Thrombolysis for Acute Ischemic Stroke: Does It Work?—The Con Position

Total Page:16

File Type:pdf, Size:1020Kb

Thrombolysis for Acute Ischemic Stroke: Does It Work?—The Con Position EDITORIAL COMMENTARY Thrombolysis for acute ischemic stroke: does it work?—the con position Chris Johnstone*† Thrombolysis for acute ischemic stroke (AIS) has (n = 16–57), and two had unacceptably poor metho- become mainstream therapy, despite the scientific evi- dological quality. The Cochrane authors acknowledged dence rather than because of it. Careful scrutiny of the and measured the high level of heterogeneity in their literature demonstrates that it has proven harm but no choice of studies (I2 = 39%) but did not modify their clear benefit, because of the sheer paucity of hard evi- conclusion. Therefore, there are only 11 large (n ≥ 100) dence supporting its use. There are only two large RCTs of reasonable quality and homogeneous metho- randomized controlled trials (RCTs) showing benefit dology (Table 1, including the International Stroke for thrombolysis, and nine large RCTs that failed to Trial [IST-3], which was published after the Cochrane show any significant difference to placebo (four were Review). If the likelihood of a good outcome (mRS ≥ 3) stopped early due to excess harm). This is in stark is recalculated using only these 11 trials (I2 = 5%), contrast to the clear mortality benefit for thrombolysis thrombolysis is favoured with OR = 0.87 (95% con- in six out of eight large RCT for myocardial infarction.1 fidence interval [CI] = 0.79–0.96) but with a CI close to Both systematic and non-systematic reviews of throm- 1.0 and a number needed to treat (NNT) of 29. Even if bolysis for AIS are severely biased by the inappropriate the statistical significance is real, the clinical significance inclusion of heterogeneous studies, to the extent that is doubtful. There is also an excess of death or symp- their positive conclusions can be reversed simply by tomatic intracranial hemorrhage (ICH) (OR = 1.53) eliminating those studies. The remainder of often with a number needed to harm (NNH) of 11. The risk- quoted evidence in favour of thrombolysis is either benefit analysis now favours placebo. uncontrolled monitoring data or hypothetical con- If thrombolysis does not work for AIS, why are there jecture, neither of which answers the question of two positive trials? This can easily be due to chance. efficacy. Using the standard threshold of significance (p = 0.05), if The first issue to address is defining which RCT enough RCTs are performed with the same study ques- should be included in the analysis. Wardlaw* is the lead tion, 1 out of every 20 studies will demonstrate a statis- author of six sequential literature reviews since 1992, tically significant outcome by chance alone. In other four in the Cochrane database. The latest Cochrane words, the probability that 2 of 11 stroke studies will systematic review in 2014 concluded that there “appears show a positive result for thrombolysis, when in reality to be a net benefit of a significant reduction in the there is no difference from placebo (type I error), is proportion who are dead or dependent at the end of approximately 25%. This possibility is supported by the follow-up,” defined as modified Rankin Scale (mRS) ≥3 marginal results of the two positive trials: the National (odds ratio [OR] = 0.85), using data extracted from 22 Institute of Neurological Disorders and Stroke (NINDS) of 27 studies in the review.2 Nine of these studies, study3 and the European Cooperative Acute Stroke Study however, measured brain reperfusion as the primary III (ECASS-III).4 NINDS had the best outcome, where outcome (not clinical improvement), used intra-arterial patients treated within 3 hours were 12% more likely to injections instead of intravenous, or were very small have a good functional outcome (mRS 0–1) at 3 months. From the *Department of Emergency Medicine, Caboolture Hospital, Caboolture, Queensland, Australia; and the †School of Medicine, The University of Queensland, Brisbane, Australia. Correspondence to: Dr. Chris Johnstone, Emergency Department, Caboolture Hospital, LMB 3, Caboolture, Qld 4510, Australia. Email: [email protected] © Canadian Association of Emergency Physicians CJEM 2015;17(2):180–183 DOI 10.1017/cem.2015.14 CJEM JCMU 2015;17(2) 180 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.19, on 28 Sep 2021 at 22:49:04, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/cem.2015.14 Stroke thrombolysis efficacy