CARDIOVASCULAR Systemic Circulation

Total Page:16

File Type:pdf, Size:1020Kb

CARDIOVASCULAR Systemic Circulation DANIL HAMMOUDI. MD CARDIOVASCULAR Systemic Circulation Figure 19.19 Pulmonary Circulation Figure 19.18b Internal carotid artery External carotid artery Vertebral artery Common carotid arteries Subclavian artery Brachiocephalic trunk Aortic arch Axillary artery Coronary artery Ascending aorta Brachial artery Thoracic aorta Abdominal aorta Branches of celiac trunk: Superior mesenteric artery • Left gastric artery Gonadal artery • Splenic artery • Common hepatic artery Inferior mesenteric artery Renal arter y Radial artery Common iliac artery External iliac artery Ulnar artery Internal iliac artery Digital arteries Deep palmar arch Superficial palmar arch Femoral artery Popliteal artery Anterior tibial artery Posterior tibial artery Arcuate artery (b) Figure 19.20b Figure 19.20a Figure 19.21a Superficial Ophthalmic artery temporal artery Basilar artery Maxillary artery Occipital artery Facial artery Vertebral artery Internal carotid artery Lingual artery External Suppyerior thyroid carotid artery Common artery carotid artery Larynx Thyrocervical Thyroid gland trunk (overlying trachea) CtCostocerv ilical trunk Clavicle (cut) Subclavian artery Brachiocephalic Axillary trunk artery Internal thoracic artery (b) Figure 19.21b ICA Internal Carotid A & branches (the ICA bifurcates into the ACA & MCA) •ACA - Anterior cerebral artery •A-Com - Anterior communicating Artery •MCA - Middle cereb ral artery •P-Com - Posterior communicating artery VA Vertebral artery (the left and right vertebral arteries join to form the basilar artery) Basilar artery & its branches •PCA - Posterior cerebral artery •SCA - Superior cerebellar artery •PICA - Posterior inferior cerebellar artery Figure 19.21d Common carotid Vertebral artery arteries Thyrocervical trunk Right subclavian Costocervical trunk artery Suprascapular artery Left subclavian Thoracoacromial artery artery Axillary artery Left axillary artery Subscapular artery Brachiocephalic Posterior circumflex trunk humeral artery Anterior circumflex Posterior humeral artery intercostal arteries Brachial artery Anterior Deep artery intercostal of arm artery Internal thoracic Common artery interosseous artery Descending aorta Radial artery Lateral thoracic Ulnar artery artery Deep palmar arch Superficial palmar arch Digitals (b) Figure 19.22b Arteries of the Abdomen Liver (cut) Diaphragm Inferior vena cava Esoppghagus Celiac trunk Left gastric Hepatic artery artery proper Left gastroepiploic Common hepatic artery artery Splenic artery Right gastric artery Spleen Gallbladder Stomach Gastroduodenal Pancreas artery (major portion Right gastroepiploic lies posterior to stomach) artery Duodenum Superior Abdominal aorta mesentiteric artery (b) Figure 19.23b Arteries of the Abdomen Opening Diaphragm for inferior vena cava Inferior phrenic artery Hia tus (open ing ) for esophagus Middle suprarenal artery Celiac trunk Renal artery Kidney Superior mesenteric artery Lumbar arteries Gonadal (testicular or ovarian) artery Abdominal aorta Inferior mesenteric artery MdiMedian sacral Common iliac artery artery Ureter (c) Figure 19.23c Transverse colon Celiac trunk Superior mesenteric artery Middle colic artery Intestinal arteries Left colic artery Right colic artery Inferior Ileocolic artery mesenteric artery Aorta Ascending colon Sigmoidal arteries Descending colon Ileum Left common Superi or r ectal iliac art ery artery Cecum Sigmoid colon Appendix Rectum (d) Arteries of the Abdomen Figure 19.23d LoLo Art w w erie Common iliac artery er Internal iliac artery Superior gluteal artery External iliac artery L L s s Deep artery of thigh Popliteal imb of LtLatera l c ircumfl ex artery femoral artery Medial circumflex Anterior femoral artery tibial t s Obturator artery artery he Femoral artery Posterior Fibu lar Adductor hiatus tibial artery artery Popliteal artery Dorsalis Lateral pedis artery plantar (from top artery of foot) Anterior tibial artery Medial Plantar plantar arch Posterior tibial artery artery Fibular artery (c) Dorsalis pedis artery Arcuate artery Metatarsal arteries (b) Figure 19.24b, c Dural sinuses Subclavian vein External jugular vein Right and left VtblVertebral ve in brachiocephalic veins Internal jugular vein Cephalic vein Superior vena cava Brachial vein Axillary vein Basilic vein Great cardiac vein Splenic vein Hepatic veins Median cubital vein Hepatic portal vein