Rippler: a Mechatronic Sound-Sculpture Abstract For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trimpin Above, Below, and in Between Trimpin
TRIMPIN ABOVE, BELOW, AND IN BETWEEN BELOW, ABOVE, SEATTLE SYMPHONY LUDOVIC MORLOT TRIMPIN Above, Below, and In Between, A site-specific composition Part 1 .............................................................................1:36 Part 2 ............................................................................ 2:55 Part 3 – For Jessika ..................................................... 4:20 Part 4 ............................................................................ 2:34 Part 5 ............................................................................ 6:00 Part 6 ............................................................................ 5:00 Jessika Kenney, soprano; Sayaka Kokubo, viola; Penelope Crane, viola: Eric Han, cello; David Sabee, cello; Jordan Anderson, double bass; Joseph Kaufman, double bass; Ko-ichiro Yamamoto, trombone; David Lawrence Ritt, trombone; Stephen Fissel, trombone TOTAL TIME ............................................................... 22:30 SEATTLESYMPHONY.ORG � & © 2016 Seattle Symphony Media. All rights reserved. Unauthorized copying, hiring, lending, public performance and broadcasting of this record prohibited without prior written permission from the Seattle Symphony. Benaroya Hall, 200 University Street, Seattle, WA 98101 MADE IN USA Photo: Larey McDaniel Larey Photo: SEATTLE SYMPHONY Founded in 1903, the Seattle Symphony is one of America’s leading symphony orchestras and is internationally acclaimed for its innovative programming and extensive recording history. Under the leadership -
The Evolution of the Performer Composer
CONTEMPORARY APPROACHES TO LIVE COMPUTER MUSIC: THE EVOLUTION OF THE PERFORMER COMPOSER BY OWEN SKIPPER VALLIS A thesis submitted to the Victoria University of Wellington in fulfillment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2013 Supervisory Committee Dr. Ajay Kapur (New Zealand School of Music) Supervisor Dr. Dugal McKinnon (New Zealand School of Music) Co-Supervisor © OWEN VALLIS, 2013 NEW ZEALAND SCHOOL OF MUSIC ii ABSTRACT This thesis examines contemporary approaches to live computer music, and the impact they have on the evolution of the composer performer. How do online resources and communities impact the design and creation of new musical interfaces used for live computer music? Can we use machine learning to augment and extend the expressive potential of a single live musician? How can these tools be integrated into ensembles of computer musicians? Given these tools, can we understand the computer musician within the traditional context of acoustic instrumentalists, or do we require new concepts and taxonomies? Lastly, how do audiences perceive and understand these new technologies, and what does this mean for the connection between musician and audience? The focus of the research presented in this dissertation examines the application of current computing technology towards furthering the field of live computer music. This field is diverse and rich, with individual live computer musicians developing custom instruments and unique modes of performance. This diversity leads to the development of new models of performance, and the evolution of established approaches to live instrumental music. This research was conducted in several parts. The first section examines how online communities are iteratively developing interfaces for computer music. -
Noise in Music Or Music in Noise? a Short Discussion on the Incorporation of “Other” Sounds in Music Making
University of Alberta Noise in Music or Music in Noise? A Short Discussion on the Incorporation of “Other” Sounds in Music Making Essay Submitted as part of the Music History exam of the Qualifying Exams, for the degree of Doctor in Music Composition Faculty of Arts Department of Music by Nicolás Alejandro Mariano Arnáez Edmonton, Alberta January 2017 “We affirm that the world’s magnificence has been enriched by a new beauty: the beauty of speed. A racing car whose hood is adorned with great pipes, like serpents of explosive breath— a roaring car that seems to ride on grapeshot is more beautiful than the Victory of Samothrace.” (Marinetti 1909) Introduction When a physical source produces periodic or aperiodic vibrations in the air within a certain frequency, and there are human ears near by, they receive a meaning assigned by our brain. When we have the necessity of verbalize the sonic image produced by those vibrations, we need to choose a word available in our language that best describes what we felt sonically. Words associated with this practice of describing what we perceive are commonly “sound”, “noise”, “music”, “tone”, and such. The question is, what does make us to choose within one word or another? Many inquiries will arise if we analyze our selection. For example, if we say “that is music” we may be implying that music is not tone, or noise, or even sound! Personally speaking, I find a deep and intimate sensation of peace when hearing the sound of water moving in a natural environment, it generates that specific feeling on my human brain and body. -
DVD Program Notes