Table 1. Randomized controlled trials of intravenous plasminogen activator (tPA) is effective, but other thrombolysis for acute ischemic stroke (n ≥ 100) fibrinolytic agents are not, ignoring trials that used Year of Time to streptokinase and desmoteplase.10 Apart from biological † Title* publication N Agent Treatment implausibility, this view is inconsistent with the litera- MAST-I23 1995 622 SK <6h ture for strokes and other diseases. Two of three small ECASS-I24 1995 620 tPA <6h pilot studies using desmoteplase in AIS showed benefit NINDS-II3 1995 333 tPA <3h for thrombolysis and were included in the 2014 25 – MAST-E 1996 310 SK <6h Cochrane Review.11 13 Food and Drug Administration ASK26 1996 340 SK <4h 27 < (FDA)-approved agents for thrombolysis in pulmonary ECASS-II 1998 800 tPA 6h 14 ATLANTIS- 1999 613 tPA <5h embolus include streptokinase, urokinase, and tPA. In > B28 eight large (n 1000) placebo-controlled RCTs of ATLANTIS- 2000 142 tPA <6h thrombolysis in ST-elevation myocardial infarction, A29 both streptokinase and tPA were effective.1 ECASS-III4 2008 821 tPA 3–4.5 h It has also been argued that many studies failed because 11 – DIAS-2 2009 193 DS 3 9h they included patients after 4.5 hours. In 2004, Hacke* IST-316 2012 3,035 tPA <6h et al. published a pooled analysis of six tPA trials (ECASS, Total 7,829 alteplase thrombolysis for acute noninterventional *ASK = Australian streptokinase; ATLANTIS = alteplase thrombolysis for acute noninterventional therapy in ischemic stroke; DS = desmoteplase; therapy in ischemic stroke [ATLANTIS], NINDS) DIAS = desmoteplase in acute ischemic stroke; ECASS = European Cooperative Acute Stroke Study; IST = International Stroke Trial; MAST = Multicentre Acute Stroke Trial attempting to show that earlier treatment had better (Italy, Europe); NINDS = National Institute of Neurological Disorders and Stroke 15 † outcomes. The study selection is arbitrary and biased in SK = streptokinase; tPA = tissue plasminogen activator. favour of NINDs patients. This work is speculation, not evidence. Furthermore, there is no pattern in the litera- ture that supports a relationship between time of treat- In a recent Australian study, only 15% of all AIS patients ment and outcome: the Australian streptokinase (ASK) who arrived within 4.5 hours were eligible for thrombo- study had a 4-hour enrolment limit and ATLANTIS-B a lysis.5 Therefore, for an average hospital admitting 100 3–5 hour window, both similar to the 4.5-hour limit in stroke patients in a year, assuming ideal conditions and ECASS-III, but with negative results. Subgroup early presentations, 80 would have AIS, 12 would receive analysis of the 0–3 hour period in ASK, ECASS-I, and thrombolysis, and potentially 1 patient would have a better ECASS-II showed no benefitinthatperiod(incontrast recovery. In addition, the trial results themselves are to the 3-hour limit in NINDS) and neither did the dependent on the definition of good outcome. For example, ATLANTIS-B review of the 3- to 4-hour subgroup. in ECASS-III, if it changes from mRS 0–1tomRS0–2 IST-3 demonstrated a worse outcome in the 3- to (i.e., includes mild disability) the benefitofthrombolysis 4.5-hour period than in the later (4.5- to 6-hour) period. disappears, referred to as wobble by Wardlaw et al.2 Similarly, NINDS reported combined parts I and II Both trials have been criticized for their methodol- results at 3 months, and patients treated after 90 minutes ogy, especially because the patients in the placebo had better outcomes than those treated earlier. groups of both trials had more severe strokes at IST-3 deserves special mention here as the largest trial enrolment, and, in ECASS-III, more placebo patients with 3,035 patients.16 The primary outcome was the had prior strokes.6 Two groups re-analysed the NINDS proportion of people who were alive and independent at data adjusting for baseline differences, with different 6 months. It was powered to detect a 4.7% difference, yet conclusions.7,8 Furthermore, care in a multidisciplinary the final difference was only 1.5% and not significant. stroke unit is the only proven therapy to date, with a The author’s astonishing statement that secondary ordi- reduction in death and disability equivalent to that nal analysis “provided evidence of a favourable shift in the claimed by thrombolysis.9 IST-3 was the only trial to distribution of Oxford Handicap Scores at 6 months with control for this variable, and it is plausible that some of treatment” is completely irrelevant to the negative out- the benefits seen in NINDS and ECASS-III were due come of the trial. Post-hoc analyses and secondary out- to variability in level of care. comes are of value only in generating hypotheses for Can the nine negative trials be explained away? future study and should not be used to contradict the Proponents of thrombolysis have decided that tissue primary outcome—thrombolysis did not work! CJEM JCMU 2015;17(2) 181 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.19, on 28 Sep 2021 at 22:49:04, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/cem.2015.14 Johnstone Stroke registries and community studies are often 2.