Superior mesenteric Renal vein vein Inferior mesenteric vein Inferior vena cava Ulnar vein Radial vein Digital veins Internal iliac vein Common iliac vein External iliac vein Femoral vein Great saphenous vein Popliteal vein Posterior tibial vein Anterior tibial vein Fibu lar vei n Dorsal venous arch Dorsal digital (b) veins Figure 19.25b Figure 19.26b vein oral vein p Ophthalmic vein Superficial tem Facial vein Occipital vein Posterior auricular vein External jugular vein Vertebral vein Internal jugular vein Superior and middle thyroid veins Brachiocephalic vein Subclavian vein Superior vena cava (b) Veins of the Head and Neck Veins of the Brain Superior sagittal sinus Falx cerebri Inferior sagittal sinus Straight sinus Cavernous sinus Junction of sinuses Transverse sinuses Sigmoid sinus Jugular foramen Right internal (c) jugular vein Figure 19.26c Veins of the Upper LimbsInternal jugular and vein External jugular vein BrachiocephalicThora veinsx Left subclavian vein Right subclavian vein Superior vena cava Ax illary ve in Azygos vein Brachial vein Accessory hemiazygos vein Cephalic vein Hemiazygos vein Basilic vein Posterior itintercos tltals Inferior Median vena cava cubital vein Ascending lumbar vein Median antebrachial Basilic vein vein Ulnar vein Cephalic vein Deep palmar Radial venous arch vein Superficial palmar venous arch Digital veins (b) Figure 19.27b Veins of the Abdomen Inferior Hepatic veins phrenic vein Inferior vena cava Left Right suprarenal vein suprarenal vein Renal veins Left ascending Rig ht lblumbar vei n gonadal vein Lumbar veins Left gonadal vein Common iliac vein External iliac vein Internal iliac vein (b) Figure 19.28b Hepatic veins Gastric veins Liver Spleen Inferior vena cava Hepatic portal vein Splenic vein Right gastroepiploic vein Inferior mesenteric vein Superior mesenteric vein SllittiSmall intestine Large intestine Rectum Veins of the (c) Abdomen Figure 19.28c Common iliac vei n Internal iliac vein External iliac vein Inguinal ligament Femoral vein Great saphenous vein (superficial) Great saphenous vein Popliteal vein Popliteal vein Anterior tibial vein Fibular (peroneal) vein Fibular (peroneal) Small saphenous vein vein (superficial) AtAnter ior tibiltibial vei n Posterior tibial vein Dorsalis pedis vein Plantar veins Dorsal venous arch Plantar arch Metatarsal veins Digital veins (b) (c) Figure 19.29b, c Figure 19.15 Figure 19.16 Figure 19.17 Figure 19.19 Figure 19.21b Figure 19.22a Figure 19.22b Figure 19.23a Figure 19.23b Figure 19.23c Figure 19.23d Figure 19.24a Figure 19.24b, c Figure 19.25a Figure 19.25b Figure 19.26a Figure 19.26b, c Figure 19.26b Figure 19.26c Figure 19.27a Figure 19.27b Figure 19.28a Figure 19.28b Figure 19.28c Figure 19.29a Figure 19.29b, c Figure UN 19.1.
Recommended publications
  • Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat
    IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 10, Issue 1 Ver. I (January. 2017), PP 46-53 www.iosrjournals.org Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat Reda Mohamed1, 2*, ZeinAdam2 and Mohamed Gad2 1Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, Trinidad and Tobago. 2Anatomy and Embryology Department, Faculty of Veterinary Medicine, Beni Suef University Egypt. Abstract: The main purpose of this study was to convey a more precise explanation of the arterial supply of the intestinal tract of the goat. Fifteen adult healthy goats were used. Immediately after slaughtering of the goat, the thoracic part of the aorta (just prior to its passage through the hiatus aorticus of the diaphragm) was injected with gum milk latex (colored red) with carmine. The results showed that the duodenum was supplied by the cranial pancreaticoduodenal and caudal duodenal arteries. The jejunum was supplied by the jejunal arteries. The ileum was supplied by the ileal; mesenteric ileal and antimesenteric ileal arteries. The cecum was supplied by the cecal artery. The ascending colon was supplied by the colic branches and right colic arteries. The transverse colon was supplied by the middle colic artery. The descending colon was supplied by the middle and left colic arteries. The sigmoid colon was supplied by the sigmoid arteries. The rectum was supplied by the cranial; middle and caudal rectal arteries. Keywords: Anatomy,Arteries, Goat, Intestine I. Introduction Goats characterized by their high fertility rate and are of great economic value; being a cheap meat, milk and some industrial substances.
