Timber Frame Design the Art of Engineering an Exposed Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Truss Deflection
Truss Deflection Truss deflection may be something you do not give much thought to when designing trusses. Unfortunately, meeting the code permitted deflection ratio does not always guarantee satisfactory performance. Regardless of what the codes say, most people regard large levels of deflection as a sign of structural deficiency. Paying attention to deflection may be the key to whether your customer is satisfied with you as a supplier and continues to buy your products. Deflection of a truss is generally based on the amount of vertical movement from its original position due to the loads applied to the members. The amount of deflection depends on the span and stiffness of the members, and the magnitude of the loads applied. Codes provide the maximum allowable deflection limits for floor and roof trusses, which is based solely on the truss span. Generally, for roof trusses, the deflection in inches due to live load cannot exceed the span in inches divided by 240 (L/240) and due to total load L/180. For floor trusses, the deflection in inches due to live load cannot exceed the span in inches divided by 360 (L/360) and due to total load L/240. To meet code deflection criteria, a 40-foot span roof truss could have live load deflection 2 inches, which does not ensure satisfactory performance. MiTek engineers recommend using the deflection limits listed below. Page 1 of 5 10 /12 /20 20 Truss Deflection Roof Trusses should use the following settings: In MiTek 20/20 Engineering go to Setup – Job – Design Info – Deflection: In Structure with Truss Design go to File – Setup – Job Properties - Job Settings – Design – Building Code Settings: Please note the settings for cantilever and overhang are half that of the main span. -
TFEC 1-2019 Standard for Design of Timber Frame Structures And
TFEC 1-2019 Standard for Design of Timber Frame Structures and Commentary TFEC 1-2019 Standard Page 1 January 2019 TFEC 1-2019 Standard for Design of Timber Frame Structures and Commentary Timber Frame Engineering Council Technical Activities Committee (TFEC-TAC) Contributing Authors: Jim DeStefano Jeff Hershberger Tanya Luthi Jaret Lynch Tom Nehil Dick Schmidt, Chair Rick Way Copyright © 2019, All rights reserved. Timber Framers Guild 1106 Harris Avenue, Suite 303 Bellingham, WA 98225 TFEC 1-2019 Standard Page 2 January 2019 Table of Contents 1.0 General Requirements for Structural Design and Construction .......................................6 1.1 Applicability and Scope ........................................................................................ 6 1.2 Liability ................................................................................................................. 6 1.3 General Requirements ........................................................................................... 7 1.3.1 Strength ........................................................................................................... 7 1.3.2 Serviceability ................................................................................................... 7 1.3.3 General Structural Integrity ............................................................................. 7 1.3.4 Conformance with Standards .......................................................................... 7 1.4 Design Loads ........................................................................................................ -
Use of Wood Residue in Making Reconstituted Board Products
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1959 Use of wood residue in making reconstituted board products Suthi Harnsongkram The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Harnsongkram, Suthi, "Use of wood residue in making reconstituted board products" (1959). Graduate Student Theses, Dissertations, & Professional Papers. 3981. https://scholarworks.umt.edu/etd/3981 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE USE OF WOOD RESIDUE IN MAKING RECONSTITUTED BOMD HiODUCTS SUTHI HARNSOMJKRAM B.S.F., Unlveinsity of the Philippines, 1952 Presented in partial fulfillment of the requirements for the degree of Master of Forestry MONTANA STATE UNIVERSITY 1959 Approved Dean, Graduate School I 3 I960 Date UMI Number: EP34193 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT " DlM«litionP«ibWfca ^ UMI EP34193 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. -
Truss Terminology