Recommended publications
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • Desmoteplase for Acute Ischaemic Stroke
    Desmoteplase for acute ischaemic stroke September 2011 This technology summary is based on information available at the time of research and a limited literature search. It is not intended to be a definitive statement on the safety, efficacy or effectiveness of the health technology covered and should not be used for commercial purposes. The National Horizon Scanning Centre Research Programme is part of the National Institute for Health Research September 2011 Desmoteplase for acute ischaemic stroke Target group • Acute ischaemic stroke – within 3 to 9 hours of the onset of symptoms. Technology description Desmoteplase (LU-AE-03329) is a recombinant fibrin-specific plasminogen activator derived from the saliva of the vampire bat, Desmodus rotundus. It catalyses the conversion of plasminogen to plasmin, the enzyme responsible for breaking down fibrin blood clots. Structurally, desmoteplase is very similar to human tissue-type plasminogen activator (tPA), but its activity is 200 times more fibrin-specific than tPA. It therefore does not cause systemic plasminogen activation and fibrinogen depletion. Desmoteplase is intended to be used for the treatment of patients with acute ischaemic stroke in the extended time window of 3 to 9 hours after the onset of symptoms. It is administered as an IV bolus at 90µg/kg (dose used in ongoing phase III clinical trials). Innovation and/or advantages If licensed, desmoteplase would extend the time window for thrombolysis in acute stroke from 3 hours to 9 hours. In addition, because it is highly fibrin-specific it may not have some of the negative effects of tPA (like systemic plasminogen activation and neurotoxicity).
    [Show full text]
  • Supplemental Material Liu Page 1
    Supplementary material Stroke Vasc Neurol Supplemental Material Liu Page 1 Supplemental Material Chinese Stroke Association Guidelines for Clinical Management of Cerebrovascular Disorders Executive Summary and 2019 Update of Clinical Management of Ischemic Cerebrovascular Diseases Liu L, et al. Stroke Vasc Neurol 2020; 5:e000378. doi: 10.1136/svn-2020-000378 Supplementary material Stroke Vasc Neurol Supplemental Material Liu Page 2 Section 1 Definitions associated with ischemic cerebrovascular diseases. The definitions of ischemic cerebrovascular disease are shown in Table 1. Section 2 Emergency assessment and diagnosis of ischemic stroke patients Please refer to Figure 1 for details of the management process for ischemic stroke patients in the acute phase. I. First assessment of emergency (I) Medical history collection Acute ischemic stroke (AIS) patients suffer from acute onset. It is very important to inquire about the time of occurrence of symptoms, onset characteristics and progress, including symptom persistence, fluctuations and relief. If the disease starts onset during sleep, the time when the patient's last normal performance should be recorded. These patients may also get sick shortly before waking up, and the onset time is uncertain, but clinically the final normal time should still be calculated as the last normal time [1-2]. Using MRI to screen wake-up stroke patients who are not suitable for thrombectomy, intravenous thrombolysis helps patients get good prognosis [3]. Before the occurrence of current symptoms, some patients will have similar TIA symptoms that can be relieved automatically. The time window for thrombolytic therapy is calculated based on the occurrence time of current symptoms. The inquiry about whether there are causes related to haemorrhagic stroke before the occurrence of symptoms, such as emotional excitement, intense exercise, sudden change of body position, excessive blood pressure reduction, as well as whether there is a history of Liu L, et al.