    [Show full text]
  • PERIPHERAL VASCULATURE Average Vessel Diameter
    PERIPHERAL VASCULATURE Average Vessel Diameter A Trio of Technologies. Peripheral Embolization Solutions A Single Solution. Fathom™ Steerable Guidewires Total Hypotube Tip Proximal/ UPN Length (cm) Length (cm) Length (cm) Distal O.D. Hepatic, Gastro-Intestinal and Splenic Vasculature 24 8-10 mm Common Iliac Artery 39 2-4 mm Internal Pudendal Artery M00150 900 0 140 10 10 cm .016 in 25 6-8 mm External Iliac Artery 40 2-4 mm Middle Rectal M00150 901 0 140 20 20 cm .016 in 26 4-6 mm Internal Iliac Artery 41 2-4 mm Obturator Artery M00150 910 0 180 10 10 cm .016 in 27 5-8 mm Renal Vein 42 2-4 mm Inferior Vesical Artery 28 43 M00150 911 0 180 20 20 cm .016 in 15-25 mm Vena Cava 2-4 mm Superficial Epigastric Artery 29 44 M00150 811 0 200 10 10 cm pre-shaped .014 in 6-8 mm Superior Mesenteric Artery 5-8 mm Femoral Artery 30 3-5 mm Inferior Mesenteric Artery 45 2-4 mm External Pudendal Artery M00150 810 0 200 10 10 cm .014 in 31 1-3 mm Intestinal Arteries M00150 814 0 300 10 10 cm .014 in 32 Male 2-4 mm Superior Rectal Artery A M00150 815 0 300 10 10 cm .014 in 33 1-3 mm Testicular Arteries 1-3 mm Middle Sacral Artery B 1-3 mm Testicular Veins 34 2-4 mm Inferior Epigastric Artery Direxion™ Torqueable Microcatheters 35 2-4 mm Iliolumbar Artery Female 36 2-4 mm Lateral Sacral Artery C 1-3 mm Ovarian Arteries Usable 37 D UPN Tip Shape RO Markers 3-5 mm Superior Gluteal Artery 1-3 mm Ovarian Veins Length (cm) 38 2-4 mm Inferior Gluteal Artery E 2-4 mm Uterine Artery M001195200 105 Straight 1 M001195210 130 Straight 1 M001195220 155 Straight 1 Pelvic
    [Show full text]
  • Vessels and Circulation
    CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels.
    [Show full text]
  • Ascending Aorta to Intestinal Artery Bypass: Technical Aspects
    EJVES Extra 9, 13–15 (2005) doi:10.1016/j.ejvsextra.2005.01.003, available online at http://www.sciencedirect.com on SHORT REPORT Ascending Aorta to Intestinal Artery Bypass: Technical Aspects L. Chiche* and E. Kieffer Department of Vascular Surgery, Pitie´-Salpeˆtrie`re University Hospital, Assistance Publique-Hoˆpitaux de Paris, Paris, France We describe the ascending aorta as an inflow in patients who need a mesenteric bypass and in whom the ascending aorta is the only remaining non-diseased segment. This operation was performed in five patients. Introduction interspace, is the preferred approach. Partial sterno- tomy can be extended by dividing the third costal A number of techniques can be used to treat chronic cartilage or by adding oblique sternotomy. Total intestinal ischemia.1,2 We use the ascending aorta as an sternotomy is necessary if access to the aortic arch or inflow in patients in whom the supraceliac, descend- supra-aortic trunks is required. ing thoracic aorta, the abdominal aorta or iliac arteries Median or subcostal laparotomy provides good are unsuitable due to the presence of extensive lesions access to intestinal artery lesions.1 The celiac trunk or previous surgery. The technique described here was (CT) can be exposed by the interhepatogastric route. performed in five patients (2.4%) out of 211 in whom Its origin is exposed after incision of the right crus of 309 intestinal artery revascularization procedures the diaphragm and division of the arcuate ligament. were carried out between 1990 and 2004. It is similar The superior mesenteric artery (SMA) can be to the classical technique of ascending aorta-abdomi- approached by the pre- or sub-duodenal intramesen- nal aorta bypass used in the management of thoraco- teric route or by a route between duodenum and 3 abdominal aortic lesions.
