Ferrocenyl Migrations and Molecular Rearrangements

Total Page:16

File Type:pdf, Size:1020Kb

Ferrocenyl Migrations and Molecular Rearrangements inorganics Review ReviewFerrocenyl Migrations and Molecular FerrocenylRearrangements: Migrations The Significance and Molecular of Electronic Rearrangements: The Significance of Electronic Charge Delocalization Michael J. McGlinchey Michael J. McGlinchey School of Chemistry, University College Dublin, D04 V1W8, Belfield, Dublin 4, Ireland; School of Chemistry, University College Dublin, D04 V1W8 Belfield, Dublin 4, Ireland; [email protected] [email protected] Received: 27 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Received: 27 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: The enhanced stabilization of a carbocationic site adjacent to a ferrocenyl moiety was Abstract:recognizedThe within enhanced a few stabilization years of the of adiscovery carbocationic of sandwich site adjacent compounds. to a ferrocenyl While moietya detailed was recognizedunderstanding within of athe few phenomenon years of the discovery was the of subject sandwich of compounds.some early debate, While a detailedresearchers understanding soon took ofadvantage the phenomenon of it to control was the the subject ease ofand some direction early debate, of a wide researchers range of soon molecular took advantage rearrangements. of it to control We, thehere ease, discuss and direction the progress of a wide in this range area of molecularfrom the pioneering rearrangements. studiesWe, of here, the discuss1960s, to the more progress recent in thisapplications area from in the chromatography pioneering studies and of analytical the 1960s, detection to more recenttechniques, applications and currently in chromatography in the realm and of analyticalbioactive organometallic detection techniques, complexes. and Several currently classic in the reactions realm of inv bioactiveolving ferrocenyl organometallic migrations, complexes. such Severalas the pinacol, classic reactionsWolff, Beckmann, involving ferrocenyland Curtius, migrations, are discussed, such asas thewell pinacol, as the Wolinfluenceff, Beckmann, of the andferrocenyl Curtius, substituent are discussed, on the as wellmechanisms as the influence of the Nazarov, of the ferrocenyl Meyer-Schuster, substituent benzoin on the, mechanismsand Stevens ofrearrangements. the Nazarov, The Meyer-Schuster, preparation an benzoin,d isomerizations and Stevens of ferrocenyl rearrangements.-stabilized The vinyl preparation cations and isomerizationsvinylcyclopropenes, of ferrocenyl-stabilized together with the vinyl specific cations cyclization and vinylcyclopropenes, of acetylcyclopenta togetherdienyl with-metal the specificderivatives cyclization to form of1,3,5 acetylcyclopentadienyl-metal-substituted benzenes, demonstrate derivatives the to versatility form 1,3,5-substituted and generality benzenes, of this demonstrateapproach. the versatility and generality of this approach. Keywords: metalmetal-stabilized-stabilized carbocations; reaction mechanisms; NMR; bioorganometallics 1. Introduction The ability ability of of the the ferrocenyl ferrocenyl moiety moiety to tostabilize stabilize an adjacent an adjacent carbocationic carbocationic cente centerr has long has been long beenattributed attributed to delocalization to delocalization of the of theelectron electron deficie deficiencyncy onto onto the the iron iron atom atom [1] [1.]