    [Show full text]
  • 5Emerging Stroke Tx Copy
    3/5/18 Outline ■ Thrombolytic therapy EMERGING THERAPY IN ■ Mechanical Thrombectomy STROKE MEDICINE ■ Antiplatelet drug 7th MAR 2018 ■ Anticoagulant drug Assist.Prof. Kannikar Kongbunkiat, MD ■ Other management Neurology division, Internal medicine department, Srinagarind Hospital, Faculty of Medicine, KhonKaen University North-Eastern Stroke Research Group Outline Thrombolytic therapy st ■ Thrombolytic therapy ■ 1 generation – Streptokinase, Urokinase ■ Mechanical Thrombectomy ■ 2nd generation ■ Antiplatelet drug – Prourokinase ■ Anticoagulant drug – Alteplase (r-tPA)** (NIND, ECLASSIII ,etc. FDA approved for IV) ■ Other management ■ 3rd & 4th generation – Staphylokinase, Reteplase, Monteplase, – Lanoteplase, Ancrod – Desmoteplase, Tenecteplase Desmoteplase vs Placebo Desmoteplase in Acute Ischemic Stroke (DIAS) - Extended time window to 3-9 hr - Desmoteplase or placebo, given as a single iv bolus injection. desmoteplase was beneficial for pts w/ proximal arterial occlusion Phase III study - Japanese pts - Asia and Europe Pt w/ perfusion/diffusion - North and Latin mismatch is associated America and with a higher rate of supported an excellent Europe reperfusion and better safety profile with the 90 clinical outcome than μg/kg dose. placebo DIAS-J DIAS DIAS-3 DIAS-2 DEDAS DIAS-4 2005 2009 2015 2016 1 3/5/18 DIAS-3 desmoteplase was as safe as placebo, but without clinical benefit. Pooled DIAS-3, DIAS-4, and DIAS-J patient data Terminated the DIAS-4 trial after the enrollment of 270/400 pts, because the goal of 2 positive trials could
    [Show full text]
  • Imaging and Treatment of Patients with Acute Stroke: an Evidence-Based Review
    Published April 18, 2013 as 10.3174/ajnr.A3518 REVIEW ARTICLE Imaging and Treatment of Patients with Acute Stroke: An Evidence-Based Review P.C. Sanelli, J.B. Sykes, A.L. Ford, J.-M. Lee, K.D. Vo, and D.K. Hallam ABSTRACT SUMMARY: Evidence-based medicine has emerged as a valuable tool to guide clinical decision-making, by summarizing the best possible evidence for both diagnostic and treatment strategies. Imaging plays a critical role in the evaluation and treatment of patients with acute ischemic stroke, especially those who are being considered for thrombolytic or endovascular therapy. Time from stroke-symptom onset to treatment is a strong predictor of long-term functional outcome after stroke. Therefore, imaging and treatment decisions must occur rapidly in this setting, while minimizing unnecessary delays in treatment. The aim of this review was to summarize the best available evidence for the diagnostic and therapeutic management of patients with acute ischemic stroke. ABBREVIATIONS: DPM ϭ diffusion-perfusion mismatch; IA ϭ intra-arterial; ICH ϭ intracranial hemorrhage; r-proUK ϭ recombinant prourokinase; TIMI ϭ Thrombolysis in Myocardial Infarction n this era of health care reform and cost containment, major con- The aim of this review is to summarize the best available evi- Icerns have been raised regarding inappropriate medical expendi- dence for the diagnostic and therapeutic management of patients tures and the lack of data to support the necessity of such high levels with acute ischemic stroke. The first part of this review synthesizes of health care spending. It is becoming ever more difficult to justify the most current evidence on the appropriate indications and diagnostic imaging and other medical procedures with anecdotal ev- modalities to consider in the diagnostic work-up of patients with idence, expert opinion, or experience.