TRUSS TERMINOLOGY BEARING WIDTH The width dimension of the member OVERHANG The extension of the top chord beyond the providing support for the truss (usually 3 1/2” or 5 1/2”). heel joint. Bearing must occur at a truss joint location. PANEL The chord segment between two adjacent joints. CANTILEVER That structural portion of a truss which extends PANEL POINT The point of intersection of a chord with the beyond the support. The cantilever dimension is measured web or webs. from the outside face of the support to the heel joint. Note that the cantilever is different from the overhang. PEAK Highest point on a truss where the sloped top chords meet. CAMBER An upward vertical displacement built into a truss bottom chord to compensate for defl ection due to dead load. PLATE Either horizontal 2x member at the top of a stud wall offering bearing for trusses or a shortened form of connector CHORDS The outer members of a truss that defi ne the plate, depending on usage of the word. envelope or shape. PLUMB CUT Top chord cut to provide for vertical (plumb) TOP CHORD An inclined or horizontal member that establishes installation of fascia. the upper edge of a truss. This member is subjected to compressive and bending stresses. SCARF CUT For pitched trusses only – the sloping cut of upper portion of the bottom chord at the heel joint. BOTTOM CHORD The horizontal (and inclined, ie. scissor trusses) member defi ning the lower edge of a truss, carrying SLOPE (PITCH) The units of horizontal run, in one unit of ceiling loads where applicable. -
The Wood Lumber Company
Te Wood Lumber Company by Deborah Grifn Scanlon Tis story starts with Edmund Wood, who owned One hundred and three years later, Falmouth has the Greene and Wood Lumber Yard, a chain of about 32,000 year-round residents, too many lumber warehouses based in New Bedford that dwellings to count, LED streetlights and a 60-per- dated back to 1835. In 1912 Mr. Wood saw son police department. Te Miskells - Joseph’s potential for growth in Falmouth and decided to grandson, Dana Miskell, and his wife Eileen - still open a branch here. He bought James Cameron’s own, manage, and welcome new and old customers small lumber yard on Locust Street and named it to Te Wood Lumber Company. Te Wood Lumber Company. Te lumber business that Edmund Wood bought on Locust Street from Mr. Cameron was originally on King Street. Owned since at least 1875 by B. B. King, for whom the street was named, the business was purchased in 1895 by Mr. Cameron. A native of Scotland, Mr. Cameron came to Fal- mouth by way of Naushon Island, where he was superintendent of the Forbes’s farm. He operated the lumber business on King Street until 1909, when he moved it to Locust Street. Te frst build- ing he put up was a large cypress shed which was in Te frst Wood Lumber Co. ad in Te Enterprise, March use for many years. In 1912, Mr. Cameron sold his 12, 1912 business to Mr. Wood and then lived in Falmouth Joseph B. Miskell, the 22-year-old son of James in retirement for another 25 years. -
Read Book Finish Carpentry
FINISH CARPENTRY PDF, EPUB, EBOOK Ted Cushman,Clayton DeKorne | 160 pages | 06 Nov 2003 | Taunton Press Inc | 9781561585366 | English | Connecticut, United States Finish Carpentry PDF Book They must be able to place items evenly and accurately, because they will be visible in the future. SteveAllenOcala December 3, Crown Molding Baseboards Painting. Finish carpenters use a wide variety of tools. Login: Forgot password? Eventually, they are allowed to work on minor finish projects, and as they develop competence, they are assigned to more challenging and complex tasks. Central Florida's Crown Moulding Specialists. For example, the green movement is driving designers and homeowners to bamboo , eucalyptus, and other fast-growth woods for a range of finish carpentry work. We offer complete installation and painting of a variety of interior decorative trim mouldings. This last tool is one of the most important for a finish carpenter to make the angled cuts the job requires. Hand tools are mostly used to cut and fit molding; however, some carpenters use power tools to save time and effort. At Steve Allen construction, we are the experts in finish carpentry. When things don't quite match in rough carpentry, it's acceptable, as long as they are solid. Try This Affordable Option. Finish carpenters typically:. Another large portion of finish carpentry work includes putting up the trim surrounding doors and windows, as well as installing each unit so it is level and operates correctly. Finish carpentry is a physically demanding job, but a rewarding one that offers obvious, fast, and pleasing results. A homeowner can also work with finish carpenters on finishing a new home or remodeling and existing house. -
Moulding Catalog 50 Years of PASSION & QUALITY