    [Show full text]
  • Blood Vessels and Circulation
    19 Blood Vessels and Circulation Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Functional Anatomy of Blood Vessels Learning Outcomes 19.1 Distinguish between the pulmonary and systemic circuits, and identify afferent and efferent blood vessels. 19.2 Distinguish among the types of blood vessels on the basis of their structure and function. 19.3 Describe the structures of capillaries and their functions in the exchange of dissolved materials between blood and interstitial fluid. 19.4 Describe the venous system, and indicate the distribution of blood within the cardiovascular system. © 2018 Pearson Education, Inc. Module 19.1: The heart pumps blood, in sequence, through the arteries, capillaries, and veins of the pulmonary and systemic circuits Blood vessels . Blood vessels conduct blood between the heart and peripheral tissues . Arteries (carry blood away from the heart) • Also called efferent vessels . Veins (carry blood to the heart) • Also called afferent vessels . Capillaries (exchange substances between blood and tissues) • Interconnect smallest arteries and smallest veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Two circuits 1. Pulmonary circuit • To and from gas exchange surfaces in the lungs 2. Systemic circuit • To and from rest of body © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits 1. Right atrium (entry chamber) • Collects blood from systemic circuit • To right ventricle to pulmonary circuit 2. Pulmonary circuit • Pulmonary arteries to pulmonary capillaries to pulmonary veins © 2018 Pearson Education, Inc. Module 19.1: Blood vessels and circuits Circulation pathway through circuits (continued) 3. Left atrium • Receives blood from pulmonary circuit • To left ventricle to systemic circuit 4.
    [Show full text]
  • Gonadal Vein Embolization Diagnosing and Treating Pelvic Congestion Syndrome
    COVER STORY Gonadal Vein Embolization Diagnosing and treating pelvic congestion syndrome. BY SANDEEP BAGLA, MD ifteen percent of all outpatient gynecologic visits and 30% of patients who present with pelvic pain are secondary to pelvic congestion syndrome (PCS). Unfortunately, this disease is often overlooked, with Fpatients frequently undergoing an exhaustive evaluation before being diagnosed with PCS. Pelvic congestion with varices was first described more than 150 years ago, and the symptoms were considered psychosocial more than 50 years ago;1 even still, there are often delays in diagnosis because general practitioners are not aware of the syn- drome and typically refer patients to psychologists or other counselors. The underlying pathophysiology of PCS was first described around the same time, with further anatomical understanding developed in more recent decades. Negative psychosocial associations with the term pelvic congestion syndrome has led to pelvic venous insufficiency being the preferred term for describing the underlying pathophysiol- ogy of the condition.1 Although the etiology of PCS is poorly understood, the primary abnormality is the absence of functioning valves in the ovarian or internal iliac vein branches. This likely congenital absence of valves or hereditary predisposition is the most common explanation. The condition is wors- ened with each successive pregnancy due to increased blood flow and hormonal fluctuations. Subclinical thrombosis of these veins may further contribute to the development of the syndrome. Other less common etiologies are secondary to uterine malposition and Figure 1. Coronal T2 short TI inversion recovery image nutcracker syndrome (eg, left renal vein compression depicts parauterine varices (dashed white arrow) and labial between the aorta and the superior mesenteric artery).
    [Show full text]
  • Congenital Inferior Vena Cava Anomalies: a Review of Findings at Multidetector Computed Tomography and Magnetic Resonance Imaging
    Yang C et al. CongenitalREVIEW inferior ARvenaTICLE cava anomalies Congenital inferior vena cava anomalies: a review of findings at multidetector computed tomography and magnetic resonance imaging* Anomalias congênitas da veia cava inferior: revisão dos achados na tomografia computadorizada multidetectores e ressonância magnética Catherine Yang1, Henrique Simão Trad2, Silvana Machado Mendonça3, Clovis Simão Trad4 Abstract Inferior vena cava anomalies are rare, occurring in up to 8.7% of the population, as left renal vein anomalies are considered. The inferior vena cava develops from the sixth to the eighth gestational weeks, originating from three paired embryonic veins, namely the subcardinal, supracardinal and postcardinal veins. This complex ontogenesis of the inferior vena cava, with multiple anastomoses between the pairs of embryonic veins, leads to a number of anatomic variations in the venous return from the abdomen and lower limbs. Some of such variations have significant clinical and surgical implications related to other cardiovascular anomalies and in some cases associated with venous thrombosis of lower limbs, particularly in young adults. The authors reviewed images of ten patients with inferior vena cava anomalies, three of them with deep venous thrombosis. The authors highlight the major findings of inferior vena cava anomalies at multidetector computed tomography and magnetic resonance imaging, correlating them the embryonic development and demonstrating the main alternative pathways for venous drainage. The knowledge on the inferior vena cava anomalies is critical in the assessment of abdominal images to avoid misdiagnosis and to indicate the possibility of associated anomalies, besides clinical and surgical implications. Keywords: Inferior vena cava; Congenital abnormalities; Venous thrombosis. Resumo Anomalias da veia cava inferior são incomuns, ocorrendo em até 8,7% da população, quando consideradas as anoma- lias da veia renal esquerda.