    [Show full text]
  • Drugs Affecting Coagulation
    PHARMACOLOGY Drugs affecting Learning objectives coagulation After reading this article, you should be able to: C outline the process of coagulation Balraj Appadu C compare and contrast the different drugs used for Katrina Barber anticoagulation C evaluate anticoagulant drugs and their uses in patients under- going surgery Abstract For more than half a century, heparin and vitamin K antagonists have defined anticoagulant therapy in both the short-term and long-term leading to dissolution (lysis) and restoration of blood flow to the management of thrombotic diseases. However, the limitations of organs. these traditional anticoagulants have prompted the development of new drugs. In the past 15 years new agents with improved safety pro- First-generation agents fi le and greater ease of use that target almost every step of the coag- Streptokinase is a non-enzymatic protein produced by b-hae- ulation cascade have been developed. These include factor Xa molytic streptococci. It activates the fibrinolytic system indi- inhibitors and direct thrombin inhibitors. The mechanism of action of rectly, binding to human plasminogen and forming a 1:1 ‘ ’ these new anticoagulants and also the older agents are reviewed in stoichiometric complex, which converts plasminogen into this article. plasmin. It is associated with allergic reactions and can stimulate Keywords ADP receptor antagonists; dabigatran; fondaparinux; the production of anti-streptococcal antibodies. For this reason, glycoprotein IIb/IIIa antagonists; heparin; rivaroxaban; warfarin repeat doses should be avoided. Urokinase is a trypsin-like serine protease composed of two Royal College of Anaesthetists CPD Matrix: A102 polypeptide chains connected by a disulphide bridge. It activates plasminogen directly, converting it to active plasmin.
    [Show full text]
  • AHA/ASA Guideline
    Jauch et al Early Management of Acute Ischemic Stroke 1 AHA/ASA Guideline lww Guidelines for the Early Management of Patients With Acute STR Ischemic Stroke: Executive Summary 202623 A Guideline for Healthcare Professionals From the American Heart AQ1 Jauch et al Early Management of Acute Ischemic Stroke Association/American Stroke Association The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Endorsed by the American Association of Neurological Surgeons and Congress of Neurological Surgeons Edward C. Jauch, MD, MS, FAHA, Chair; Jeffrey L. Saver, MD, FAHA, Vice Chair; Harold P. Adams, Jr, MD, FAHA; Askiel Bruno, MD, MS; J.J. (Buddy) Connors, MD; Bart M. Demaerschalk, MD, MSc; Pooja Khatri, MD, MSc, FAHA; Paul W. McMullan, Jr, MD, FAHA; Adnan I. Qureshi, MD, FAHA; Kenneth Rosenfield, MD, FAHA; Phillip A. Scott, MD, FAHA; Debbie R. Summers, RN, MSN, FAHA; David Z. Wang, DO, FAHA; Max Wintermark, MD; Howard Yonas, MD; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular Nursing, Council on Peripheral Vascular Disease, and Council on Clinical Cardiology his publication, “Guidelines for the Early Management of stroke care. This document addresses opportunities for optimal TPatients With Acute Ischemic Stroke,” from the American stroke care in the acute phase of the acute ischemic stroke. Heart Association/American Stroke Association (AHA/ASA) The goal of these guidelines is to further reduce the morbid- is an overview of the current evidence and management rec- ity and mortality associated with stroke. The guidelines sup- ommendations for evaluation and treatment of adults with port the overarching concept of stroke systems of care and acute ischemic stroke.