. The The X-rayX-ray crystallographically established [2,3] [2,3] tendency of of the cationic α--carboncarbon atom to lean towards the metal as in 1, was originally interpreted inin terms of an overlap of the vacant 2p orbital on carbon with a filled filled 3 3dd orborbitalital of of suitable suitable symmetry symmetry on on iron iron [4] [4. Taking]. Taking a more a more extreme extreme view, view, one one could could regard regard the + thesystem system as a asneutral a neutral fulvene fulvene ligand ligand coordinated coordinated to a to [(C a5 [(CH5)Fe]5H5+)Fe] unit,unit, as depicted as depicted in 2 (Figure in 2 (Figure 1), but1), butthis thishas been has been criticized criticized based based on the on low the barrier low barrier to rotation to rotation about about the exocyclic the exocyclic bond bondin some in somecases cases[5,6]. [5,6]. + R R Fe R +Fe R 1 2 Figure 1. Delocalization of charge from the cationic α carbon onto the iron atom. Fortunately, a comprehensive overview of this, sometimes controversial, phenomenon has been presented by Gleiter, Bleiholder, and Rominger [7]. Nevertheless, it is this character of charge Inorganics 2020, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/inorganics Inorganics 2020, 8, 68; doi:10.3390/inorganics8120068 www.mdpi.com/journal/inorganics Inorganics 2020, 8, x FOR PEER REVIEW 2 of 22 Inorganics 2020, 8, x FOR PEER REVIEW 2 of 22 Inorganics 2020, 8, 68 2 of 23 Fortunately, a comprehensive overview of this, sometimes controversial, phenomenon has been presented by Gleiter, Bleiholder, and Rominger [7]. Nevertheless, it is this character of charge delocalization that facilitates a number of molecular rearrangements or ferrocenyl migrations, as we delocalization that facilitates a number of molecular rearrangementsrearrangements or ferrocenyl migrations, as we shall attempt to demonstrate. shall attempt to demonstrate. 2. Ferrocenyl Ferrocenyl-Mediated-Mediated Carbocationic Rearrangements 2.1. Isomerizations of Secondary to Tertiary CarbocationsCarbocations Following pioneering studies by Cais [[8]8],, dissolution of ferrocenyl ferrocenyl-substituted-substituted alcoholsalcohols in 1 1 trifluoroacetic acid acid allowed allowed the the acquisition acquisition of well-resolved of well-resolvedH NMR 1H NMR spectra spectra by several by several other groupsother groups [9–11], and[9–11] revealed, and revealed the unusual the unusual stability stability of the of carbocations the carbocations so generated. so generated.Subsequently, Subsequently, in a in series a series of ground-breakingof ground-breaking papers, papers, Watts Watts and and his his group group reported reported the the rearrangement rearrangement behavior behavior of aof number a number of alkylferrocenylof alkylferrocenyl carbocations carbocations upon upon protonation protonation of theirof their precursor precursor alcohols alcohols [12 ].[12]. Typically, thethe quantitativequantitative conversionconversion ofof thethe ferrocenyl-stabilizedferrocenyl-stabilized secondary carbocationcarbocation 3 intointo itsits tertiary isomer isomer 44, ,is is in in accord accord with with the the accepted accepted hierarchy hierarchy of stable of stable carbocations. carbocations. At first At firstsight, sight, this thisappears appears to be to a be double a double shift shift rearrangement rearrangement whereby whereby an an alkyl alkyl migration migration to to form form the ββ-ferrocenyl-ferrocenyl cation 5 isis followedfollowed byby aa [[11,2,2]-hydrogen]-hydrogen shiftshift toto yieldyield thethe observedobserved product.product. However, thethe authorsauthors did not prefer this mechanism since the intermediate rearrangement product, 5, would undoubtedly be thermodynamically disfavored relative to the ferrocenyl-stabilizedferrocenyl-stabilized startingstarting cation 33.. Instead, they proposed that the initialinitial methylmethyl migrationmigration might proceed synchronously with the formation of a short-livedshort-lived spirospiro-diene-diene species species6 (depicted 6 (depicted in Scheme in Scheme1) which 1) couldwhich reopen could with reopen concomitant with concomitant hydrogen migration,hydrogen migration, thus generating thus