    [Show full text]
  • Unusual Pancreatico-Mesenteric Vasculature: a Clinical Insight
    Clinical Group Archives of Anatomy and Physiology DOI http://dx.doi.org/10.17352/aap.000001 ISSN: 2640-7957 CC By Shikha Singh, Jasbir Kaur, Jyoti Arora*, Renu Baliyan Jeph, Vandana Research Article Mehta and Rajesh Kumar Suri Unusual Pancreatico-Mesenteric Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital, Ansari Nagar West, Delhi 110029, India Vasculature: A Clinical Insight Dates: Received: 09 November, 2016; Accepted: 03 December, 2016; Published: 06 December, 2016 *Corresponding author: Jyoti Arora, MBBS, MS, Abstract Professor, Department of Anatomy, Vardhman Mahavir Medical College and Safdarjung Hospital, Background: Awareness about the variable vascular anatomy of superior mesenteric artery is Ansari Nagar West, New Delhi, Delhi 110029, India, imperative for appropriate clinical management. Present study not only augments anatomical literature Tel: +91-99-99077775; Fax: +91-11-2375365; E-mail: pertaining to mesenteric vasculature but also adds to the clinical acumen of medical practitioners in their clinical endeavors. Keywords: Superior mesenteric artery; Anomalous Case summary: The present study reports the occurrence of anomalous branch, termed as branch; Inferior pancreatic artery; Inferior accessory inferior pancreatic artery stemming from superior mesenteric artery. Additionally inferior pancreaticoduodenal artery; Ventral splanchnic pancreaticoduodenal artery was seen to be dividing into right and left branches instead of usual anterior arteries and posterior branches. Right branch terminated
    [Show full text]
  • Liquid and Solid Embolic Agents in Gonadal Veins
    Journal of Clinical Medicine Review Liquid and Solid Embolic Agents in Gonadal Veins Francesco Tiralongo 1,* , Giulio Distefano 1 , Monica Palermo 1 , Antonio Granata 2, Francesco Giurazza 3, Francesco Vacirca 1, Stefano Palmucci 1 , Massimo Venturini 4 and Antonio Basile 1 1 Radiology Unit I, Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia” –University Hospital “Policlinico-San Marco”, University of Catania, Via Santa Sofia n◦ 78, 95123 Catania, Italy; [email protected] (G.D.); [email protected] (M.P.); [email protected] (F.V.); [email protected] (S.P.); [email protected] (A.B.) 2 Nephrology and Dialysis Unit, “Cannizzaro” Hospital, 95123 Catania, Italy; [email protected] 3 Interventional Radiology Department, Cardarelli Hospital of Naples, 80131 Naples, Italy; [email protected] 4 Department of Diagnostic and Interventional Radiology, Circolo Hospital, Insubria University, 21100 Varese, Italyl; [email protected] * Correspondence: [email protected] Abstract: Male varicocele and pelvic congestion syndrome (PCS) are common pathologies with high predominance in young patients, having a high impact on the quality of life and infertility. Lately, the use of different endovascular embolization techniques, with various embolizing agents, shows good technical results and clinical outcomes. With the aim of presenting the “state of the art” of endovascular techniques for the treatment of male varicocele and PCS, and to discuss the performance of the different embolic agents proposed, we conducted an extensive analysis of the relevant literature and we reported and discussed the results of original studies and previous meta-analyses, providing an updated guide on this topic to clinicians and interventional radiologists.