    [Show full text]
  • Multimodal Imaging Using Ct, Mri, and Angiography in Stroke
    1/18/2014 MULTIMODAL IMAGING USING CT, MRI, AND ANGIOGRAPHY IN STROKE Jefferson T Miley MD Seton Brain and Spine Institute Department of Neurology UT-Southwestern Austin Outline Focus of Imaging on Acute Ischemic Stroke Physiology Basics Imaging Computerized Tomography NCCT CT-Perfusion Magnetic Resonance Imaging DWI PWI FLAIR Digital Subtraction Angiography Conclusions Physiology CBF = CBV/MTT Benign oligemia; >17 mL/100 g per minute Penumbra 17 to 10 mL/100 g per minute infarct core 10mL/100 g per minute Latchaw RE, Yonas H, Hunter GJ, Yuh WT, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia:a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34: 1084–1104. 1 1/18/2014 Oligemia? Penumbra? Infarct? infarct core 10mL/100 g per minute Imaging Tools DWI FLAIR CT Penumbra 10-17 mL/100 g per min Imaging: CTP MRP PET Xe-CT 2 1/18/2014 Benign oligemia; >17 mL/100 g per min CBV CBF = CBV/MTT CBV= mL/100g of brain MTT Time 3 1/18/2014 Summary AUC=CBV MRI DWI DWI lesions are regions of cytotoxic edema which proceed to infarction Lesions can reverse if reperfusion is achieved Median reversal DWI volume 43% in DEFUSE trial Reversibility correlates with good clinical outcome Jean-Marc Olivot, MD, PhD; Michael Mlynash, MD, MS; Vincent N. Thijs, MD, PhD, et al. Relationships Between Cerebral Perfusion and Reversibility of Acute Diffusion Lesions in DEFUSE Insights from RADAR. Stroke. 2009;40:1692-1697.
    [Show full text]
  • International Nonproprietary Names (Inn) for Biological and Biotechnological Substances
    INN Working Document 05.179 Distr.: GENERAL ENGLISH ONLY 15/06/2006 INTERNATIONAL NONPROPRIETARY NAMES (INN) FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES (A REVIEW) Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines (QSM) Medicines Policy and Standards (PSM) Department CONTENTS 0. INTRODUCTION…………………………………….........................................................................................v 1. PHARMACOLOGICAL CLASSIFICATION OF BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES……………………………………................................1 2. CURRENT STATUS OF EXISTING STEMS OR SYSTEMS FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES…………………….3 2.1 Groups with respective stems ……………………………………………………………………3 2.2 Groups with respective pre-stems………………………………………………………………4 2.3 Groups with INN schemes………………………………………………………………………….4 2.4 Groups without respective stems / pre-stems and without INN schemes…..4 3. GENERAL POLICIES FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES……………………………………………………………………………………………………...5 3.1 General policies for blood products……………………………………………………………5 3.2 General policies for fusion proteins……………………………………………………………5 3.3 General policies for gene therapy products………………………………………………..5 3.4 General policies for glycosylated and non-glycosylated compounds………...6 3.5 General policies for immunoglobulins……………………………………………………….7 3.6 General polices for monoclonal antibodies………………………………………………..7 3.7 General polices for skin substitutes……………………………………………………………9 3.8 General policies for transgenic products……………………………………………………9
    [Show full text]
  • (INN) for Biological and Biotechnological Substances
    WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 WHO/EMP/RHT/TSN/2019.1 International Nonproprietary Names (INN) for biological and biotechnological substances (a review) 2019 International Nonproprietary Names (INN) Programme Technologies Standards and Norms (TSN) Regulation of Medicines and other Health Technologies (RHT) Essential Medicines and Health Products (EMP) International Nonproprietary Names (INN) for biological and biotechnological substances (a review) FORMER DOCUMENT NUMBER: INN Working Document 05.179 © World Health Organization 2019 All rights reserved. Publications of the World Health Organization are available on the WHO website (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO website (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Does Diffusion-Weighted Imaging Represent the Ischemic Core? an Evidence-Based Systematic ORIGINAL RESEARCH Review