DVD Program Notes Part One: Thor Magnusson, Alex Click Nilson is a Swedish avant McLean, Nick Collins, Curators garde codisician and code-jockey. He has explored the live coding of human performers since such Curators’ Note early self-modifiying algorithmic text pieces as An Instructional Game [Editor’s note: The curators attempted for One to Many Musicians (1975). to write their Note in a collaborative, He is now actively involved with improvisatory fashion reminiscent Testing the Oxymoronic Potency of of live coding, and have left the Language Articulation Programmes document open for further interaction (TOPLAP), after being in the right from readers. See the following URL: bar (in Hamburg) at the right time (2 https://docs.google.com/document/d/ AM, 15 February 2004). He previously 1ESzQyd9vdBuKgzdukFNhfAAnGEg curated for Leonardo Music Journal LPgLlCe Mw8zf1Uw/edit?hl=en GB and the Swedish Journal of Berlin Hot &authkey=CM7zg90L&pli=1.] Drink Outlets. Alex McLean is a researcher in the area of programming languages for Figure 1. Sam Aaron. the arts, writing his PhD within the 1. Overtone—Sam Aaron Intelligent Sound and Music Systems more effectively and efficiently. He group at Goldsmiths College, and also In this video Sam gives a fast-paced has successfully applied these ideas working within the OAK group, Uni- introduction to a number of key and techniques in both industry versity of Sheffield. He is one-third of live-programming techniques such and academia. Currently, Sam the live-coding ambient-gabba-skiffle as triggering instruments, scheduling leads Improcess, a collaborative band Slub, who have been making future events, and synthesizer design. -
MTO 20.1: Willey, Editing and Arrangement
Volume 20, Number 1, March 2014 Copyright © 2014 Society for Music Theory The Editing and Arrangement of Conlon Nancarrow’s Studies for Disklavier and Synthesizers Robert Willey NOTE: The examples for the (text-only) PDF version of this item are available online at: http://www.mtosmt.org/issues/mto.14.20.1/mto.14.20.1.willey.php KEYWORDS: Conlon Nancarrow, MIDI, synthesis, Disklavier ABSTRACT: Over the last three decades a number of approaches have been used to hear Conlon Nancarrow’s Studies for Player Piano in new settings. The musical information necessary to do this can be obtained from his published scores, the punching scores that reveal the planning behind the compositions, copies of the rolls, or the punched rolls themselves. The most direct method of extending the Studies is to convert them to digital format, because of the similarities between the way notes are represented on a player piano roll and in MIDI. The process of editing and arranging Nancarrow’s Studies in the MIDI environment is explained, including how piano roll dynamics are converted into MIDI velocities, and other decisions that must be made in order to perform them in a particular environment: the Yamaha Disklavier with its accompanying GM sound module. While Nancarrow approved of multi-timbral synthesis, separating the voices of his Studies and assigning them unique timbres changes the listener’s experience of the “resultant,” Tenney’s term for the fusion of multiple voices into a single polyphonic texture. Received January 2014 1. Introduction [1.1] Conlon Nancarrow’s compositional output from 1948 until his death in 1997 was primarily for the two player pianos in his studio in Mexico City. -
Nanc-In-A-Can Canon Generator. Supercollider Code Capable of Generating and Visualizing Temporal Canons Critically and Algorithmically
Nanc-in-a-Can Canon Generator. SuperCollider code capable of generating and visualizing temporal canons critically and algorithmically Diego Villaseñor de Cortina Alejandro Franco Briones UNAM McMaster University [email protected] [email protected] Abstract In the present paper a SuperCollider library designed to produce temporal canons, like the ones proposed by Conlon Nancarrow, is explored in order to create new temporal conceptions within the field of live coding. We will define temporal canon as a composition strategy that allows a poly-temporal audition by expressing a single musical idea at different speeds simultaneously. Likewise, our intention is to socialise the work of Nancarrow, often captured by a reduced academic niche, so it may be integrated into a broader and more di- verse context. In this paper a broad introduction to the library is provided that emphasises some of its sali- ent aspects that overlap with specific interests of live coders. By de-canonising the ideas of Nancarrow and approaching them from a heterodox and unconventional perspective we attempt to unravel understandings of time and rhythm beyond the scope of the music of Conlon Nancarrow as well as the practices of Mexican and international live coding communities. 1. INTRODUCTION “Contrary to common belief, perhaps time does not keep everything from happening all at once, but is the nucleus that holds all the mixed realities together.” Eleni Ikoniadou The program and its use instructions may be downloaded from the platform´s website. In there you can find an installation tutorial (in Spanish) and some links to examples of the program´s use1. -
Tracing Noise: Writing In-Between Sound by Mitch Renaud Bachelor