    [Show full text]
  • Intestinal Phase of Superior Mesenteric Artery Blood Flow in Man Gut: First Published As 10.1136/Gut.33.4.497 on 1 April 1992
    Gut, 1992,33,497-501 497 Intestinal phase of superior mesenteric artery blood flow in man Gut: first published as 10.1136/gut.33.4.497 on 1 April 1992. Downloaded from C Sieber, C Beglinger, K Jager, G A Stalder Abstract variety of test meals." The different responses Duplex ultrasound was used to investigate observed may be related to meal composition, the superior mesenteric artery haemodynamics in method used to measure blood flow, or they humans in order to study the contribution could be the result of species differences. of the smali intestine to the postprandial The primary objective of this study was to splanchnic hyperaemia, and to determine the investigate the contribution ofthe small intestine relative potencies of the major food com- to postprandial splanchnic hyperaemia and to ponents in the postprandial mesenteric flow determine the relative potencies of the major response. Duplex parameters of vessel dia- nutrient stimuli in healthy human subjects. meter, mean velocity, and volume flow were determined serially in the basal state and after stimulation. Flow parameters were signifi- METHODS cantly (p<005) increased after liquid and solid Subjects oral meals. Modified sham feeding did not alter Six healthy male volunteers, aged 21-27 years mesenteric blood flow. Intestinal perfusion of (mean 23 years), and with body weights averag- an isocaloric liquid test meal induced flow ing 64 kg (range 58-76 kg) were studied on increases comparable with oral intake. different days and in random order in the morn- Superior mesenteric artery blood flow also ing after overnight fasting in resting conditions, significantly (p<0O05) increased after iso- lying in the supine position.
    [Show full text]
  • Unusual Termination of the Right Testicular Vein
    CASE REPORT Anatomy Journal of Africa. 2016. Vol 5 (2): 746 - 749 UNUSUAL TERMINATION OF THE RIGHT TESTICULAR VEIN Dawit Habte Woldeyes 1, Mengstu Desalegn Kiros 1 1Department of Human Anatomy, College of Medicine and Health sciences, Bahir Dar University, po.box 79. E-mail: [email protected]. Tel. +251938221383. Fax. +251582202025 ABSTRACT The testicular veins are formed by the veins emerging from the testis and epididymis forming the pampiniform venous plexus. The right testicular vein drains into inferior vena cava and the left testicular vein to the left renal vein. Testicular veins display a great variability with regard to their number, course and sites of termination. Awareness of the possible variations of gonadal vessels is necessary for adequate surgical management. Key words: Testicular vein, Termination, Inferior vena cava, Renal vein. INTRODUCTION The testicular veins are formed by the veins interventional radiologic procedures and emerging from the testis and epididymis urologic operations increase, awareness of forming the pampiniform venous plexus. The the possible variations of gonadal vessels is right testicular vein drains into inferior vena necessary for adequate surgical management in cava and the left testicular vein to the left renal the aforementioned specialties (Punita and vein (Moore et al. 2010; Punita and Surinder Surinder 2011; Bandopadhyay et al 2009). 2011; Nayak et al. 2013). Certain vascular and developmental anomalies of kidneys can be associated with variations in Testicular veins display a great variability with the origin and course of the gonadal vessels. regard to their number, course and sites of These anomalies are explained by the termination; the pathological dilated embryological development of both of these pampiniform plexus veins known as organs from the intermediate mesoderm of varicocele could be attributed to testicular the mesonephric crest.
    [Show full text]
  • Embolization of the Ovarian and Iliac Veins for Pelvic Congestion Syndrome
    UnitedHealthcare® Commercial Medical Policy Embolization of the Ovarian and Iliac Veins for Pelvic Congestion Syndrome Policy Number: 2021T0574K Effective Date: May 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policy Coverage Rationale ........................................................................... 1 • Surgical and Ablative Procedures for Venous Definitions ........................................................................................... 1 Insufficiency and Varicose Veins Applicable Codes .............................................................................. 2 Description of Services ..................................................................... 2 Community Plan Policy Clinical Evidence ............................................................................... 2 • Embolization of the Ovarian and Iliac Veins for Pelvic U.S. Food and Drug Administration ................................................ 4 Congestion Syndrome References ......................................................................................... 5 Policy History/Revision Information................................................ 6 Instructions for Use ........................................................................... 6 Coverage Rationale Embolization of the Ovarian Vein or Internal Iliac Vein is unproven and not medically necessary for treating Pelvic Congestion Syndrome due to insufficient evidence of efficacy. Definitions Embolization: A procedure that uses particles, such as tiny
    [Show full text]