’ , . Moulding Catalog 50 years of PASSION & QUALITY A passion for quality and almost 50 years of custom woodworking drives Roy’s Wood Products, RWP, to manufacture some of the best wood products in the industry. Our grandfather Roy Brazell, Sr., after serving in WWII, started building cabinets and other products for local craftsmen and contractors. His son, Roy Brazell, Jr. continued to grow the business by focusing on what the customer needed and working hard for timely delivery. As a result of hard work, attention to quality, and the blessings of our Lord and Savior Jesus Christ, RWP has grown into what it is today. We are looking forward to providing you with the custom cabinet doors, custom mouldings, hardwood flooring or any other products you might find in the pages of this catalog. Thank you for your business. Table of Contents Crown Moulding...........................................................................................................................................................5-17 Cove Crown...................................................................................................................................................................19-28 Doors & Windows .............................................................................................................................................................31 Casings..........................................................................................................................................................................33-43 -
Wood Preservation: Improvement of Mechanical Properties by Vacuum Pressure Process
International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-2, Issue-4, April 2015 Wood Preservation: Improvement of Mechanical Properties by Vacuum Pressure Process Md. Fazle Rabbi, Md. Mahmudul Islam, A.N.M. Mizanur Rahman timber. The amount of damage by the second is negligible in comparison to the first enemies. By applying proper Abstract— Wood, being a biological product, is liable to preservation technique, it is possible to protect the timber deterioration unless it is properly protected. The main reasons of deterioration of timber in service are decay due to fungal from these enemies. Preservation is the only appropriate way infection, attack by insects (borers and white ants), marine to make the timber toxic and protect it [1]. organisms and fire. Protection of wood is carried out from these agents by using preservative which can properly be used by proper design of preservation plant. Proper design of such plant The primary importance of the preservation treatment of is very essential to increase the lifespan of wood economically. wood is to increase the life of the material in service, thus Among the various wood preservation techniques, pressure decreasing the ultimate cost of the product and avoiding the processes are the most permanent technique around the world need for frequent replacements [2]. The extension of the today. In the Full cell process, wood is allowed to absorb as much liquid chemicals as possible during the pressure period, service life of timber by the application of appropriate thus leaving the maximum concentration of preservatives in the preservatives has another significant effect in the field of treated area. -
Wood Properties of Teak (Tectona Grandis) from a Mature Unmanaged Stand in East Timor
J Wood Sci (2011) 57:171–178 © The Japan Wood Research Society 2011 DOI 10.1007/s10086-010-1164-8 ORIGINAL ARTICLE Isabel Miranda · Vicelina Sousa · Helena Pereira Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor Received: May 5, 2010 / Accepted: November 5, 2010 / Published online: March 17, 2011 Abstract The wood quality from 50- to 70-year-old Tectona carpentry. Teak wood is moderately hard and heavy, seasons grandis trees from an unmanaged forest in East Timor was rapidly, kiln dries well, and has overall good machining prop- assessed. The aim was to evaluate teak in mature stands that erties. It is prized mostly for its natural durability and high had undergone uncontrolled disturbances, e.g., fi re and local dimensional stability in association with pleasant aesthetics. community usage. Heartwood represented 91% of the tree Some end-user requirements include high heartwood content radius at a height of 1.7 m, and sapwood contained on average (at least 85%) and wood density (> 675 kg/m3) and suffi cient nine rings. The mean ring width showed within-tree and strength [modulus of rupture (MOR) > 135 N/mm2].1 between-tree variability. The chemical compositions of heart- Teak grows naturally in Southeast Asia and was intro- wood and sapwood were similar. Within-tree chemical varia- duced into other tropical and subtropical regions in Austra- tion occurred only in terms of extractives, which increased lia, Africa, and Latin America. Teak is now one of the most from the pith (8.3%) to the heartwood–sapwood transition important species for tropical plantation forestry, mostly (12.7%) and decreased in the sapwood (9.2%). -
Tall Wood Buildings in the 2021 IBC up to 18 Stories of Mass Timber