Tracing Noise: Writing In-Between Sound by Mitch Renaud Bachelor of Music, University of Toronto, 2012 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts in Interdisciplinary Studies in the Department of French, the School of Music, and Cultural, Social, and Political Thought Mitch Renaud, 2015 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Tracing Noise: Writing In-Between Sound by Mitch Renaud Bachelor of Music, University of Toronto, 2012 Supervisory Committee Emile Fromet de Rosnay, Department of French and CSPT Supervisor Christopher Butterfield, School of Music Co-Supervisor Stephen Ross, Department of English and CSPT Outside Member iii Abstract Supervisory Committee Emile Fromet de Rosnay (Department of French and CSPT) Supervisor Christopher Butterfield (School of Music) Co-Supervisor Stephen Ross (Department of English and CSPT) Outside Member Noise is noisy. Its multiple definitions cover one another in such a way as to generate what they seek to describe. My thesis tracks the ways in which noise can be understood historically and theoretically. I begin with the Skandalkonzert that took place in Vienna in 1913. I then extend this historical example into a theoretical reading of the noise of Derrida’s Of Grammatology, arguing that sound and noise are the unheard of his text, and that Derrida’s thought allows us to hear sound studies differently. Writing on sound must listen to the noise of the motion of différance, acknowledge the failings, fading, and flailings of sonic discourse, and so keep in play the aporias that constitute the field of sound itself. -
View Brochure (PDF)
A NORTHWEST SUMMER MAY 4–OCTOBER 15, 2006 6 EXHIBITIONS * 1 CELEBRATION A NORTHWEST SUMMER Public Opening Celebration Saturday, May 6, 10 a.m.–5 p.m. The Northwest offers a great way of life and remarkable history that deserves to be appreciated in a big way. Our special exhibit, A Northwest Summer, will do just that. To kick off the tribute, we’re hosting a fusion of art activities and entertainment that contribute to making this region special. Come join the celebration—enjoy an art activity, watch an Asian art demonstration, listen to live music and shop the eclectic, uniquely Northwest crafts of “I Heart Rummage.” For more information, check out seattleartmuseum.org. Director’s Welcome As we look forward—to the opening of above: Trimpin, U.S.A., born Germany 1951, drawing for Picnics, Rhythms and Vacations installation, 2006; cover: Trimpin, The Orange Piano, Lake Union, the Olympic Sculpture Park this fall and Seattle, 2003. Photo: Theo Bernardi. In this work, a hydrophone records underwater sound pollution, creating an audio signal, which becomes information played automatically by the piano. to the re-opening of the expanded downtown museum next spring—we have naturally looked back, reflecting on the amazing seventy-five years of growth that Trimpin: Picnics, Rhythms and Vacations the Seattle Art Museum has experienced. August 8–October 15, 2006 Milestones of that history are noted in the timeline, putting the past in context for Picnics, Rhythms and Vacations, 2006, a new installation by musician, sculptor and composer Trimpin, the celebrations in Volunteer Park this will be presented at the Seattle Asian Art Museum. -
Expressive Musical Robots : Building, Evaluating, and Interfacing with An
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Expressive Musical Robots: Building, Evaluating, and Interfacing with an Ensemble of Mechatronic Instruments By: Jim Murphy A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2014 Supervisory Committee Supervisor: Dr. Ajay Kapur (New Zealand School of Music, Victoria University of Wellington School of Engineering and Computer Science) Co-Supervisor: Dr. Dale A. Carnegie (Victoria University of Wellington School of Engineering and Computer Science) ©Jim W. Murphy, 2014 ii “Merlin himself, their elderly creator, said he had devoted years to these machines, his favorites, still unfinished.” James Gleick Abstract Expressive Musical Robots: Building, Evaluating, and Interfacing with an Ensemble of Mechatronic Instruments by Jim Murphy An increase in the number of parameters of expression on musical robots can result in an increase in their expressivity as musical instruments. This thesis focuses on the design, construction, and implementation of four new robotic instruments, each designed to add more parametric control than is typical for the current state of the art of musical robotics. The principles followed in the building of the four new instruments are scalable and can be applied to musical robotics in general: the techniques exhibited in this thesis for the construction and use of musical robotics can be used by composers, musicians, and installation artists to add expressive depth to their own works with robotic instruments. -
A Comparison of Solenoid-Based Strategies for Robotic Drumming
