between 1989 and Accepted 18 October 2013 1993, largely as the result of the intervention of two people: Stamatios “Tom” Krimigis of the Johns Available online 19 April 2014 Hopkins University Applied Physics Laboratory (APL), and Wesley Huntress of NASA, who was Division Director of Solar System Exploration 1990e92 and the Associate Administrator for Space Science 1992 Keywords: e98. Krimigis drew on his leadership experience in the space physics community and his knowledge of Space history its Explorer program to propose that it was possible to create new missions to the inner solar system for a NASA Space programme organization fraction of the existing costs. He continued to push that idea for the next two years, but it took the influence of Huntress at NASA Headquarters to push it on to the agenda. Huntress explicitly decided to use APL to force change on the Jet Propulsion Laboratory and the planetary science community. He succeeded in moving the JPL Mars Pathfinder and APL Near Earth Asteroid Rendezvous (NEAR) mission proposals forward as the opening missions for Discovery. But it took Krimigis’s political skill and access to Sen.
    [Show full text]
  • Chapters 11-14
    At NASA, hopes for a new planetary mission to Saturn had been in the works since the early 1980s. Scientists had long sought to visit the second-largest planet in the solar system, with its fascinating system of rings, numerous moons, and unique magnetic field. 11 140 Visiting Saturn 11 The Cassini Mission s the 1980s drew to a close, the DOE Office of Special Applica- tions had its hands full with space nuclear power system work. Although assembly and testing of four GPHS-RTGs (including Aone spare) for the Galileo and Ulysses missions were complete, other projects filled the time. Ongoing assessment and development of DIPS, begun under SDI, continued on a limited basis under SEI. e SP- 100 space reactor program and TFE verification program were in the midst of ongoing development and testing. DOE also continued supporting DoD in development of a space nuclear thermal propulsion system that had begun under the auspices of SDI. At NASA, hopes for a new planetary mission to Saturn had been in the works since the early 1980s. Scientists had long sought to visit the second-largest planet in the solar system, with its fascinating system of rings, numerous moons, and unique magnetic field. Flybys of Saturn by the RTG-powered Pioneer 11 spacecraft in 1979 and the Voyager 1 and Voyager 2 spacecraft in 1980 and 1981, respectively, provided information that further piqued that interest. Efforts to acquire a Saturn mission finally came to fruition in 1989 with the authorization of Congressional funding. Conceived as an international partnership with the ESA and Italian Space Agency, the Cassini-Huygens mission (alternately the Cassini mission) began in 1990 and consisted of an orbiter (Cassini) and a probe (Huygens).
    [Show full text]