thegenerating observed the final observed product fin [13al]. product In such a[13] scenario,. In such the a cationicscenario, charge the cationic would charge would be delocalized onto the metal in the transition state. The analogous rearrangement of+ becharge delocalized would be onto delocalized the metal inonto the the transition metal in state. the transition The analogous state. rearrangement The analogous of rearrangement [Fc–CH–CPh3 ]of, [Fc–CH–CPh3]+, 7, into +[Fc–CPh–CHPh2]+, 8, was also observed (Scheme 2), but in this case the 7[Fc, into–CH [Fc–CPh–CHPh–CPh3]+, 7, into2] [Fc, 8,– wasCPh also–CHPh observed2]+, 8, was (Scheme also2 ),observed but in this (Scheme case the 2), doubly-benzylic but in this case cation the doubly-benzylic cation+ [Fc–CHPh–CPh2]+, 9, might be a viable intermediate [14]. [Fc–CHPh–CPhdoubly-benzylic2 ]cation, 9, might [Fc–CHPh be a viable–CPh2 intermediate]+, 9, might be [ 14a viable]. intermediate [14]. Me Me Me Me Me Me Me Me OHMe + Me OH CF3CO2H + Fe H 3 2 Fe Me H Fe H Fe H Me H 3 Me + Fe Me + Fe Me Me 6 Me Me H 6 + H Me Me MeMe Me Me + Fe H Fe H Fe Me 5 4 5 4 Scheme 1. Rearrangement of 2° to 3° ferrocenyl trimethyl-carbocations. Scheme 1. Rearrangement of 22°◦ to 3° 3◦ ferrocenyl trimethyl trimethyl-carbocations.-carbocations. Ph Ph Ph Ph Ph Ph Ph + Ph H Ph + H Ph Ph Ph + Ph Ph Fe Ph + Fe H Fe H Fe H Fe Ph 7 9 8 SchemeScheme 2.2. Rearrangement of 22° to 33° ferrocenyl tri triphenyl-carbocations.phenyl-carbocations. Scheme 2. Rearrangement of 2°◦ to 3°◦ ferrocenyl triphenyl-carbocations. 2.2. Rearrangements of Vinyl and Allyl Cations 2.2. Rearrangements of Vinyl and Allyl Cations This work was elegantly extended to include the addition reactions of trityl cations to alkynylferrocenesThis work was to generate elegantly ferrocenyl-stabilized extended to include vinyl the carbocations, addition reactions10, that underwent of trityl cyclizationcations to alkynylferrocenes to generate ferrocenyl-stabilized vinyl carbocations, 10, that underwent
Recommended publications
  • Phenytoin) from Almond Ashnagar, A
    International Journal of ChemTech Research ISSN : 0974-4290 Vol.1,No.1,pp 47-52, Jan – March 2009 Synthesis of 5,5-diphenyl-2,4-imidazolidinedione (Phenytoin) from Almond Ashnagar, A. 1* , Gharib Naseri, N. 2 and Amini, M. 3 1Pasteur Institute of Iran, Nanobiotechnology department, Pasteur Avenue, SQ. NO. 69, Post Code No. 13164, Tehran, Iran. Tel. No. 00982166953311-20 , Fax No. 00982166465132 2Ahwaz Faculty of Petroleum Engineering, Kut Abdullah, Abadan Road, Petroleum Univ. of Technology, Ahwaz, Iran. 3Ahwaz Jundi Shapour Univ.of Medical Sciences, School of Pharmacy, Ahwaz, Iran. *Corres. Author: [email protected] Abstract Regarding the significance of Phenytoin and its 5 tons annual import from abroad, it was decided to synthesize it from the easily accessible starting materials which are available in this country (Iran). Almond kernels were ground then, through steam distillation and extraction methods, almond oil and subsequently benzaldehyde were isolated and purified. Benzaldehyde under the influence of sodium cyanide in aqueous alcohol undergone a dimolecular condensation reaction and gave benzoin. Oxidation of benzoin with concentrated nitric acid yielded the diketone, Benzil. Benzil under the treatment with urea in alcoholic solution and in the presence of NaOH (30%) first gave benzilic acid, then through a condensation reaction with Urea and after acidification of the filtrate with HCl (2M) finally gave 5,5-diphenyl-2,4-imidazolidinedione (Phenytoin). The chemical structures of the intermediates and products were elucidated and determined through their IR, HNMR and MS (EI) spectra. Keywords: Phenytoin, 5,5-diphenyl-2,4-imidazolidinedione, benzil, benzaldehyde, benzoin. Introduction Phenytoin sodium is a commonly used antiepileptic.