    Published April 8, 2009 as 10.3174/ajnr.A1547 Does Diffusion-Weighted Imaging Represent the Ischemic Core? An Evidence-Based Systematic ORIGINAL RESEARCH Review P.G. Kranz BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) hyperintensity is hypothesized to J.D. Eastwood represent irreversibly infracted tissue (ischemic core) in the setting of acute stroke. Measurement of the ischemic core has implications for both prognosis and therapy. We wished to assess the level of evidence in the literature supporting this hypothesis. MATERIALS AND METHODS: We performed a systematic review of the literature relating to tissue outcomes of DWI hyperintense stroke lesions in humans. The methodologic rigor of studies was evaluated by using criteria set out by the Oxford Centre for Evidence-Based Medicine. Data from individual studies were also analyzed to determine the prevalence of patients demonstrating lesion progression, no change, or lesion regression compared with follow-up imaging. RESULTS: Limited numbers of highly methodologically rigorous studies (Oxford levels 1 and 2) were available. There was great variability in observed rates of DWI lesion reversal (0%–83%), with a surprisingly high mean rate of DWI lesion reversal (24% of pooled patients). Many studies did not include sufficient data to determine the precise prevalence of DWI lesion growth or reversal. CONCLUSIONS: The available tissue-outcome evidence supporting the hypothesis that DWI is a surrogate marker for ischemic core in humans is troublingly inconsistent and merits an overall grade D based on the criteria set out by the Oxford Centre for Evidence-Based Medicine. dentifying threatened but still-viable brain tissue in patients falsely appears to exceed the accepted limit.
    [Show full text]
  • Pharmacology in Childhood Arterial Ischemic Stroke Catherine Amlie-Lefond, MD,* and Joan Cox Gill, MD†
    Pharmacology in Childhood Arterial Ischemic Stroke Catherine Amlie-Lefond, MD,* and Joan Cox Gill, MD† In recent years, there has been increasing recognition of the impact of childhood stroke and interest in the role of drugs in the acute, chronic, and prophylactic management of this condition. Most treatment strategies are based on studies in adults with stroke, and the relative infrequency of stroke and the heterogeneity of etiologies in childhood compared with adults present significant challenges in study design for childhood stroke studies. The presence of thrombophilia has been associated with stroke in children, strengthening the concept that antithrombotic, antiplatelet, and even thrombolytic agents have a role in stroke treatment and prevention. There are several potential roles for drugs in the treatment of childhood stroke including hyperacute therapy, antithrombotic medication, antiplatelet medication, and disease-specific medications. Herein, we review the use and rationale of these medications in childhood arterial ischemic stroke. Semin Pediatr Neurol 17:237-244 © 2010 Published by Elsevier Inc. fter arterial ischemic stroke (AIS), 10% of children will There is great variability in the use of antithrombotic and Adie, and 70% will be left with neurologic deficit;1-3 of the antiplatelet drugs after acute childhood AIS. Among 661 chil- survivors, approximately 15% to 20% will have further dren with AIS reported to the International Pediatric Stroke strokes.4,5 However, despite such compelling numbers, opti- Study, acute treatment consisted of anticoagulation alone in mal treatments for acute stroke and prophylaxis of children at 27%, antiplatelet therapy alone in 28%, and a combination of high risk for initial or recurrent strokes are largely unknown.
    [Show full text]