Tall Wood Buildings in the 2021 IBC Up to 18 Stories of Mass Timber Scott Breneman, PhD, SE, WoodWorks – Wood Products Council • Matt Timmers, SE, John A. Martin & Associates • Dennis Richardson, PE, CBO, CASp, American Wood Council In January 2019, the International Code Council (ICC) approved a set of proposals to allow tall wood buildings as part of the 2021 International Building Code (IBC). Based on these proposals, the 2021 IBC will include three new construction types—Type IV-A, IV-B and IV-C—allowing the use of mass timber or noncombustible materials. These new types are based on the previous Heavy Timber construction type (renamed Type IV-HT) but with additional fire-resistance ratings and levels of required noncombustible protection. The code will include provisions for up to 18 stories of Type IV-A construction for Business and Residential Occupancies. Based on information first published in the Structural Engineers Association of California (SEAOC) 2018 Conference Proceedings, this paper summarizes the background to these proposals, technical research that supported their adoption, and resulting changes to the IBC and product-specific standards. Background: ICC Tall Wood Building Ad Hoc Committee Over the past 10 years, there has been a growing interest in tall buildings constructed from mass timber materials (Breneman 2013, Timmers 2015). Around the world there are now dozens of timber buildings constructed above eight stories tall. Some international examples include: Building Completion Location Stories Name Date Stadhaus -
WFD301824 Accessory Configurations
Accessory Configurations CABINET NOMENCLATURE WFD301824 CABINET TYPE WIDTH HEIGHT DEPTH ex. W3036 = Wall Cabinet: 30-in wide x 36-in tall Width x Height x Depth (depth is standard 12-in, so is not noted) ex. 4BD18 = Four Base Drawer Cabinet: 18-in wide Height x Depth not noted (these are standard 24-in deep x 34 1/2-in high) • • • BASE CABINETS: Standard 34 1/2-in tall (before countertop) and 24-in deep (not including door/drawer faces). WALL CABINETS: Standard 12-in depth. Latitude offers an additional standard 15-in depth. TALL CABINETS: Available in 84, 90, 93, and 96-in heights. 24-in deep with select 12-in deep options. VANITY CABINETS: Available in 32-in and 34 1/2-in heights (not including countertop). Both are 21-in deep. Cabinet sizing uses a 3-in increment system for width, height, and depth. Latitude Cabinets offers select base and wall cabinets in 1 1/2-in width increments to allow for design flexibility. Height, width, and depth reductions are also available on most cabinets. TOE SKINS Toe Skin | TK8, TTK8, TKM8, TTKM8 • 1/4” thick finished material used for field installation to cover toe kick area of cabinets. • Available in woods and laminates to match cabinetry. • 8 foot lengths only. • Grain runs long dimension. • TK8 for standard height = 4 1/2” height. o TTK8 for 8” heights. o TKM8 is brushed steel finish thermofoil 4 1/2” height. o TTKM8 is brushed steel finish thermofoil 8” height. • For contemporary design, specify the brushed steel finish TKM8. -
Restoration of the American Chestnut in New Jersey
U.S. Fish & Wildlife Service Restoration of the American Chestnut in New Jersey The American chestnut (Castanea dentata) is a tree native to New Jersey that once grew from Maine to Mississippi and as far west as Indiana and Tennessee. This tree with wide-spreading branches and a deep broad-rounded crown can live 500-800 years and reach a height of 100 feet and a diameter of more than 10 feet. Once estimated at 4 billion trees, the American chestnut Harvested chestnuts, early 1900's. has almost been extirpated in the last 100 years. The U.S. Fish and Wildlife Service, New Jersey Field Value Office (Service) and its partners, including American Chestnut The American chestnut is valued Cooperators’ Foundation, American for its fruit and lumber. Chestnuts Chestnut Foundation, Monmouth are referred to as the “bread County Parks, Bayside State tree” because their nuts are Prison, Natural Lands Trust, and so high in starch that they can several volunteers, are working to American chestnut leaf (4"-8"). be milled into flour. Chestnuts recover the American chestnut in can be roasted, boiled, dried, or New Jersey. History candied. The nuts that fell to the ground were an important cash Chestnuts have a long history of crop for families in the northeast cultivation and use. The European U.S. and southern Appalachians chestnut (Castanea sativa) formed up until the twentieth century. the basis of a vital economy in Chestnuts were taken into towns the Mediterranean Basin during by wagonload and then shipped Roman times. More recently, by train to major markets in New areas in Southern Europe (such as York, Boston, and Philadelphia.