    [Show full text]
  • Rearrangements of the Benzilic Acid Type; Preparation and Use of Dialkali Metal Adducts of Aromatic Ketones
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-1959 Rearrangements of the Benzilic Acid Type; Preparation and Use of Dialkali Metal Adducts of Aromatic Ketones. Stanley Selman University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Chemistry Commons Recommended Citation Selman, Stanley, "Rearrangements of the Benzilic Acid Type; Preparation and Use of Dialkali Metal Adducts of Aromatic Ketones.. " PhD diss., University of Tennessee, 1959. https://trace.tennessee.edu/utk_graddiss/2958 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Stanley Selman entitled "Rearrangements of the Benzilic Acid Type; Preparation and Use of Dialkali Metal Adducts of Aromatic Ketones.." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Jerome F. Eastham, Major Professor We have read this dissertation and recommend its acceptance: D. A. Shirley, Carl Buehler, John W. Prados Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) August 5, 1959 To the Graduate Council: I am submitting herewith a dissertation written by Stanley Selman entitled ''Rearrangements of the Benzilic Acid Type; Preparation and Use of Dialkali Metal Adducts of Aromatic Ketones.11 I reconnnend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry.
    [Show full text]
  • Phenytoin) from Almond
    Asian Journal of Chemistry Vol. 21, No. 7 (2009), 4976-4980 Synthesis of 5,5-Diphenyl-2,4-imidazolidinedione (Phenytoin) from Almond A. ASHNAGAR*, N. GHARIB NASERI† and M. AMINI‡ Pasteur Institute of Iran, Nanobiotechnology Department, Pasteur Avenue, SQ. NO. 69, Post Code No. 13164, Tehran, Iran Fax: (98)(216)6465132; Tel: (98)(216)6953311-20 E-mail: [email protected] In present studies, it is proposed to synthesized phenytoin from the easily accessible starting materials which are available in Iran. Almond kernels were ground then, through steam distillation and extraction methods, almond oil and subsequently benzaldehyde were isolated and purified. Benzaldehyde under the influence of sodium cyanide in aqueous alcohol undergone a dimolecular condensation reaction and gave benzoin. Oxidation of benzoin with concentrated nitric acid yielded benzil. Benzil on treatment with urea in alcoholic solution in presence of NaOH (30 %) first gave benzilic acid, then through a condensation reaction with urea and after acidification of the filtrate with HCl (2 M) gave 5,5-diphenyl- 2,4-imidazoli-dinedione (Phenytoin). The chemical structures of the inter- mediates and products were determined through their IR, 1H NMR and MS (EI) spectra. Key Words: Phenytoin, 5,5-Diphenyl-2,4-imidazolidinedione, Benzil, Benzaldehyde, Benzoin. INTRODUCTION Phenytoin sodium is a commonly used antiepileptic. Phenytoin is used to treat various types of convulsions and seizures, acts on the brain and nervous system in the treatment of epilepsy and to damp the unwanted, runaway brain activity seen in seizure by reducing electrical conductance among brain cells by stabilizing the inactive state of voltage gated sodium channels.