A COMPARISON OF SOLENOID-BASED STRATEGIES FOR ROBOTIC DRUMMING Ajay Kapur 1,2,3 Trimpin Eric Singer2 Afzal Suleman1 George Tzanetakis1 Music Intelligence and Sound Technology Interdisciplinary Centre (MISTIC) 1 University of Victoria, Victoria, British Columbia, Canada League of Electronic Urban Music Robots (LEMUR) 2 Brooklyn, New York, USA KarmetiK Technology (A Division of KarmetiK LLC) 3 Reno, Nevada, USA ABSTRACT drums gives the students a more realistic paradigm for concentrated rehearsal. Solenoids are important components of robotic A number of different drumming robots have been drumming systems and several designs have been designed in the academic and artistic communities. proposed. In this paper, we compare different designs Researchers at Harvard University struggled to create an in terms of speed and dynamic range and discuss the accurate robotic drum roll [1], while next door tradeoffs involved. The evaluation is performed in the researchers at MIT developed Cog to control the context of MahaDeviBot, a custom built 12-armed MIDI number of times a stick can bounce [2]. Gil Weinberg controlled mechanical device that performs a variety of developed Haile to explore human to robot interaction Indian folk instruments, including frame-drums, bells, [3]. Mitsuo Kawato continues to develop hydraulic and shakers. To measure speed and dynamic range a systems for humanoid drumming [4]. Many artists have haptic robotic feedback system using piezo sensors was presented a number of different pieces including built. The evaluation methods presented are modular Baginsky’s “Thelxiapeia” for modified rototom [5], and can be administered to any hyperinstrument, new MacMurtie’s life size sculptures [6], Gordon Monohans interface or robotic system to inform composers about “Machine Matrix” [7], and Miles van Dorssen’s “Cell the strengths and limitation of different designs to guide Project” including an 8 octave Xylophone, Bamboo composition and performance. -
Noise on the Grid: Rhythmic Pulse in Experimental And
NOISE ON THE GRID: RHYTHMIC PULSE IN 2.1. Noise as Irregular Vibrations While Russolo’s distribution was the incorporation of EXPERIMENTAL AND ELECTRONIC NOISE MUSIC extra-musical sound in music, John Cage took a step In the first chapter of his classic writing on the further by exhausting this idea and “extending the physiological basis of the music theory, The Sensations process of incorporation” to everything potentially Mo H. Zareei Ajay Kapur Dale A. Carnegie of Tone, Herman Helmholtz argues that the differences audible [12]. In other words, if Luigi Russolo and the between noises and musical tones are rooted in our aural Futurists ‘brought incidental noise to the foreground, Victoria University of California Institute of the Arts Victoria University of John Cage would give permission to all composers to Wellington Valencia CA, USA Wellington perceptions, stating that musical tones are perceived as periodic, and noises are perceived as non-periodic use any sound in composing music’[3]. Nevertheless, New Zealand School of Music Wellington, New Zealand motions [11]. However, in Russolo’s view, although Cage himself credits Varese, who at the same time was leading the European front, “for having fathered irregularity of motions in terms of time and intensity still vouches for the difference between “sound” and noise”[12]. Varese, who called music “organized ABSTRACT his Futurist Manifesto in 1913. Calling for integration of “noise”, it is not ‘sufficient enough to make a sharp sound”, found “electronics” a new “liberating medium” more dissonant, stranger and harsher sounds into music, distinction’ [16]. As Trevor Wishart suggests, this that would help liberate sound from “the arbitrary, This paper presents a discussion on the effect of metric Russolo tried to ‘conquer the infinite variety of noise- distinction ‘is a property of the way we hear rather than paralyzing tempered system” [24]. -
'1/F Noise' in Music
"1/f noise"in music:Music from 1/f nOiSe RiChardF. Vossa) and JohnClarke Departmentof Physics, University of California andMaterials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California94720 (Received30January 1976; revised 8 September 1977} Thespectral density offluctuations inthe audio power ofmany musical selections andof English speech variesapproximately asl/f (f isthe frequency) down to a frequencyof5X 10 -4 Hz.This resultAmplies thatthe audio-power fluctuations arecorrelated over all times in thesame manner as"l/f noise"in electroniccomponents. Thefrequency fluctuations ofmusic also have a 1/f spectraldensity atfrequencies down tothe inverse ofthe length of the piece of music. The frequency fluctuations ofEnglish sp•, h have a quitedifferent behavior, with a singlecharacteristic timeof about 0.1 s, the average length of a syllable.The observations onmusic suggest that 1/f noiseisa goodchoice for stochastic composition. Compositionsin which the frequency andduration ofeach note were determined by1/f noisesources soundedpleasing. Those generated bywhite-noise sources sounded toorandom, while those generated by l/f 2 noisesounded too correlated. PACSnumbers: •,3.75.Wx, 43.60.Cg, 43.75.--z, 43.70.--h INTRODUCTION A secondcharacterization of the average behavior of V(t) is the autocorrelationfunction, (V(t)V(t+ 7)). The spectral density of many physical quantities varies as 1/f •, wheref is the frequencyand 0.5• < 7 •<1.5, over (V(t)V(t+•')) is a measureOf how the fluctuatingquanti- manydecades. Thusvacuum tubes, • carbonresistors, a ties at times t and t + ß are related. For a stationary semiconductingdevices, s continuous4's or discontinuous6 process(V(t)V(t + •)) is independentof t anddepends metal films, ionic solutions,? films at the supercondUct- only on the time difference 7.