    [Show full text]
  • HATU, HBTU, HCTU, TBTU), Etc
    carbodiimides (DCC, DIC, EDC); 2) phosphorous compounds (BOP, PyBOP, PyAOP); 3) uronium compounds (HATU, HBTU, HCTU, TBTU), etc. N C N N C N N C N N DCC DIC EDC F F F N N P N N + + F F N + P N P O F P N N F O N N O F N F F F N N N F N N P P F N F N F F F F N BOP PyAOP PyBOP F N N F N + F + + C P C N C N F F N N N N N + F N + N N O N F F O F F + F B N P F R F N F O F F HBTU R = H HATU TBTU HCTU R = Cl Conclusions. The discussed reagents are effective for acylation reactions in peptide synthesis and decrease racemization. Application of phosphorous compounds regardless their toxicity is rational for formation of peptide bonds because it is similar to biosynthetic process in the live cells and gives good selectivity of the process. SYNTHESIS OF 2-AMINO-4-ARYL-3-CYANO-8-METHOXYCARBONYL-5-OXO-5,6,7,8- TETRAHYDRO-4Н-CHROMENES BASED ON ESTERS OF 2-HYDROXY-4-ОXO-6-ARYLCYCLOHEXENE-2-CARBOXYLIC ACID Holovach Y.O., Levashov D.V. Scientific supervisor: prof. Shemchuk L. A. National University of Pharmacy, Kharkiv, Ukraine [email protected] Introduction. Among chromene derivatives many compounds display a high level of different types of pharmacological activity (anti-inflammatory, antibacterial, anticoagulant, etc.) which causes the relevance of the synthesis of its new derivatives in order to find new biologically active substances.
    [Show full text]
  • THE Oxidation of BENZQIN and RELATED MQLECULES [N GLACAAL ACETIC ACID
    THE OXiDATiON OF BENZQIN AND RELATED MQLECULES [N GLACAAL ACETIC ACID “133.31; or 919 Degree of R4. 8. WEWMM SKATE 73131 ”PS T1? Robert E. Aufuldish Jr. 1961 MIWGM STAN UMVERSHY EMT LANSINCJ. MILHICAN mmew s17"? mix/mam ABSTRACT THE OXIDATION OF BENZOIN AND RELATED MOLECULES IN GLACIAL ACETIC ACID by Robert E. Aufuldish Jr. In an effort to propose a mechanism for the oxidation of oxygenated organic molecules in glacial acetic acid, a method of isolation of products first was accomplished. This was achieved by obtaining data for the acetic acid-carbon disulfide-water system. By using the results obtained, a procedure for carbon disulfide extraction was established. Direct titrations, using ammonium hexanitratocerate in glacial acetic acid as the oxidizing agent, were possible on benzilic acid and benzohydroxamic acid and the isolation of oxidation products was achieved. The possible reason that the direct titrations were successful is that due to the formation of a gas as an oxidation product of these two molecules the oxidation was forced to completion. In the case of all other molecules studied, the detection of the end point was not observed by direct titration. Two excess methods were outlined and the oxidation of benzoin and a-benzoin oxime with the identification of oxidation products was accomplished. A possible mechanism was outlined and it was prOposed that a 7 membered cyclic intermediate occurs as the oxidation step. THE OXIDATION OF BENZOIN AND RELATED MOLECULES IN GLACIAL ACETIC ACID BY Robert E. Aufuldish Jr. A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemistry 1961 ACKNOWLEDGMENT Grateful acknowledgment is made to Dr.
    [Show full text]
  • 16 Results and Discussion. Interaction Between Arylidene Acetones (1
    Results and discussion. Interaction between arylidene acetones (1) and dimethyl malonate (2) proceeds in the presence of sodium methylate with refluxing in ethanol for 3 hours as domino transformation by the «Michael addition / Claisen condensation» type. As a result, methyl esters of 2- hydroxy-4-oxo-6-arylcyclohexene-2-carboxylic acid (3) were obtained. 1. MeONa Ar'CHO; 2. HCl CH2(CN)2 1 2 3 4 Ar = -Ph, 4-MeO-C6H4-, 4-Me2N-C6H4-; Ar' = -Ph, 4-MeO-C6H4-, 2-MeO-C6H4-; 4-NO2-C6H4-, 2-NO2-C6H4-, 4-Me2N-C6H4-. By further three-component interaction of esters (3) with aromatic aldehydes and malononitrile in the presence of catalytic quantity of triethylamine in ethanol medium 2-amino-4-aryl-3-cyano-8- methoxycarbonyl-5-oxo-5,6,7,8-tetrahydro-4Н-chromenes (4) were synthesized with good yields. The structure of synthesized compounds was confirmed by IR-, 1H, 13C NMR spectroscopy and chromatography-mass spectrometry. Conclusions. New 2-amino-4-aryl-3-cyano-8-methoxycarbonyl-5-oxo-5,6,7,8-tetrahydro-4Н- chromenes were obtained. These investigations will be a base for further pharmacological researches. JUSTUS VON LIEBIG: SCIENTIFIC LEGACY AND PRESENT DAYS Hutsol A.A., Sytnik K.M. Scientific supervisors: assoc. prof. Sytnik K.M., prof. Kolisnyk S.V. National University of Pharmacy, Kharkiv, Ukraine [email protected] Introduction. Justus von Liebig was a famous German chemist. He have made a big contribution to chemistry, but one should pay attention exactly to benzoin condensation and benzilic acid rearrangement. These reactions were developed in the 1830s and retain their importance until now.
    [Show full text]
  • Hydration and Hydrolysis with Water Tolerant Lewis Acid Catalysis in High Temperature Water
    Hydration and Hydrolysis with Water Tolerant Lewis Acid Catalysis in High Temperature Water by Natalie A. Rebacz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) in The University of Michigan 2011 Doctoral Committee: Professor Phillip E. Savage, Chair Professor Johannes W. Schwank Professor Edwin Vedejs Emeritus Professor Walter J. Weber Jr. Associate Professor Suljo Linic H H H O O H In3+ O H H F F F F O F O F S S OO- -O O In3+ H H H - O O H O H O H OOS H In3+ In3+ O H F F F H O H O H H © Natalie A. Rebacz 2011 All Rights Reserved to Debe Williams and to WAB ii ACKNOWLEDGEMENTS I would first like to thank all of my mentors during college who inspired me to continue studies in graduate school. These include Dennis Compton, Dotti Miller, Marina Miletic, Debbie Williams, Jeffrey Weber, and especially Bill Boulanger. I was happy to have had the opportunity to mentor several undergraduate stu- dents: Alex Cohen, Christopher Rausche, Lauren E. Ludlow, Kazi M. Munabbir, and Valerie A. Lee. I learned just as much from them about mentoring as they learned from me about experimental techniques. Alex Cohen contributed greatly to the work in chapters 7 and 5; Chris Rausche, to material in chapters 4 and 5; and Lauren, Kazi, and Valerie, to much of the experimental work in chapter 4. I wish them all success and happiness in their careers. During my research, I also worked closely with Master's student Dongil Kang, who contributed greatly to the experimental work in chapter 6.
    [Show full text]
  • Benzilic Acid Rearrangement
    Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 Benzilic Acid Rearrangement Supplementary Material Experimental notes This experiment aims at the preparation of 2-hydroxy-2-phenylbenzylic acid from benzil through a molecular rearrangement in basic medium. The experiment is very simple and adequate for 1st year chemistry students. The reaction is performed in a water/ethanol solution where the yellowish solid benzil reagent is soluble and thus the initial solution is slightly yellow. As the solution is heated under reflux the solution acquires a violet/blue colouration that becomes dark orange after heating for 20 min. The reaction is not complete but further heating does not lead to an increased yield. The carboxylate salt present in the reaction mixture does not precipitate by simply putting the flask in an ice bath. It is necessary to scratch the flask to initiate the crystals formation. The crystals thus obtained are yellowish and very soluble in water. The addition of the H2SO4 solution leads to the immediate formation of the 2-hydroxy-2-phenylbenzilic acid that precipitates as white crystals. By the end of the H2SO4 addition all the aqueous solution becomes white. We chose to use a 2M solution of H2SO4 but either a more diluted solution or other strong acids, like HCl, can be used. The final product is isolated by filtration and washed with cold ethanol to remove traces of benzil. The recrystalization can be done with water (around 50 mL). The final product, 2-hydroxy-2- phenylbenzilic acid, is a white solid and the TLC and 1H NMR analysis confirm its purity.
    [Show full text]